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a b s t r a c t

In this paper we consider the genealogy of two nested mutant alleles, assuming the constant-size neutral
coalescent model with infinite sites mutation. We study the conditional genealogy and derive explicit
formulas for the joint and marginal site frequency spectra for the double, single and zero mutant allele.
In addition, we find the mean ages of the two mutations. We show that the age of the youngest mutation
does not depend on the frequency of the single mutant allele and that the frequency spectra for the single
mutant allele and the zero mutant allele are the same.
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1. Introduction

Theory for a single segregating site in a population goes back
a long time. Kimura and Ohta (1973) found the expected age of a
mutant allele,

−
2f
1− f

log f , (1)

where f is the mutant’s frequency in the population. Two years
later, Watterson (1975) showed that the mutant’s frequency
spectrum in a sample of size n is

1/d
n−1∑
j=1
1/j
, (2)

where d is the number of mutants in the sample.
Later authors have extensively made use of coalescent argu-

ments and re-derived old as well as new results about the age,
frequency spectrum and genealogical structure of the allele, in ad-
dition to relaxing the assumption of a constant size population; see
e.g. Innan and Tajima (1997), Griffiths and Tavaré (1998),Wiuf and
Donnelly (1999), and Stephens (2000). More recently, diffusion ar-
guments, similar to those of Kimura and Ohta (1973), have been
used to provide population-based statements about themutant al-
lele; see e.g. van Herwaarden and van der Wal (2002).
In this paper we extend the setting in a new direction. We

consider two completely linked and nested mutant alleles and
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their genealogical history (see Fig. 1). We assume the infinite sites
model with scaled mutation rate θ = 4Nu (Watterson, 1975),
where u is the mutation rate per gene per generation and 2N
the effective population size. In particular, we are interested in
the situation as θ → 0 and/or the situation as the sample size
goes to infinity while the frequencies of the two alleles are kept
fixed. We provide analogues of Eqs. (1) and (2) and compare our
results to the classical setting of onemutation. Griffiths and Tavaré
(2003) discuss properties of samples subtending a mutation and
we compare one of their results to ours.
We assume the standard coalescent (Kingman, 1982), but note

that some of our results can be stated more generally in terms
of binary coalescents (Griffiths and Tavaré, 1998) . The standard
coalescent with infinite sites mutation is characterized by:

(S1) The waiting times between coalescent events in a sample of
size n are given by W2,W3, . . . ,Wn, where Wi is the time
while there are i ancestors to the sample.

(S2) The Wi’s are independent and exponentially distributed
Exp(i(i− 1)/2).

(S3) At each coalescent event, a pair of genes is chosen at random
to coalesce.

(S4) Mutations occur according to a Poisson Process Po(θLn/2),
where θ = 4Nu is the scaled mutation rate and Ln =

∑
i iWi

is the sum of all branches in the genealogy.

A general binary coalescent fulfills S1, S3 and S4, but puts no
constraints on the distribution of waiting times (S2). Note that S3
implies that the jump chain, the process specifying the coalescing
genes, is independent of the times between events (Kingman,
1982).
In Section 2, we consider the jump chain for nested groups of

genes.We assume exchangeability (S3) and extend a result derived
by Wiuf and Donnelly (1999) for two groups. In the remaining
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Fig. 1. A possible genealogical history for two nested mutant alleles. From the top down, the first mutation happens at level k = 3 while the second mutation happens at
level ` = `0 + `1 = 5. The second mutation occurs in a lineage carrying the first mutation which is in frequency `1/` = 3/5. The sample size is n = 8, with d2 = 2 alleles
having both mutations (the double mutant allele), d1 = 3 alleles having the first mutation only (the single mutant allele), and d0 = n− d1 − d2 = 3 alleles not having any
mutations (the zero mutant allele). The age of the youngest mutation is A2 and the age of the oldest mutation is A1; A12 is the time from the youngest mutation to the oldest.
parts of the paper, we assume the infinite sites coalescent model.
Section 3 outlines and derives the classical results for a single
mutant allele; the derivations are extended in Section 4 to two
nested mutant alleles. In Section 5 we consider the limit θ →
0. In particular, we provide analytical expressions for the site
frequency spectra for the double, single and zero mutant allele.
Finally, in Section 6, we consider the ages of the mutations. The
paper ends with a discussion on applications and potential future
directions.

