Local elliptic law

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Dokumenter

  • Fulltext

    Indsendt manuskript, 360 KB, PDF-dokument

The empirical eigenvalue distribution of the elliptic random matrix ensemble tends to the uniform measure on an ellipse in the complex plane as its dimension tends to infinity. We show this convergence on all mesoscopic scales slightly above the typical eigenvalue spacing in the bulk spectrum with an optimal convergence rate. As a corollary we obtain complete delocalisation for the corresponding eigenvectors in any basis.

OriginalsprogEngelsk
TidsskriftBernoulli
Vol/bind28
Udgave nummer2
Sider (fra-til)886-909
ISSN1350-7265
DOI
StatusUdgivet - maj 2022

Bibliografisk note

Funding Information:
The first author gratefully acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 895698, from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 715539 RandMat) and from the Swiss National Science Foundation through the NCCR SwissMAP grant.

Funding Information:
The second author gratefully acknowledges financial support from Novo Nordisk Fonden Project Grant 0064428 & VILLUM FONDEN via the QMATH Centre of Excellence (Grant No. 10059) and Young Investigator Award (Grant No. 29369).

Publisher Copyright:
© 2022 ISI/BS.

ID: 308490176