A Family of Horn-Bernstein Functions

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Standard

A Family of Horn-Bernstein Functions. / Berg, Christian; Pedersen, Henrik L.

I: Experimental Mathematics, Bind 32, Nr. 3, 2023, s. 505-513.

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Harvard

Berg, C & Pedersen, HL 2023, 'A Family of Horn-Bernstein Functions', Experimental Mathematics, bind 32, nr. 3, s. 505-513. https://doi.org/10.1080/10586458.2021.1980460

APA

Berg, C., & Pedersen, H. L. (2023). A Family of Horn-Bernstein Functions. Experimental Mathematics, 32(3), 505-513. https://doi.org/10.1080/10586458.2021.1980460

Vancouver

Berg C, Pedersen HL. A Family of Horn-Bernstein Functions. Experimental Mathematics. 2023;32(3):505-513. https://doi.org/10.1080/10586458.2021.1980460

Author

Berg, Christian ; Pedersen, Henrik L. / A Family of Horn-Bernstein Functions. I: Experimental Mathematics. 2023 ; Bind 32, Nr. 3. s. 505-513.

Bibtex

@article{b84856d7c13c4028b3ac8b20657d9073,
title = "A Family of Horn-Bernstein Functions",
abstract = "A family of recently investigated Bernstein functions is revisited and those functions for which the derivatives are logarithmically completely monotonic are identified. This leads to the definition of a class of Bernstein functions, which we propose to call Horn-Bernstein functions because of the results of Roger A. Horn.",
keywords = "Bernstein function, Generalized Stieltjes function, Laplace transform, logarithmically completely monotonic function",
author = "Christian Berg and Pedersen, {Henrik L.}",
note = "Publisher Copyright: {\textcopyright} 2021 Taylor & Francis Group, LLC.",
year = "2023",
doi = "10.1080/10586458.2021.1980460",
language = "English",
volume = "32",
pages = "505--513",
journal = "Experimental Mathematics",
issn = "1058-6458",
publisher = "Taylor & Francis",
number = "3",

}

RIS

TY - JOUR

T1 - A Family of Horn-Bernstein Functions

AU - Berg, Christian

AU - Pedersen, Henrik L.

N1 - Publisher Copyright: © 2021 Taylor & Francis Group, LLC.

PY - 2023

Y1 - 2023

N2 - A family of recently investigated Bernstein functions is revisited and those functions for which the derivatives are logarithmically completely monotonic are identified. This leads to the definition of a class of Bernstein functions, which we propose to call Horn-Bernstein functions because of the results of Roger A. Horn.

AB - A family of recently investigated Bernstein functions is revisited and those functions for which the derivatives are logarithmically completely monotonic are identified. This leads to the definition of a class of Bernstein functions, which we propose to call Horn-Bernstein functions because of the results of Roger A. Horn.

KW - Bernstein function

KW - Generalized Stieltjes function

KW - Laplace transform

KW - logarithmically completely monotonic function

UR - http://www.scopus.com/inward/record.url?scp=85117164312&partnerID=8YFLogxK

U2 - 10.1080/10586458.2021.1980460

DO - 10.1080/10586458.2021.1980460

M3 - Journal article

AN - SCOPUS:85117164312

VL - 32

SP - 505

EP - 513

JO - Experimental Mathematics

JF - Experimental Mathematics

SN - 1058-6458

IS - 3

ER -

ID: 284296476