The Bogoliubov free energy functional II: The dilute limit

Research output: Contribution to journalJournal articleResearchpeer-review

Standard

The Bogoliubov free energy functional II : The dilute limit. / Napiórkowski, Marcin; Reuvers, Robin; Solovej, Jan Philip.

In: Communications in Mathematical Physics, Vol. 360, No. 1, 2018, p. 347–403.

Research output: Contribution to journalJournal articleResearchpeer-review

Harvard

Napiórkowski, M, Reuvers, R & Solovej, JP 2018, 'The Bogoliubov free energy functional II: The dilute limit', Communications in Mathematical Physics, vol. 360, no. 1, pp. 347–403. https://doi.org/10.1007/s00220-017-3064-x

APA

Napiórkowski, M., Reuvers, R., & Solovej, J. P. (2018). The Bogoliubov free energy functional II: The dilute limit. Communications in Mathematical Physics, 360(1), 347–403. https://doi.org/10.1007/s00220-017-3064-x

Vancouver

Napiórkowski M, Reuvers R, Solovej JP. The Bogoliubov free energy functional II: The dilute limit. Communications in Mathematical Physics. 2018;360(1):347–403. https://doi.org/10.1007/s00220-017-3064-x

Author

Napiórkowski, Marcin ; Reuvers, Robin ; Solovej, Jan Philip. / The Bogoliubov free energy functional II : The dilute limit. In: Communications in Mathematical Physics. 2018 ; Vol. 360, No. 1. pp. 347–403.

Bibtex

@article{cb503892eda546a3849ae06eeabdac0b,
title = "The Bogoliubov free energy functional II: The dilute limit",
abstract = " We analyse the canonical Bogoliubov free energy functional at low temperatures in the dilute limit. We prove existence of a first order phase transition and, in the limit $a_0\to a$, we determine the critical temperature to be $T_{\rm{c}}=T_{\rm{fc}}(1+1.49(\rho^{1/3}a))$ to leading order. Here, $T_{\rm{fc}}$ is the critical temperature of the free Bose gas, $\rho$ is the density of the gas, $a$ is the scattering length of the pair-interaction potential $V$, and $a_0=(8\pi)^{-1}\widehat{V}(0)$ its first order approximation. We also prove asymptotic expansions for the free energy. In particular, we recover the Lee-Huang-Yang formula in the limit $a_0\to a$. ",
keywords = "math-ph, math.MP",
author = "Marcin Napi{\'o}rkowski and Robin Reuvers and Solovej, {Jan Philip}",
year = "2018",
doi = "10.1007/s00220-017-3064-x",
language = "English",
volume = "360",
pages = "347–403",
journal = "Communications in Mathematical Physics",
issn = "0010-3616",
publisher = "Springer",
number = "1",

}

RIS

TY - JOUR

T1 - The Bogoliubov free energy functional II

T2 - The dilute limit

AU - Napiórkowski, Marcin

AU - Reuvers, Robin

AU - Solovej, Jan Philip

PY - 2018

Y1 - 2018

N2 - We analyse the canonical Bogoliubov free energy functional at low temperatures in the dilute limit. We prove existence of a first order phase transition and, in the limit $a_0\to a$, we determine the critical temperature to be $T_{\rm{c}}=T_{\rm{fc}}(1+1.49(\rho^{1/3}a))$ to leading order. Here, $T_{\rm{fc}}$ is the critical temperature of the free Bose gas, $\rho$ is the density of the gas, $a$ is the scattering length of the pair-interaction potential $V$, and $a_0=(8\pi)^{-1}\widehat{V}(0)$ its first order approximation. We also prove asymptotic expansions for the free energy. In particular, we recover the Lee-Huang-Yang formula in the limit $a_0\to a$.

AB - We analyse the canonical Bogoliubov free energy functional at low temperatures in the dilute limit. We prove existence of a first order phase transition and, in the limit $a_0\to a$, we determine the critical temperature to be $T_{\rm{c}}=T_{\rm{fc}}(1+1.49(\rho^{1/3}a))$ to leading order. Here, $T_{\rm{fc}}$ is the critical temperature of the free Bose gas, $\rho$ is the density of the gas, $a$ is the scattering length of the pair-interaction potential $V$, and $a_0=(8\pi)^{-1}\widehat{V}(0)$ its first order approximation. We also prove asymptotic expansions for the free energy. In particular, we recover the Lee-Huang-Yang formula in the limit $a_0\to a$.

KW - math-ph

KW - math.MP

U2 - 10.1007/s00220-017-3064-x

DO - 10.1007/s00220-017-3064-x

M3 - Journal article

VL - 360

SP - 347

EP - 403

JO - Communications in Mathematical Physics

JF - Communications in Mathematical Physics

SN - 0010-3616

IS - 1

ER -

ID: 190447955