Topological Quantum Optics Using Atomlike Emitter Arrays Coupled to Photonic Crystals

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Standard

Topological Quantum Optics Using Atomlike Emitter Arrays Coupled to Photonic Crystals. / Perczel, J.; Borregaard, J.; Chang, D. E.; Yelin, S. F.; Lukin, M. D.

I: Physical Review Letters, Bind 124, Nr. 8, 083603, 2020, s. 1-7.

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Harvard

Perczel, J, Borregaard, J, Chang, DE, Yelin, SF & Lukin, MD 2020, 'Topological Quantum Optics Using Atomlike Emitter Arrays Coupled to Photonic Crystals', Physical Review Letters, bind 124, nr. 8, 083603, s. 1-7. https://doi.org/10.1103/PhysRevLett.124.083603

APA

Perczel, J., Borregaard, J., Chang, D. E., Yelin, S. F., & Lukin, M. D. (2020). Topological Quantum Optics Using Atomlike Emitter Arrays Coupled to Photonic Crystals. Physical Review Letters, 124(8), 1-7. [083603]. https://doi.org/10.1103/PhysRevLett.124.083603

Vancouver

Perczel J, Borregaard J, Chang DE, Yelin SF, Lukin MD. Topological Quantum Optics Using Atomlike Emitter Arrays Coupled to Photonic Crystals. Physical Review Letters. 2020;124(8):1-7. 083603. https://doi.org/10.1103/PhysRevLett.124.083603

Author

Perczel, J. ; Borregaard, J. ; Chang, D. E. ; Yelin, S. F. ; Lukin, M. D. / Topological Quantum Optics Using Atomlike Emitter Arrays Coupled to Photonic Crystals. I: Physical Review Letters. 2020 ; Bind 124, Nr. 8. s. 1-7.

Bibtex

@article{0057a2f534ab47e7abdb05aa777e6ec0,
title = "Topological Quantum Optics Using Atomlike Emitter Arrays Coupled to Photonic Crystals",
abstract = "We propose an experimentally feasible nanophotonic platform for exploring many-body physics in topological quantum optics. Our system is composed of a two-dimensional lattice of nonlinear quantum emitters with optical transitions embedded in a photonic crystal slab. The emitters interact through the guided modes of the photonic crystal, and a uniform magnetic field gives rise to large topological band gaps, robust edge states, and a nearly flat band with a nonzero Chern number. The presence of a topologically nontrivial nearly flat band paves the way for the realization of fractional quantum Hall states and fractional topological insulators in a topological quantum optical setting.",
author = "J. Perczel and J. Borregaard and Chang, {D. E.} and Yelin, {S. F.} and Lukin, {M. D.}",
year = "2020",
doi = "10.1103/PhysRevLett.124.083603",
language = "English",
volume = "124",
pages = "1--7",
journal = "Physical Review Letters",
issn = "0031-9007",
publisher = "American Physical Society",
number = "8",

}

RIS

TY - JOUR

T1 - Topological Quantum Optics Using Atomlike Emitter Arrays Coupled to Photonic Crystals

AU - Perczel, J.

AU - Borregaard, J.

AU - Chang, D. E.

AU - Yelin, S. F.

AU - Lukin, M. D.

PY - 2020

Y1 - 2020

N2 - We propose an experimentally feasible nanophotonic platform for exploring many-body physics in topological quantum optics. Our system is composed of a two-dimensional lattice of nonlinear quantum emitters with optical transitions embedded in a photonic crystal slab. The emitters interact through the guided modes of the photonic crystal, and a uniform magnetic field gives rise to large topological band gaps, robust edge states, and a nearly flat band with a nonzero Chern number. The presence of a topologically nontrivial nearly flat band paves the way for the realization of fractional quantum Hall states and fractional topological insulators in a topological quantum optical setting.

AB - We propose an experimentally feasible nanophotonic platform for exploring many-body physics in topological quantum optics. Our system is composed of a two-dimensional lattice of nonlinear quantum emitters with optical transitions embedded in a photonic crystal slab. The emitters interact through the guided modes of the photonic crystal, and a uniform magnetic field gives rise to large topological band gaps, robust edge states, and a nearly flat band with a nonzero Chern number. The presence of a topologically nontrivial nearly flat band paves the way for the realization of fractional quantum Hall states and fractional topological insulators in a topological quantum optical setting.

UR - http://www.scopus.com/inward/record.url?scp=85081341410&partnerID=8YFLogxK

U2 - 10.1103/PhysRevLett.124.083603

DO - 10.1103/PhysRevLett.124.083603

M3 - Journal article

C2 - 32167350

AN - SCOPUS:85081341410

VL - 124

SP - 1

EP - 7

JO - Physical Review Letters

JF - Physical Review Letters

SN - 0031-9007

IS - 8

M1 - 083603

ER -

ID: 243009380