The BCS energy gap at low density

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Standard

The BCS energy gap at low density. / Lauritsen, Asbjørn Bækgaard.

I: Letters in Mathematical Physics, Bind 111, Nr. 1, 20, 2021, s. 1-16.

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Harvard

Lauritsen, AB 2021, 'The BCS energy gap at low density', Letters in Mathematical Physics, bind 111, nr. 1, 20, s. 1-16. https://doi.org/10.1007/s11005-021-01358-5

APA

Lauritsen, A. B. (2021). The BCS energy gap at low density. Letters in Mathematical Physics, 111(1), 1-16. [20]. https://doi.org/10.1007/s11005-021-01358-5

Vancouver

Lauritsen AB. The BCS energy gap at low density. Letters in Mathematical Physics. 2021;111(1):1-16. 20. https://doi.org/10.1007/s11005-021-01358-5

Author

Lauritsen, Asbjørn Bækgaard. / The BCS energy gap at low density. I: Letters in Mathematical Physics. 2021 ; Bind 111, Nr. 1. s. 1-16.

Bibtex

@article{5405201a87824cb188286082e977b95c,
title = "The BCS energy gap at low density",
abstract = "We show that the energy gap for the BCS gap equation is Ξ=μ(8e-2+o(1))exp(π2μa)in the low density limit μ→ 0. Together with the similar result for the critical temperature by Hainzl and Seiringer (Lett Math Phys 84: 99–107, 2008), this shows that, in the low density limit, the ratio of the energy gap and critical temperature is a universal constant independent of the interaction potential V. The results hold for a class of potentials with negative scattering length a and no bound states.",
keywords = "BCS equation, Energy gap, Superfluidity",
author = "Lauritsen, {Asbj{\o}rn B{\ae}kgaard}",
note = "Publisher Copyright: {\textcopyright} 2021, The Author(s).",
year = "2021",
doi = "10.1007/s11005-021-01358-5",
language = "English",
volume = "111",
pages = "1--16",
journal = "Letters in Mathematical Physics",
issn = "0377-9017",
publisher = "Springer",
number = "1",

}

RIS

TY - JOUR

T1 - The BCS energy gap at low density

AU - Lauritsen, Asbjørn Bækgaard

N1 - Publisher Copyright: © 2021, The Author(s).

PY - 2021

Y1 - 2021

N2 - We show that the energy gap for the BCS gap equation is Ξ=μ(8e-2+o(1))exp(π2μa)in the low density limit μ→ 0. Together with the similar result for the critical temperature by Hainzl and Seiringer (Lett Math Phys 84: 99–107, 2008), this shows that, in the low density limit, the ratio of the energy gap and critical temperature is a universal constant independent of the interaction potential V. The results hold for a class of potentials with negative scattering length a and no bound states.

AB - We show that the energy gap for the BCS gap equation is Ξ=μ(8e-2+o(1))exp(π2μa)in the low density limit μ→ 0. Together with the similar result for the critical temperature by Hainzl and Seiringer (Lett Math Phys 84: 99–107, 2008), this shows that, in the low density limit, the ratio of the energy gap and critical temperature is a universal constant independent of the interaction potential V. The results hold for a class of potentials with negative scattering length a and no bound states.

KW - BCS equation

KW - Energy gap

KW - Superfluidity

UR - http://www.scopus.com/inward/record.url?scp=85101025398&partnerID=8YFLogxK

U2 - 10.1007/s11005-021-01358-5

DO - 10.1007/s11005-021-01358-5

M3 - Journal article

AN - SCOPUS:85101025398

VL - 111

SP - 1

EP - 16

JO - Letters in Mathematical Physics

JF - Letters in Mathematical Physics

SN - 0377-9017

IS - 1

M1 - 20

ER -

ID: 302076294