2. Topological characterization

We start by recapitulating two statements about the number
of descendants of G + 1 (ordered) lineage groups with m =

(m0,m1, . . . ,mG) members. The statements are independent
of the waiting times between events and depend on the
exchangeability assumption S3 of neutral models only; i.e. they
are true for binary coalescents and, in fact, relate to urn models.
Lemma 2 is a corollary of Lemma 1; a proof of Lemma 1 can be
found in Griffiths (1980) and Kingman (1982).

Lemma 1. The probability P(d|m) that m = (m0,m1, . . . ,mG)
lineages leave d = (d0, d1, . . . , dG) descendants is given by

P(d|m) =
(
d0 − 1
m0 − 1

)
· · ·

(
dG − 1
mG − 1

)(
n− 1
m− 1

)−1
, (3)

where n =
∑G
i=0 di and m =

∑G
i=0mi.

Lemma 2. Given the configurations m and d, the probability
P(di|d,m) that the last event duplicated a gene in group i, is

P(di|d,m) =
di −mi
n−m

(4)

where di = (d0, . . . , di−1, di − 1, di+1, . . . , dG).

The probability in Lemma 1 is termed a ‘forward’ probability as
it relates a configuration,m, to future configurations, d. In contrast,
the probability in Lemma 2 is termed a ‘backward’ probability,
because it relates the current configuration, d, to its history. If
the ancestral configuration, m, is known, then the jump chain
transition probabilities are given by Lemma 2.
A mutation implies a topological constraint on the sample

genealogy; all genes sharing the mutation must coalesce before
coalescing with any other gene (Fig. 1). Wiuf and Donnelly
(1999) showed how the topological constraint alone (i.e. without
assuming it is caused by a mutation) affects the jump chain. Here
the result is generalized to cover a series of nested groups. Consider
a series of G + 1 nested groups with members d = (d0, d1,
. . . , dG), di ≥ 1, such that the lowest group has dG members and
the ith group has di· = di+ · · · + dG members. All members/genes
of group i must coalesce with each other before coalescing with
any gene in group j < i. When there is only one member of
group G (dG = 1), it is allowed to coalesce with genes in group
G− 1, whereby group G ceases to exist. We denote the topological
constraint by E.
The case G = 1 corresponds to Wiuf and Donnelly’s case and

the case G = 2 is illustrated in Fig. 1 (ignoring the mutations).

Theorem 3. The probability that the last coalescent event is among
genes in group i = 0, 1, . . . ,G, is

P(d− ei|E, d) =



d0 − 1
d0·

if i = 0

di − 1
di·

i−1∏
j=0

d(j+1)· + 1
dj·

if i ≤ G− 1

G−1∏
j=0

d(j+1)· + 1
dj·

if i = G

(5)

where ei is the (i+ 1)th unit vector, di· = di + · · · + dG and di ≥ 1.
If dG = 1, P(d − eG|E, d) is the probability that the only member of
group G coalesces with a member in group G− 1, and hence group G
ceases to exist.
In particular, for 2 groups (G = 1) we retrieveWiuf and Donnelly’s

result

P(d− e0|E, d) =
d0 − 1
n

and P(d− e1|E, d) =
d1 + 1
n

, (6)
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where n = d0 + d1. For 3 groups (G = 2) we find

P(d− e0|E, d) =
d0 − 1
n

,

P(d− e1|E, d) =
d1 − 1
d1 + d2

d1 + d2 + 1
n

and

P(d− e2|E, d) =
d1 + d2 + 1

n
d2 + 1
d1 + d2

,

(7)

where n = d0 + d1 + d2.
Proof. See Appendix. �

A main difference between Lemma 2 and Theorem 3 is that
Lemma 2 conditions on the ancestral configurationm. Despite the
simple structure in Theorem 3, the structure becomes much more
complicated when mutations are imposed (see Section 4).

