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INTRODUCTION

In the present paper, the genealogy of a subpopulation
D of a rare allele in a large population is studied. A
two-allele Moran model that allows for selection and
exponential growth of the population is developed and,
based on this model, an approximation to the distribu-
tion of the genealogy of D is derived. It is assumed that
the rare allelic class is the result of a single mutational
event in the entire population's history.

Recently, several authors have drawn attention to this
problem: Slatkin and Rannala (1997), Thompson and
Neel (1997), Rannala (1997). In these approaches the
age, T1 , of the rare variant is treated as a (nonstochastic)
parameter and, accordingly, the distribution of the
genealogy of a sample of rare variants is given in terms of
this parameter T1 . Wiuf and Donnelly (1999) argued
that the correct interpretation of T1 is to consider it a
stochastic variable and not a parameter. The mutation
having given rise to the rare variant is more likely to have
occurred in genealogical trees with a long branch
between the most recent common ancestor (MRCA) of
D, and the ancestry of the rest of the population. As a
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consequence, conditioning on the mutation having
occurred has the effect of stochastically increasing the
length of this branch. This effect turned out to be impor-
tant and has not been captured in the previously
published approaches.

The age, considered as a stochastic variable, of a
neutral variant found in frequency q, 0<q<1, in the
population has been studied among others by Kimura
and Ohta (1973), Maruyama (1974a), Griffiths and
Tavare� (1998), Wiuf and Donnelly (1999), and Stephens
(2000). Based on an exact coalescent analysis presented
in Wiuf and Donnelly (1999), Wiuf (2000) developed
approximations, conditional on the frequency q, to the
distribution of the genealogy of a neutral rare variant
(say, q<5�100) and to the distribution of the time the
rare variant arose.

This analysis is here extended to cover the case where
the rare allelic class is evolving under selective pressure.
Time is measured backwards starting at the present time,
t=0, and the population is assumed to be growing
exponentially at a constant rate, r, per generation. T1

generations back in time a mutation gave rise to a new
type of allele. At present time the variant allele is found
in low frequency q. Further back in time than T1 the
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population consisted of one allelic type only, called the
normal allele, and the new type, called the variant allele,
has (heterozygote) fitness s compared to the normal
homozygote. As q becomes small, homozygote carriers of
the rare allele can effectively be ignored; even in cases
where the homozygote is deleterious or has a fitness
much different from the heterozygote. To ensure that no
further mutations occur as the population evolves up to
present time, the mutation rate, u, per generation
between the two alleles is set to r0. The situation is
depicted in Fig. 1.

In this paper, approximate distributions of T0 , T1 , and
the genealogy of D, conditional on q, are derived. This is
done in two steps: First, the limit distributions are found
for N(0) � � and N(0) u � 0, where N(0) is the current
population size. The number, k=qN(0), of variant
alleles is held fixed. In the second step, this limit is con-
sidered for large k. It is shown that time naturally is
measured in units of qN(0) generations and that the
approximate distributions depend on the compound
parameters _=sqN(0) and \=rqN(0) only. This is
similar to the standard coalescent process where the scal-
ing is in units of N(0) generations. Maruyama (1974b)
found, using a diffusion approach, the expected age of a
rare variant under genic selection in a constant population,
and it is shown that his result agrees with what is found in
this paper. Also the results are consistent with Wiuf (2000).
As a second application of the approximations we find the

FIG. 1. The genealogy of the rare variant. At time T0 in the past a
normal allele, A, give, birth to a lineage (L2) in which the mutation,
having given rise to the variant allele, arises. The ancestor A is the first
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MRCA of D and the class of present-day normal alleles. T1 is the time
the mutation arises and Tj , j�2, denotes the time while there are at
least j ancestors of D. In the example, Tj and Tj+1 are shown for j=3
and the size of D is k=7. All other lineages, than those shown, born in
L2 die out before present time.
extinction probability of the rare allele given its current
frequency.

An approach using branching processes (in the present
paper a birth�death process approximation to the
Moran model) is not new; both Maruyama (1974b) and
Slatkin and Rannala (1997) developed approximations
based on birth�death processes, whereas Thompson
(1976) and Rannala (1997) adopt models based on
related processes. The current approach differs from the
approaches by Slatkin and Rannala (1997), Thompson
(1976), and Rannala (1997) in that it allows for T1 to be
stochastic, and in that effects of the demography of the
entire population are taken into account. It differs from
Maruyama (1974b) in that explicit results are found for
the density of the genealogy of D and T1 ; Maruyama
(1974b) derived the expectation of T1 in a constant
population only.

