Phase-type distributions in mathematical population genetics: An emerging framework

Research output: Contribution to journalReviewResearchpeer-review

Standard

Phase-type distributions in mathematical population genetics : An emerging framework. / Hobolth, Asger; Rivas-González, Iker; Bladt, Mogens; Futschik, Andreas.

In: Theoretical Population Biology, Vol. 157, 2024, p. 14-32.

Research output: Contribution to journalReviewResearchpeer-review

Harvard

Hobolth, A, Rivas-González, I, Bladt, M & Futschik, A 2024, 'Phase-type distributions in mathematical population genetics: An emerging framework', Theoretical Population Biology, vol. 157, pp. 14-32. https://doi.org/10.1016/j.tpb.2024.03.001

APA

Hobolth, A., Rivas-González, I., Bladt, M., & Futschik, A. (2024). Phase-type distributions in mathematical population genetics: An emerging framework. Theoretical Population Biology, 157, 14-32. https://doi.org/10.1016/j.tpb.2024.03.001

Vancouver

Hobolth A, Rivas-González I, Bladt M, Futschik A. Phase-type distributions in mathematical population genetics: An emerging framework. Theoretical Population Biology. 2024;157:14-32. https://doi.org/10.1016/j.tpb.2024.03.001

Author

Hobolth, Asger ; Rivas-González, Iker ; Bladt, Mogens ; Futschik, Andreas. / Phase-type distributions in mathematical population genetics : An emerging framework. In: Theoretical Population Biology. 2024 ; Vol. 157. pp. 14-32.

Bibtex

@article{dea517a2d15e4c0999470d7dfcb1794c,
title = "Phase-type distributions in mathematical population genetics: An emerging framework",
abstract = "A phase-type distribution is the time to absorption in a continuous- or discrete-time Markov chain. Phase-type distributions can be used as a general framework to calculate key properties of the standard coalescent model and many of its extensions. Here, the {\textquoteleft}phases{\textquoteright} in the phase-type distribution correspond to states in the ancestral process. For example, the time to the most recent common ancestor and the total branch length are phase-type distributed. Furthermore, the site frequency spectrum follows a multivariate discrete phase-type distribution and the joint distribution of total branch lengths in the two-locus coalescent-with-recombination model is multivariate phase-type distributed. In general, phase-type distributions provide a powerful mathematical framework for coalescent theory because they are analytically tractable using matrix manipulations. The purpose of this review is to explain the phase-type theory and demonstrate how the theory can be applied to derive basic properties of coalescent models. These properties can then be used to obtain insight into the ancestral process, or they can be applied for statistical inference. In particular, we show the relation between classical first-step analysis of coalescent models and phase-type calculations. We also show how reward transformations in phase-type theory lead to easy calculation of covariances and correlation coefficients between e.g. tree height, tree length, external branch length, and internal branch length. Furthermore, we discuss how these quantities can be used for statistical inference based on estimating equations. Providing an alternative to previous work based on the Laplace transform, we derive likelihoods for small-size coalescent trees based on phase-type theory. Overall, our main aim is to demonstrate that phase-type distributions provide a convenient general set of tools to understand aspects of coalescent models that are otherwise difficult to derive. Throughout the review, we emphasize the versatility of the phase-type framework, which is also illustrated by our accompanying R-code. All our analyses and figures can be reproduced from code available on GitHub.",
keywords = "Coalescent, Laplace transform, Likelihood inference, Phase-type theory, Population genetics, Reward transformation",
author = "Asger Hobolth and Iker Rivas-Gonz{\'a}lez and Mogens Bladt and Andreas Futschik",
note = "Publisher Copyright: {\textcopyright} 2024 The Authors",
year = "2024",
doi = "10.1016/j.tpb.2024.03.001",
language = "English",
volume = "157",
pages = "14--32",
journal = "Theoretical Population Biology",
issn = "0040-5809",
publisher = "Academic Press",