3. A single mutant allele

To set the stage, we start by re-deriving a few result for a single
mutation. The results for two nested mutations use the same line
of arguments. Assume a mutation happens at level k and that no
further mutations happen in the sample history. Under the infinite
sites model, the probability of this event is proportional to

pn(k|M, θ) ∝ k E
(
Wke−θLn/2

)
∝

1
k− 1+ θ

, (8)

where M is the event that exactly one mutation has occurred.
Eq. (8) follows from the Poisson nature of the mutation process,
cf. S4. One mutation must happen while at level k (branch length
kWk) and no other mutations at any other level (branch length
Ln− kWk). From Lemma 1, we know the probability that (k− 1, 1)
ancestors leave (n− d, d) descendants and we find

pn(k, d|M, θ) ∝
1

k− 1+ θ

(
n− d− 1
k− 2

)(
n− 1
k− 1

)−1
, (9)

with k = 2, . . . , n − d + 1. Consequently, the probability that d
alleles carry the mutation is given by

pn(d|M, θ) ∝
n−d+1∑
k=2

1
k− 1+ θ

(
n− d− 1
k− 2

)(
n− 1
k− 1

)−1

=

n−d+1∑
k=2

k− 1
d(k− 1+ θ)

(
n− k
d− 1

)(
n− 1
d

)−1
. (10)

Here, and elsewhere, we abuse notation slightly: k always refers
to the (first) mutation, ` to the second (if applicable), and d to
the partition imposed by the mutation(s) in the sample. Thus,
pn(k|M, θ) is the probablity that the mutation happens at level k
and pn(d|M, θ) is the probability of observing d mutant alleles in
the sample.
In the limit as θ → 0, Eq. (10) reduces to

pn(d|M) ∝
n−d+1∑
k=2

1
d

(
n− k
d− 1

)(
n− 1
d

)−1
=
1
d
, (11)

which is Watterson’s (1975) frequency spectrum. The argument is
essentially the argument given in Griffiths and Tavaré (1998) and
Stephens (2000).
Finally, the jump chain, conditional on the mutation, has

transition probabilities given by
pn(d− 1, n− d|M, d, n− d)

=
pn−1(d− 1|M)qd−1,n−1

pn−1(d− 1|M)qd−1,n−1 + pn−1(d|M)qd,n−1

=
1
d− 1

d− 1
n− 1

/{
1
d− 1

d− 1
n− 1

+
1
d
n− d− 1
n− 1

}
=

d
n− 1

, (12)
where qd−1,n−1 = P(d, n−d|d−1, n−d) and qd,n−1 = P(d, n−d|d,
n− d− 1) are the forward probabilities in Lemma 1.
For a general binary coalescent similar results follow by

replacing 1/(k − 1 + θ) with kE(Wke−θLn/2) (see (Griffiths and
Tavaré, 1998)). We note that the results depend only on the form
of this expectation and Lemma 1.

4. Two nested mutant alleles

In the remaining sections we consider the situation depicted in
Fig. 1 in which three alleles are the result of two nested mutations.
The first allele does not bear any mutations and is observed in
d0 ≥ 1 copies, the second has one mutation and is observed in
d1 ≥ 1 copies, and finally the last allele is of multiplicity d2 ≥ 1
andhas both the first aswell as the secondmutation. Thus, the total
number of genes carrying the oldest mutation is d1 + d2.
Under the infinite sites model the probability that the first

mutation happens at level k, the second at level ` > k and no
further mutations happen at any other level is proportional to

pn(k, `|M̃2, θ) ∝ k` E(WkW`e−θLn/2), (13)

where M̃2 denotes that exactly two mutations occur. In the
standard coalescent, the Wi’s are independent and the equation
reduces to

pn(k, `|M̃2, θ) ∝
1

(k− 1+ θ)(`− 1+ θ)
. (14)