THEORY

Our starting point is a two-allele diploid Moran model
with selection and exponential growth of the entire
population. This model is introduced and discussed in
Appendix 1. It comprises four parameters: the fitness of
heterozygotes, s, the fitness of homozygotes, s$, the
growth rate, r, and the mutation rate, u. Denote the nor-
mal allele by A2 and the variant allele by A1 . All time
variables in the Moran model have superscript *, e.g.,
T 0* , to distinguish them from variables measured in real
non-overlapping generations. Let T 0* and T 1* be defined
similar to T0 and T1 in the previous paragraph, and let
T j*, 2� j�k, denote the time while there are at least j
ancestors of D, with |D|=k (Fig. 1). Further, let M(D)
denote the event that the mutation giving rise to the A1

allele has only happened once in the history of the entire
population, that no back mutations have occurred, and
that the present number of the A1 allele is k. Note that all
the T j*'s are uniquely defined on the event M(D).

We seek the probability distribution of the genealogy
of D, conditional on M(D), i.e., the probability

P(T j*={j , 0� j�k | M(D))

=
P(T j*={j , 0� j�k, M(D))

P(M(D))
, (1)

for 0�{k�{k&1� } } } �{1�{0 . For any specific choice
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of the present-day population size, N(0), the number
of A1 alleles, k, and the parameters s, s$, r, and u, Eq. (1)
can be computed using the Markov property of the
Moran model. The denominator is found summing the



numerator over all possible {j , 0� j�k. The numerator
is more involved, but can in principle be calculated split-
ting it in a sum over all possible population histories that
coincide with T j*={j , 0� j�k, and M(D). If the pop-
ulation size is constant over time (r=0), the distribution
of allele frequencies at time { in the past is the stationary
distribution of the process. If the population is growing
in size (r>0), we simply start the process from the
stationary distribution of a population of size 1 and
mutation rate u.

However, in practice, such a summation is not feasible
and we must resort to approximations. Let,

t(v)= :
wN(0) vx

@=0

2
N(@)

, (2)

where N({) denotes the population size at generation {
and wxx denotes the integer part x. Equation (2) defines
the way time is transformed from overlapping genera-
tions in the Moran model to nonoverlapping real genera-
tions (see Appendix 1). Further, define U j*, 0� j�k, by
T j*=N(0) U j*. The variable U j* measures time in the
Moran model in units of N(0) overlapping generations,
and the transformed variables t(U j*) measures time in
real generations.

Theorem 1. Assume k is fixed. The process (t(U0*),
t(U1*), ..., t(U k*)) converges in distribution for N(0) � �
and N(0) u � 0 to a continuous time Markov chain (T0 ,
T1 , ..., Tk), such that

0<P(T0=T1 | M(D))<1. (3)

Proof. See Appendix 2.

The parent of the mutant offspring might survive till
present time, therefore, P(T0=T1 | M(D))>0. How-
ever, as k increases the probability of T0=T1 vanishes.
Analytical expressions for (3) and the transition
probabilities are given in Appendix 1; they are in general
intractable and do not seem to provide further insight
into the process. Further, the distribution of (T0 , T1 , ...,
Tk) depends on r and s, but not the fitness, s$, of
homozygotes.

If X is a stochastic variable, let Xt f (x) denote that X
has density f (x). Define q(x; ;), ;�0, by
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q(x; ;)=
2;

e;x&1
, (4)
if ;>0, and

q(x; 0)=
2
x

. (5)

We have q(x; 0)=lim; � 0 q(x; ;).

Theorem 2. The process (T0 �k, T1 �k, ..., Tk �k) con-
verges in distribution to a continuous time Markov chain
Vj , j�0, for k � �, such that rk � \ and sk � _. In fact,

V1 tC1 q(v; |:| )2

_exp[&q(v; |:| )+(|:|&\) v],

v>0, (6)

Vj+1 | Vj=ut
1
2 q(v; |:| )2

_exp[&[q(v; |:| )&q(u; |:| )]+|:| v],

u>v, (7)

and

V0 | V1=ut
e\vq(v; \)3

q(u; \)2 , v>u. (8)

The variables Vj , j�1, can be represented in the form

Vj=
1

|:|
log \1+

2 |:|
X1+ } } } +Xj+ , (9)

such that Xj , j�1, forms a series of independent variables,

X1 tC2

x\�|:|e&x

(2 |:|+x)\�|:| , (10)

and for j�2,

Xj tExp(1). (11)

Here, :=_+\, C1 and C2 are normalizing constants
depending on |:| and \ only, and Exp(;) denotes an
exponential variable with rate ;.

