Decompositions of block schur products

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt


Given two m x n matrices A = (aij) and B = (bij) with entries in B(H) for some Hilbert space H, the Schur block product is the m x n matrix A□B:= (aijbij). There exists an mxn matrix S = (sij) with entries from B(H) such that S is a contraction operator and The analogus result for the block Schur tensor product defined by Horn and Mathias in [7] holds too. This kind of decomposition of the Schur product seems to be unknown, even for scalar matrices. Based on the theory of random matrices we show that the set of contractions S, which may appear in such a decomposition, is a thin set in the ball of all contractions.

TidsskriftJournal of Operator Theory
Udgave nummer1
Sider (fra-til)139-152
StatusUdgivet - 2020

Antal downloads er baseret på statistik fra Google Scholar og

Ingen data tilgængelig

ID: 246725160