Suppose the oldest mutation is of multiplicity `1 < ` when
the youngest arrives (Fig. 1). We can apply Lemma 1 to determine
the probability that (k−1, 1) ancestors leave (`0, `1) descendants
(`0 + `1 = `) and likewise the probability that (`0, `1 − 1, 1)
ancestors leave (d0, d1, d2) descendants. These probabilities are
given by

P(`0, `1|k− 1, 1) =
(
`0 − 1
k− 2

)(
`− 1
k− 1

)−1
(15)

and

P(d0, d1, d2|`0, `1 − 1, 1) =
(
d0 − 1
`0 − 1

)(
d1 − 1
`1 − 2

)(
n− 1
`− 1

)−1
,

(16)

where n = d0 + d1 + d2.
When the second mutation occurs it must hit one of the `1

lineages; hence the probability of a samplewithmutations at given
levels can be found by combining Eqs. (13), (15) and (16) with the
probability `1/` of hitting one of the `1 lineages:

pn(k, `0, `1, d0, d1|M2, θ)

= pn(k, `|M̃2, θ)
(
`0 − 1
k− 2

)(
`− 1
k− 1

)−1
×
`1

`

(
d0 − 1
`0 − 1

)(
d1 − 1
`1 − 2

)(
n− 1
`− 1

)−1
= pn(k, `|M̃2, θ)

k− 1
`

(
`− k
`1 − 1

)(
`− 1
`1

)−1
×

(
d0 − 1
`0 − 1

)(
d1 − 1
`1 − 2

)(
n− 1
`− 1

)−1
, (17)

where ` = `0+`1 andM2 denotes the event of exactly two nested
mutations. We note that d0 can take the values d0 = 1, . . . , n− 2;
d1 the values d1 = 1, . . . , n−d0−1; k the values k = 2, . . . , d0+1;
` the values ` = k + 1, . . . , n − d1 + 1; and finally `1 the values
`1 = max(2, `− d0), . . . ,min(d1 + 1, `− 1).
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Eq. (17) is a key formula that also provides a number
of conditional probabilities by fixing some of the variables,
e.g. pn(k, `0, `1|M2, θ, d0, d1). We note that Eq. (17) only de-
pends on Lemma 1 and the distribution of the Wi’s through
ij E(WiWje−θLn/2).

5. The limit as θ → 0

In this section we consider the standard coalescent in the limit
as the scaledmutation rate decreases to zero. The typical mutation
rate per site per generation in humans is about 10−8 which yields
θ = 4Nu = 4 × 10−4 ≈ 0 per site, assuming N = 104. Thus,
the scaled mutation rate of two linked sites is also close to zero
(assuming the DNA sequence between the sites are unobserved).
We find by substituting Eq. (14) into Eq. (17) and taking the limit
θ → 0,

pn(k, `0, `1, d0, d1|M2) ∝
1
`

(
`− k
`1 − 1

)(
`− 1
`1

)−1
×

(
d0 − 1
`0 − 1

)(
d1 − 1
`1 − 2

)(
n− 2
`− 2

)−1
. (18)

By summing over k = 2, . . . , `0 + 1, we find that

pn(`0, `1, d0, d1|M2) ∝
1
`

(
d0 − 1
`0 − 1

)(
d1 − 1
`1 − 2

)(
n− 2
`− 2

)−1
, (19)

and by summing over `1 = 2, . . . , `− 1, that

pn(`, d0, d1|M2) ∝
1
`

(
d0 + d1 − 2
`− 3

)(
n− 2
`− 2

)−1
. (20)

Note that Eq. (20) implies that the conditional distribution
pn(`|M2, d0, d1) only depends on the sum of d0 and d1; hence also
the age of the youngest mutation is independent of the frequency
of the oldest. An immediate consequence of Eqs. (18)–(20) is:

Lemma 4. The conditional distribution of k given (`0, `1, d0, d1)
does not depend on (d0, d1),

pn(k|M2, `0, `1) =
(
`− k
`1 − 1

)(
`− 1
`1

)−1
, (21)

and the conditional distribution of `1 given (`, d0, d1) is hypergeo-
metric,

pn(`1|M2, `, d0, d1) =
(
d0 − 1
`0 − 1

)(
d1 − 1
`1 − 2

)(
d0 + d1 − 2
`− 3

)−1
.

(22)

The first part of Lemma 4 is a consequence of the Markov
structure of the coalescent model. Furthermore, Eq. (20) has the
following interesting implication.

Theorem 5. The frequency spectrum of the double mutant is given by

pn(d2|M2) ∝
n−d2+1∑
`=3

`− 2
`

(
n− d2 − 1
`− 2

)(
n− 2
`− 2

)−1
. (23)

Conditional on d2, the frequency spectrums of d0 and d1, respectively,
are uniform on 1, . . . , n − d2 − 1. Furthermore, the marginal
distributions of d0 and d1 are the same, pn(d0|M2) = pn(d1|M2), and
given by

pn(d1|M2) ∝
n−d1+1∑
`=3

1
`

[
1−

(
d1 − 1
`− 2

)(
n− 2
`− 2

)−1]
. (24)
In both cases the normalizing constant, Cn, is

C−1n = (n− 1)
n−1∑
`=1

1
`
−
2(n− 1)2

n
. (25)

Proof. See Appendix. �

Consider now the jump chain ford = (d0, d1, d2). The following
characterization is a consequence of Eq. (20).

Theorem 6. Conditional on ` and d, the transition probabilities of the
jump chain are given by

pn(d− e0|M2, `, d) =
n− `− d2 + 1

n− `
d0 − 1

d0 + d1 − 2
, (26)

pn(d− e1|M2, `, d) =
n− `− d2 + 1

n− `
d1 − 1

d0 + d1 − 2
, (27)

and

pn(d− e2|M2, `, d) =
d2 − 1
n− `

. (28)

If d0 = d1 = 1 and d2 > 1, then Eq. (28) is one and the other two
probabilities are set to zero. The chain stops when n = 3, in which
case ` = 3 and d0 = d1 = d2 = 1.

Proof. See Appendix. �

Unfortunately, there does not appear to be nice analytical
expressions for the jump chain conditional on d only.

6. The ages of the two mutations

In this section we derive the mean ages of the two mutations.
We will only be concerned with the situation as d2/n → f2
and d1/n → f1, while at the same time θ → 0. The similar
situation for a single mutation has been treated by numerous
authors (e.g. Kimura and Ohta (1973), Griffiths and Tavaré (1998),
Wiuf and Donnelly (1999) and Stephens (2000)). Here the mean
age is

−
2f
1− f

log(f ), (29)

where f is the relative frequency of the mutant in a large sample.
Conditional on the level, `, of the youngest mutation the age,

A2, is a convolution of independent exponential distributions (cf.
S2), V` =

∑n
i=`Wi. Under the stated conditions, the mean of V`

converges to 2/(`− 1).
Eq. (20) provides the probability of the level, `, given the counts

(d0, d1, d2). The level ` depends on d0 + d1 = n − d2 only, not d0
and d1 individually. As d2/n→ f2 and d1/n→ f1 we obtain

lim
θ→0
pn(`|M2, d0, d1) = p(`|M2, f2) ∝

`− 2
`

(1− f2)`−2,

` ≥ 3, (30)

with normalizing constant

K2 =
1+ f2
f2(1− f2)

+
2

(1− f2)2
log(f2). (31)

Putting the pieces together we find the mean age of the youngest
mutant

E(A2|M2) =
∞∑
`=3

2
l− 1

p(`|M2, f2)