Proof. See Appendix 2.
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As a consequence, the natural scaling of time is in units
of k=qN(0) generations. Further, the genealogy of D

can be simulated starting with T1 and building the



genealogy up going towards the present time. From
Theorem 1 and 2 the conditional distribution of the
genealogy of D given T1(V1) could be derived. In general,
this distribution is not expected to agree with the similar
results in Thompson (1976), Nee et al. (1994), and
Slatkin and Rannala (1997) because the mutation pro-
cess having given rise to the variant allele is not modelled
in any of these papers.

Below, comments to special cases of Theorem 2 are
listed (1�5). In 6, the genealogy of a subsample D0 drawn
randomly from D is discussed. Data about all carriers of
a variant allele (D) will rarely be available, one can only
hope to obtain a finite sample, D0 , of these. Finally in 7,
the extinction probability of D is found.

1. No selection, and no expansion. The results in this
case are in agreement with results in Wiuf (2000). From
Theorem 2 the general form of the density of Vj , j�1, is
found,

Vj t
2 j

( j&1)! v j+1 e&2�v, v>0, (12)

and, further, Xj tExp(1) for all j�1. The series relates
to the number of ancestors, Aj , of the entire population
the first time there are j ancestors of D; Aj&1 r

(X1+ } } } +X j)�q (Wiuf, 2000).

2. No selection, but expansion. Also the results found
in this case are in agreement with the results in Wiuf
(2000). There is no simple expression for the densities of
Vj , j�1. In special cases they can be computed, e.g.,

V2 tC3 \ 1
e\v&1

&log
e\v

e\v&1+
_

e\v

(e\v&1)2 exp {&
2\

e\v&1= , v>0 (13)

(the density of V1 is given in Theorem 2). Here C3 is a
normalizing constant depending on \ only. The variable
X1 can be simulated using an acceptance�rejection
scheme (Bratley et al., 1983); for example let the proposal
Y be gamma distributed with parameters 2 and 1,
Yt1(2, 1), and let the acceptance probability be
1�(1+Y�2\). If \ is small the proposal might be taken
to be YtExp(1) and the acceptance probability
Y�(2\+Y). As \ approaches infinity X1 becomes gamma
distributed, X1 t1(2, 1). Also in this case, Wiuf (2000)
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found that Aj&1 r(X1+ } } } +Xj)�q.

3. Selection, and no expansion. The density of Vj ,
j�1 is given by
Vj t
2 j |_| j+1 e |_| v

( j&1)! (e |_| v&1) j+1

_exp {&
2 |_|

e |_| v&1= , v>0, (14)

and, further, Xj tExp(1) for all j�1.
It is of particular interest that the distributions in (14)

depend on _ through |_| only; that is, one cannot tell
from the structure of the genealogy alone whether the
variant allele is under positive or negative selection. The
expectation of V1 is given by

E(V1)=
1

|_|
[#+log(2 |_| )]&

e2 |_|

|_|
Ei(&2 |_| ), (15)

where #r0.58 is Euler's constant and &Ei(&z)=
��

z e&t�t dt the exponential integral. Equation (15) agrees
with Maruyama (1974b).

4. Selection, and expansion. The variable X1 can be
simulated using an acceptance�rejection scheme; e.g., the
proposal Y might be taken to be gamma distributed with
parameters \�|:|+1 and 1, Yt1(\�|:|+1, 1), and the
acceptance probability 1�(1+Y�2 |:| )\�|:|. In contrast to
case 3, we find that _ and &_ (with \ fixed) give rise
to different distributions of the genealogy of D. The
distribution with growth \ and selection _ is identical
to that with growth \ and selection &2\&_.

5. Expansion, and \=&_. This case is not realistic
biologically, but is here considered for the sake of com-
pleteness. The variable X1 follows a generalized inverse
Gaussian distribution, X1 tGIG(1, 4\, 2) (in the nota-
tion of Seshadri, 1993, p. 27)

X1 tC4 e&2\�x&x, (16)

where C4 is a normalizing constant. It can be simulated
using an acceptance�rejection scheme with acceptance
probability exp(&2\�Y) and proposal YtExp(1). If \ is
large, algorithms to simulate a GIG variable can be used
(Bratley et al., 1983).

