Deconstruction and conditional erasure of quantum correlations

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Standard

Deconstruction and conditional erasure of quantum correlations. / Berta, Mario; Brandao, Fernando G. S. L.; Majenz, Christian; Wilde, Mark M.

I: Physical Review A, Bind 98, Nr. 4, 042320 , 2018.

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Harvard

Berta, M, Brandao, FGSL, Majenz, C & Wilde, MM 2018, 'Deconstruction and conditional erasure of quantum correlations', Physical Review A, bind 98, nr. 4, 042320 . https://doi.org/10.1103/PhysRevA.98.042320

APA

Berta, M., Brandao, F. G. S. L., Majenz, C., & Wilde, M. M. (2018). Deconstruction and conditional erasure of quantum correlations. Physical Review A, 98(4), [042320 ]. https://doi.org/10.1103/PhysRevA.98.042320

Vancouver

Berta M, Brandao FGSL, Majenz C, Wilde MM. Deconstruction and conditional erasure of quantum correlations. Physical Review A. 2018;98(4). 042320 . https://doi.org/10.1103/PhysRevA.98.042320

Author

Berta, Mario ; Brandao, Fernando G. S. L. ; Majenz, Christian ; Wilde, Mark M. / Deconstruction and conditional erasure of quantum correlations. I: Physical Review A. 2018 ; Bind 98, Nr. 4.

Bibtex

@article{572655ee5c074e4a89f76038817821f1,
title = "Deconstruction and conditional erasure of quantum correlations",
abstract = "We define the deconstruction cost of a tripartite quantum state on systems ABE as the minimum rate of noise needed to apply to the AE systems, such that there is negligible disturbance to the marginal state on the BE systems, while the system A of the resulting state is locally recoverable from the E system alone. We refer to such actions as deconstruction operations and protocols implementing them as state deconstruction protocols. State deconstruction generalizes Landauer erasure of a single-party quantum state as well the erasure of correlations of a two-party quantum state. We find that the deconstruction cost of a tripartite quantum state on systems ABE is equal to its conditional quantum mutual information (CQMI) I (A; B vertical bar E), thus giving the CQMI an operational interpretation in terms of a state deconstruction protocol. We also define a related task called conditional erasure, in which the goal is to apply noise to systems AE in order to decouple system A from systems BE, while causing negligible disturbance to the marginal state of systems BE. We find that the optimal rate of noise for conditional erasure is also equal to the CQMI I (A; B vertical bar E). State deconstruction and conditional erasure lead to operational interpretations of the quantum discord and squashed entanglement, which are quantum correlation measures based on the CQMI. We find that the quantum discord is equal to the cost of simulating einselection, the process by which a quantum system interacts with an environment, resulting in selective loss of information in the system. The squashed entanglement is equal to half the minimum rate of noise needed for deconstruction and/or conditional erasure if Alice has available the best possible system E to help in the deconstruction and/or conditional erasure task.",
author = "Mario Berta and Brandao, {Fernando G. S. L.} and Christian Majenz and Wilde, {Mark M.}",
year = "2018",
doi = "10.1103/PhysRevA.98.042320",
language = "English",
volume = "98",
journal = "Physical Review A - Atomic, Molecular, and Optical Physics",
issn = "1050-2947",
publisher = "American Physical Society",
number = "4",

}

RIS

TY - JOUR

T1 - Deconstruction and conditional erasure of quantum correlations

AU - Berta, Mario

AU - Brandao, Fernando G. S. L.

AU - Majenz, Christian

AU - Wilde, Mark M.

PY - 2018

Y1 - 2018

N2 - We define the deconstruction cost of a tripartite quantum state on systems ABE as the minimum rate of noise needed to apply to the AE systems, such that there is negligible disturbance to the marginal state on the BE systems, while the system A of the resulting state is locally recoverable from the E system alone. We refer to such actions as deconstruction operations and protocols implementing them as state deconstruction protocols. State deconstruction generalizes Landauer erasure of a single-party quantum state as well the erasure of correlations of a two-party quantum state. We find that the deconstruction cost of a tripartite quantum state on systems ABE is equal to its conditional quantum mutual information (CQMI) I (A; B vertical bar E), thus giving the CQMI an operational interpretation in terms of a state deconstruction protocol. We also define a related task called conditional erasure, in which the goal is to apply noise to systems AE in order to decouple system A from systems BE, while causing negligible disturbance to the marginal state of systems BE. We find that the optimal rate of noise for conditional erasure is also equal to the CQMI I (A; B vertical bar E). State deconstruction and conditional erasure lead to operational interpretations of the quantum discord and squashed entanglement, which are quantum correlation measures based on the CQMI. We find that the quantum discord is equal to the cost of simulating einselection, the process by which a quantum system interacts with an environment, resulting in selective loss of information in the system. The squashed entanglement is equal to half the minimum rate of noise needed for deconstruction and/or conditional erasure if Alice has available the best possible system E to help in the deconstruction and/or conditional erasure task.

AB - We define the deconstruction cost of a tripartite quantum state on systems ABE as the minimum rate of noise needed to apply to the AE systems, such that there is negligible disturbance to the marginal state on the BE systems, while the system A of the resulting state is locally recoverable from the E system alone. We refer to such actions as deconstruction operations and protocols implementing them as state deconstruction protocols. State deconstruction generalizes Landauer erasure of a single-party quantum state as well the erasure of correlations of a two-party quantum state. We find that the deconstruction cost of a tripartite quantum state on systems ABE is equal to its conditional quantum mutual information (CQMI) I (A; B vertical bar E), thus giving the CQMI an operational interpretation in terms of a state deconstruction protocol. We also define a related task called conditional erasure, in which the goal is to apply noise to systems AE in order to decouple system A from systems BE, while causing negligible disturbance to the marginal state of systems BE. We find that the optimal rate of noise for conditional erasure is also equal to the CQMI I (A; B vertical bar E). State deconstruction and conditional erasure lead to operational interpretations of the quantum discord and squashed entanglement, which are quantum correlation measures based on the CQMI. We find that the quantum discord is equal to the cost of simulating einselection, the process by which a quantum system interacts with an environment, resulting in selective loss of information in the system. The squashed entanglement is equal to half the minimum rate of noise needed for deconstruction and/or conditional erasure if Alice has available the best possible system E to help in the deconstruction and/or conditional erasure task.

U2 - 10.1103/PhysRevA.98.042320

DO - 10.1103/PhysRevA.98.042320

M3 - Journal article

VL - 98

JO - Physical Review A - Atomic, Molecular, and Optical Physics

JF - Physical Review A - Atomic, Molecular, and Optical Physics

SN - 1050-2947

IS - 4

M1 - 042320

ER -

ID: 209168893