Masterclass on
Kac-Moody groups: structure, geometry and homotopy
June 3-7, 2013
Content: Walter Freyn and Nitu Kitchloo will give two coordinated mini-courses that will proceed from an elementary level to develop a working knowledge of the structure, geometry and homotopy theory Kac-Moody groups and selected research topics.
- Freyn's series will focus on Kac-Moody geometry including: the geometry of symmetric spaces, Kac-Moody symmetric spaces, and twin buildings and cities.
- Kitchloo's series will focus on the unitary form of a Kac-Moody group and its classifying spaces including: basic Kac-Moody Lie algebra theory, the homotopical and (co)homological structure of Kac-Moody groups and classifying spaces, and Kac-Moody representation and K-theory.
There will be additional talks both to support this development and on research topics by other external participants. Lectures will be supplemented by disscussion sessions.
Organizer: John Foley (Copenhagen)
Participants:
- Kasper K. S. Andersen (University of Lund, Sweden)
- Rasmus Bentmann (University of Copenhagen)
- Tyrone Crisp (University of Copenhagen)
- Dieter Degrijse (KU Leuven)
- John Foley (University of Copenhagen)
- Walter Freyn (Technische Universität Darmstadt)
- Giovanni Gandini (University of Copenhagen)
- Casper Guldberg (University of Copenhagen)
- Mauricio Esteban Gomez Lopez (University of Copenhagen)
- Jesper Grodal (University of Copenhagen)
- Ellen Henke (University of Copenhagen)
- Nitu Kitchloo (Johns Hopkins University)
- Jesper Møller (University of Copenhagen)
- Ehud Meir (University of Copenhagen)
- Toke Nørgård-Sørensen (University of Copenhagen)
- Albert Ruiz Cirera (Universitat Autònoma de Barcelona)
- Nora Seeliger (Centre de Recerca Matematica)
- Markus Szymik (University of Copenhagen)
- Nathalie Wahl (University of Copenhagen)
Related references and links:
- Walter Freyn, Kac-Moody groups, analytic regularity conditions and cities, accepted for Asian Journal of mathematics (2011). (see also arXiv:1004.3419v1)
- Walter Freyn, Finite and Kac-Moody symmetric spaces, Lecture notes, 2011
- Walter Freyn, Kac-Moody geometry, Global Dierential geometry, Springer 2012 (2012). (see also arXiv:1003.4435v2)
- Victor Kac. Infinite-dimensional Lie algebras. Second edition. Cambridge University Press, Cambridge, 1985.
- Nitu Kitchloo, On the topology of Kac-Moody groups, arXiv:0810.0851v2 (2008).
- Nitu Kitchloo. Dominant K-theory and integrable highest weight represenatations of Kac-Moody groups. Advances in Math., 221, 1191-1126, 2009.