6. Samples from D. Genealogies of a sample D0 of
size n taken from the D can be simulated using the
sample scheme proposed in Wiuf (2000). First, the
numbers, Jk , Jk&1 , ..., J2 , of ancestors of D at the times
of coalescence events in the genealogy of D0 are simulated
according to results in Saunders et al. (1984), see also
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Wiuf (2000). The distribution of (Jk , Jk&1 , ..., J2) does
not depend on the demography or the selection coef-
ficient and applies to general binary trees (see Griffiths
and Tavare� , 1998), in particular to the genealogy of D.



Second, the times, TJk , TJk&1
, ..., TJ2

, until there are k&1,
k&2, ..., 1 ancestors of D0 , respectively, are simulated
according to the formulas given in this paper.

The approach to sampling taken by Nee et al. (1994)
is somewhat different, though it also relies on a
birth�death process approximation to the genealogy of
the entire population (a metapopulation of species).
Their results are not a priori expected to agree with those
presented here, where a mutation process causes a
variant class to exist.

7. Extinction probabilities. Let E denote the time of
extinction in units of k generations. The probability that
D is extinct at time v in the future is

P(E�v)=exp {&
2:e:v

e:v&1= , (17)

if :{0, and

P(E�v)=exp(&2�v), (18)

if :=0 (Appendix 2). In particular, P(E=�)=0, if
:�0, and P(E=�)=1&exp(&2:), otherwise. Thus, E
is possibly infinite. If E=�, D might either go to fixation
or become extinct. In the latter case, it persists in the pop-
ulation for a long time, longer than is measurable on a
time scale in units of k generations. For example, if the
rare allele is selectively neutral, the chance, pext , of even-
tual extinction of the rare allele is pext=1&q=
1&k�N(0) (Ewens, 1979, this also holds under expan-
sion). It goes to fixation with probability pfix=1& pext .
Thus, for example, a neutral rare allele in an expanding
population might persist (with probability P(E=�)=
1&exp(&2\)) in the population for a significant amount
of time before extinction.

Conditional on E<�, the density of E agrees with
that of V1 . For \=0, this result is known for a number
of related processes (e.g., Ewens, 1979), whereas for
\>0, this appears to be new.

DISCUSSION

Expressions for the densities of the coalescence times in
the genealogy of D and the age of the rare variant have
been derived. Wiuf (2000) showed that the approxima-
tions in the neutral case are good provided q<5�100.

Rare Alleles and Selection
He compared his results with the exact coalescent
analysis in Wiuf and Donnelly (1999). In the general
case, where the heterozygotes have a small selective
(dis) advantage, a similar degree of accuracy is expected.
FIG. 2. Comparing selection and expansion. Shown in the figure
are the densities (in units of k generations) of the age, V1 , of the rare
allele and the time, V2 , of the MRCA of D, respectively, in two different
scenarios. In the first, the population size is constant, but the rare allele
has a selective advantage, _=5, and in the second, the population is
growing exponentially with \=5, but the rare allele is selectively
neutral. Both V1 and V2 are shorter under growth than under selection.

M. Stephens (personal communication) has kindly
provided simulation results that support this; based on
these simulations it is suggested that the results in this
paper are accurate for q<50 and moderate values of _.
He used a MCMC method to simulate genealogies of
large samples in which the rare allele is found in
frequency q.

Effects of positive selection and effects of an expanding
population are often equated; e.g., Slatkin and Rannala
(1997). The present study shows that compared to a
neutral population of constant size both selection and
expansion have the effect of shortening the branches in
the genealogy of D (comparing times in units of
k=qN(0) generations). But the shortening of branches
happens differently in the two cases. This is illustrated in
Fig. 2; if \=|_|, the MRCA of D is younger under
expansion than under selection. Apparently, one reason
for this is that under expansion the entire population
decreases in size (going backwards in time) and
coalescence events are thus forced to happen at a higher
rate than in a population of constant size. Denote by P_, p

the probability measure corresponding to a model with
selection _ and expansion \. The observation in Fig. 2
can mathematically be put in the following way
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(Theorem 2). Let j�1 and v>0. Then, if c>0,

P0, c(Vj>v)<Pc, 0(Vj>v)<P0, 0(Vj>v). (19)



As a consequence, Vj under Pc, 0 is stochastically greater
than Vj under P0, c .

APPENDIX 1

1. Time. First a digress on time. In a Moran model of
constant population size, N, N�2 (overlapping) genera-
tions correspond roughly to one (nonoverlapping)
generation in a Wright�Fisher (or similar) model. This is
justified comparing the mean and variance of offspring
number per individual per N�2 generations in a Moran
model with the same quantities per generation in a
Wright�Fisher model. Asymptotically for large N these
are all one. We call generations in a Moran model for
Moran generations and nonoverlapping generations for
real generations. That is, one Moran generation is about
2�N real generations. If the population size varies with
time we find that locally the { th Moran generation
corresponds to 2�N({) real generations, where N({)
denotes the total population size at time { in the Moran
model. In effect, the relation between time in the Moran
model and in a model with nonoverlapping generations
is not linear, but given by

t= :
{

@=0

2
N(@)

, (20)

where t denotes time in the nonoverlapping generation
model and is counted backwards from the present.

2. A Moran model. Consider the following diploid
two-allele Moran model with selection and expanding
population size. On average 2r new genes (genes, alleles,
and individuals will be used synonymously) are added to
the population per Moran generation. This is accom-
plished in the following way,

N({)=N(0)&w2r{x , (21)

where wxx denotes the integer part of x. If N({)=1, we
let N({$)=1 for all {$>{. If N(0) is large, Eq. (21)
corresponds to an exponential increase in population size
at rate r per real generation. In fact, solving

t= :
{ 2

r

2{�N(0) 1
dx
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@=0 N(@) |
0 1&rx

=
1
r

log \1&
2r{

N(0)+ (22)
with respect to { gives that {=N(0)(1&ert)�2r genera-
tions counted backwards from time 0 correspond to t real
generations. The population size at time { is N({)=
N(0)&w2r{x which is rN(0) e&rt, as claimed. The error
term in (22) is of order o(1�N(0)), where o(x) denotes a
term such that o(x)�x vanishes for x � 0.

Let the two alleles be named A1 and A2 and let the
selection coefficients of the genotypes be

A1A2 A1A2 A2A2

1+2s$ 1+2s 1
. (23)

A new Moran generation is formed from the previous
generation by choosing 1 or 2 new offspring and one gene
to die; one if w2r{x=w2r({&1)x and two otherwise. This
is done according to (23) and such that each gene has the
same chance of dying. Mutation between A1 and A2

occurs at rate u, with u being of order less than 1�N(0),
that is u=o(1�N(0)). This makes mutations very rare
and it becomes unlikely that more than one mutation has
happened in the populations history.

Put

Q1 =
j2

N({)2 (1+2s$)(1&u)+
j(N({)& j)

N({)2 (1+2s)

+
(N({)& j)2

N({)2 u, (24)

and

Q2 =
(N({)& j)2

N({)2 (1&u)+
j(N({)& j)

N({)2 (1+2s)

+
j2

N({)2 (1+2s$) u. (25)

Denote the sum of Q1 and Q2 by Q,

Q=1+4
j

N({)
s+2

j2

N({)2 (s$&2s). (26)

A new individual is of type A1 with probability Q1 �Q and
of type A2 with probability Q2 �Q. If two new individuals
are required, they are drawn independently of each other.
The individual that dies chosen randomly amongst all
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individuals.

3. Convergence to a birth�death process. Assume the
current number of A1 alleles in generation { is j. The



probability that there are j+1 A1 's in the next Moran
generation is

P{( j � j+1)=
j

N({)
(1+2s) cr({)+o( j�N({)), (27)

and that of j+2 A1 's is

P{( j � j+2)=o( j2�N({)2). (28)

In (27), cr({)=1 if w2r{x=w2r({&1)x , and cr({)=2
otherwise. The probability that there are j&1 A1 's in the
next Moran generation is

P{( j � j&1)=
j

N({)
+o( j�N({)). (29)

Let ; j be the time until a birth occurs, and $j the time
until a death occurs, given there are j A1 's at time {. We
find

P{(; j>{$)

= `
{$&1

@=0
\1&

j
N({&@)

(1+2s) cr({&@)

+o( j�N({&@))+
rexp {&

j
2

:
{$&1

@=0

2
N({&@)

(1+2s) cr({&@)= , (30)

for N({) large. Again the error term is of order o( j�N({)).
However, N({&@) is constant over w1�2rx Moran
generations, yielding

P{(; j>{$)

rexp {&
j
2

:
{$&1

@=0

2
N({&@)

(1+2s)(1+2r)= , (31)

or

Pt(Bj>t$)rexp {&
j
2

(1+2s)(1+2r) t$= , (32)
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for {$ large, such that {$�N({) is constant, see (22). That
is, