ex8.mws

> with(DEtools);

> [DEnormal, DEplot, DEplot3d, DEplot_polygon, DFacto...
[DEnormal, DEplot, DEplot3d, DEplot_polygon, DFacto...
[DEnormal, DEplot, DEplot3d, DEplot_polygon, DFacto...
[DEnormal, DEplot, DEplot3d, DEplot_polygon, DFacto...
[DEnormal, DEplot, DEplot3d, DEplot_polygon, DFacto...
[DEnormal, DEplot, DEplot3d, DEplot_polygon, DFacto...
[DEnormal, DEplot, DEplot3d, DEplot_polygon, DFacto...
[DEnormal, DEplot, DEplot3d, DEplot_polygon, DFacto...
[DEnormal, DEplot, DEplot3d, DEplot_polygon, DFacto...
[DEnormal, DEplot, DEplot3d, DEplot_polygon, DFacto...

> ode1:=diff(Q(t),t)=1/10-Q(t)/500;

ode1 := diff(Q(t),t) = 1/10-1/500*Q(t)

Den generelle løsning er

> dsolve(ode1,Q(t));

Q(t) = 50+exp(-1/500*t)*_C1

Den partikulære løaning med Q(0)=800:

> dsolve({ode1,Q(0)=800},Q(t));

Q(t) = 50+750*exp(-1/500*t)

Den partikulære løsning har grafen

> plot([50+750*exp(-t/500),200],t=0..1400,thickness=2,color=[blue,yellow],title="PCB i akvariet (eks 8)",style=[line,point]);

[Maple Plot]

> solve(50+750*exp(-t/500)=200,t);

500*ln(5)

> evalf(%);

804.7189560

Eks 9

> ode2:=diff(Q(t),t)=1/10-Q(t)/(1000+t);

ode2 := diff(Q(t),t) = 1/10-Q(t)/(1000+t)

> dsolve(ode2,Q(t));

Q(t) = (100*t+1/20*t^2+_C1)/(1000+t)

> dsolve({ode2,Q(0)=800},Q(t));

Q(t) = (100*t+1/20*t^2+800000)/(1000+t)

> phaseportrait(ode2,Q(t),t=0..5000,[[Q(0)=800]],Q=200..800,arrows=none,thickness=2,linecolor=[blue],title="PCB i akvariet (eks 9)");

[Maple Plot]

>