=
−2f2{(1+ f2) log(f2)+ 2(1− f2)}
2f2 log(f2)+ (1+ f2)(1− f2)

. (32)
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Fig. 2. Shown is the mean age, E(A2|M2), of the youngest mutation (grey line,
Eq. (32)) and the mean age of a single mutation (black, Eq. (29)), as a function of
frequency. Also shown is themean age of the oldest mutation, E(A1|M2). It depends
on the frequency of the youngest; from the black line upwards, f2 = 0.01 (red),
0.05, 0.10, 0.30, 0.50, 0.70, 0.90 and 0.95 (purple).

The calculations are tedious andnot very informative and therefore
left out. The result in Eq. (32) has previously been derived
by Griffiths and Tavaré (2003) using different arguments (their
expression has a factor of 4 in the numeratorwhich should be 2). In
Fig. 2 we compare Eqs. (29) and (32). Themean age of the youngest
mutation is approximately half the mean age of a single mutation,
when they both are in the same frequency in the population.
However, there does not seem to be any particular reason for this
observation.
The age of the oldest mutation is more difficult to find as it

requires knowledge of both levels, k and `; or of ` and the number
of the oldestmutants, `1, at level `. Given the level `of the youngest
mutation, Lemma 4 provides a means to find `1. Under the stated
conditions,

lim
θ→0
pn(`1|M2, `, d0, d1) = p(`1|M2, `, g1)

=

(
`− 3
`1 − 2

)
g`1−21 (1− g1)`−`1−1, (33)

where `1 = 2, . . . , `− 1 and g1 = f1/(f0 + f1). Knowing ` and `1,
the mean age of the oldest mutant, counted from level `, is

A(`, `1) = −
2
`
+ 2

(
`− 1
`1

)−1 `−`1∑
i=1

1
i

(
`− i− 1
`1 − 1

)
. (34)

(Griffiths and Tavaré, 1998; Wiuf and Donnelly, 1999). It can also
be derived from Eqs. (9) and (11) directly.
Writing the age of the oldest mutation as A1 = A2+ A12, where

A12 is the age from the youngest to the oldest, we find

E(A1|M2) = E(A2|M2)+
∞∑
`=3

`−1∑
`1=2

A(`, `1) p(`1|M2, `, g1) p(`|M2, f2)

= E(A2|M2)+
∞∑
`=3

`−2∑
i=1

2(`− i− 1)
(`− 1)(`− 2)i

{2+ (`− i− 2)g1}

× (1− g1)i−1 p(`|M2, f2). (35)

The latter sum can easily be approximated numerically for given
values of f2 and g1.
Let the frequency of the oldest mutation be f = f1 + f2. In

Fig. 2, we compare E(A1|M2) to the expectation in Eq. (29) for fixed
f and varying f2, i.e. we consider pairs (f2, g1) such that g1 =
(f − f2)/(1 − f2). In Fig. 3, we show E(A1|M2) relatively to the
expectation in Eq. (29), again for fixed f and varying f2. We note
that the frequency (f2) of the youngest mutation affects the age of
the oldest mutation severely when they both are in low frequency,
i.e. when they both are rare. In that case the relative difference can
be manyfold.
Fig. 3. Shown is the mean age, E(A1|M2), of the oldest mutation relatively to the
mean age of a single mutation (Eq. (29)), as function of frequency. The frequency
of the youngest mutation affects E(A1|M2); from the black line upwards, f2 = 0.01
(red), 0.05, 0.10, 0.30, 0.50, 0.70, 0.90 and 0.95 (purple).

When the oldest mutation is in high frequency, f ≈ 1, and
the youngest in low frequency, f2 ≈ 0, the mean age of the
oldest is close to 2. This is expected: Consider the situation of a
single mutation in frequency n − 1 in a large sample of size n.
The mutationmust happen while there are two ancestral lineages;
hence the mean age is 1 + 1 = 2 (time until two ancestral genes
+ time until a mutation in two genes).
When both mutations are in high frequency, f ≈ 1 and f2 ≈ 1,

the mean age of the oldest is close to 2 + 1/3 ≈ 2.33. This is also
as expected: Consider the situation of one mutation in frequency
n − 2 and the other in frequency n − 1 in a large sample of size
n. The first mutation must happen while there are three ancestral
lineages, while the second must happen while there are two. This
implies that the mean age is (1− 1/3)+ 1/3+ 1/3+ 1 = 2+ 1/3
(time until three ancestral genes + time until a mutation in three
genes+ time until two ancestral genes+ time until a mutation in
two genes).

7. Discussion

We have provided a rigorous theoretical study of conditional
genealogies, site frequency spectra and ages of two nested
mutations. We obtain nice analytical results that allows us to gain
insight into the complex genealogical structure of the coalescent
model. Our methodology builds upon previous work in the case of
a single mutation; Griffiths and Tavaré (1998), Wiuf and Donnelly
(1999) and Stephens (2000). Of particular interest is the fact that
the age of the youngestmutation does not dependon the frequency
of the single mutant allele and that the frequency spectra for the
single mutant allele and the zero mutant allele are the same.
In Hobolth et al. (2008), we applied results from the one

mutation case to formulate an improved Importance Sampling
proposal distribution for inference on the scaled mutation rate.
The results in this paper could potentially be used to further
improve the proposal distribution for inference in coalescent
models. However, our results also indicate that for two or more
mutations analytical results become less tractable, compared to
the case of one mutation.
We also considered the case of two non-nested, but completely

linked mutant alleles (results not shown). It is straightforward
to derive a formula similar to Eq. (17), but unfortunately the
distribution is not analytically tractable. Conditional genealogies
for non-nested mutations are also not analytically tractable.
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Proof of Theorem 3. Let a partition of nested groups be given,d =
(d0, . . . , dG), where dG are the members of the lowest group. The
case G = 1 is studied inWiuf and Donnelly (1999). They found the
probability Q1(d0, d1) that the d1 genes find a common ancestor
before coalescing with any ancestor of the remaining d0 genes:

Q1(d0, d1) =
2

d1 + 1

(
d0 + d1 − 1
d1 − 1

)−1
. (36)

(Eq. (2) in Wiuf and Donnelly (1999)). For G > 1, the probability
QG(d0, . . . , dG) that for all i, the di genes find a common ancestor
before coalescing with any ancestor of the di−1 + · · · + d0 genes is
given by

QG(d0, . . . , dG) = QG−1(d1, . . . , dG)Q1(d0, d1·)

=

G−1∏
i=0

Q1(di, d(i+1)·). (37)

Thus, the probability that the last event is a coalescence event
among genes in group i is

P(d− ei|E, d) =
di(di − 1)
n(n− 1)

QG(d− ei)
QG(d)

. (38)

(Wiuf and Donnelly, 1999). By insertion of Eq. (36) into Eq. (38) we
obtain the expression in Theorem 3.

Proof of Theorem 5. Eq. (23) is a consequence of Eq. (20) by
summing over all instances such that d0+ d1 = n− d2 is constant.
Since Eq. (20) depends on d1 only through d0 + d1, it follows
that the distribution of d1 is uniform conditional on d2 and that
pn(d1|M2) = pn(d0|M2). The expression for pn(d1|M2) follows by
first summing over d0 in Eq. (20), then over `. Finally, the constant
is obtained by summing over d0, d1 and d2, then ` in Eq. (20).

Proof of Theorem 6. The transition probabilities are a conse-
quence of Eq. (20). For example, pn(d − e2|M2, `, d) can be
rewritten using Bayes’ formula

pn(d− e2|M2, `, d) = P(d|d− e2)
pn−1(`, d0, d1|M2)
pn(`, d0, d1|M2)

, (39)

where P(d|d− e2) is given in Lemma 1. Insertion of Eq. (20) gives
the desired result.
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