}

RIS

TY - JOUR

T1 - Phase-type distributions in mathematical population genetics

T2 - An emerging framework

AU - Hobolth, Asger

AU - Rivas-González, Iker

AU - Bladt, Mogens

AU - Futschik, Andreas

N1 - Publisher Copyright: © 2024 The Authors

PY - 2024

Y1 - 2024

N2 - A phase-type distribution is the time to absorption in a continuous- or discrete-time Markov chain. Phase-type distributions can be used as a general framework to calculate key properties of the standard coalescent model and many of its extensions. Here, the ‘phases’ in the phase-type distribution correspond to states in the ancestral process. For example, the time to the most recent common ancestor and the total branch length are phase-type distributed. Furthermore, the site frequency spectrum follows a multivariate discrete phase-type distribution and the joint distribution of total branch lengths in the two-locus coalescent-with-recombination model is multivariate phase-type distributed. In general, phase-type distributions provide a powerful mathematical framework for coalescent theory because they are analytically tractable using matrix manipulations. The purpose of this review is to explain the phase-type theory and demonstrate how the theory can be applied to derive basic properties of coalescent models. These properties can then be used to obtain insight into the ancestral process, or they can be applied for statistical inference. In particular, we show the relation between classical first-step analysis of coalescent models and phase-type calculations. We also show how reward transformations in phase-type theory lead to easy calculation of covariances and correlation coefficients between e.g. tree height, tree length, external branch length, and internal branch length. Furthermore, we discuss how these quantities can be used for statistical inference based on estimating equations. Providing an alternative to previous work based on the Laplace transform, we derive likelihoods for small-size coalescent trees based on phase-type theory. Overall, our main aim is to demonstrate that phase-type distributions provide a convenient general set of tools to understand aspects of coalescent models that are otherwise difficult to derive. Throughout the review, we emphasize the versatility of the phase-type framework, which is also illustrated by our accompanying R-code. All our analyses and figures can be reproduced from code available on GitHub.

AB - A phase-type distribution is the time to absorption in a continuous- or discrete-time Markov chain. Phase-type distributions can be used as a general framework to calculate key properties of the standard coalescent model and many of its extensions. Here, the ‘phases’ in the phase-type distribution correspond to states in the ancestral process. For example, the time to the most recent common ancestor and the total branch length are phase-type distributed. Furthermore, the site frequency spectrum follows a multivariate discrete phase-type distribution and the joint distribution of total branch lengths in the two-locus coalescent-with-recombination model is multivariate phase-type distributed. In general, phase-type distributions provide a powerful mathematical framework for coalescent theory because they are analytically tractable using matrix manipulations. The purpose of this review is to explain the phase-type theory and demonstrate how the theory can be applied to derive basic properties of coalescent models. These properties can then be used to obtain insight into the ancestral process, or they can be applied for statistical inference. In particular, we show the relation between classical first-step analysis of coalescent models and phase-type calculations. We also show how reward transformations in phase-type theory lead to easy calculation of covariances and correlation coefficients between e.g. tree height, tree length, external branch length, and internal branch length. Furthermore, we discuss how these quantities can be used for statistical inference based on estimating equations. Providing an alternative to previous work based on the Laplace transform, we derive likelihoods for small-size coalescent trees based on phase-type theory. Overall, our main aim is to demonstrate that phase-type distributions provide a convenient general set of tools to understand aspects of coalescent models that are otherwise difficult to derive. Throughout the review, we emphasize the versatility of the phase-type framework, which is also illustrated by our accompanying R-code. All our analyses and figures can be reproduced from code available on GitHub.

KW - Coalescent

KW - Laplace transform

KW - Likelihood inference

KW - Phase-type theory

KW - Population genetics

KW - Reward transformation

U2 - 10.1016/j.tpb.2024.03.001

DO - 10.1016/j.tpb.2024.03.001

M3 - Review

C2 - 38460602

AN - SCOPUS:85188525562

VL - 157

SP - 14

EP - 32

JO - Theoretical Population Biology

JF - Theoretical Population Biology

SN - 0040-5809

ER -

ID: 388636663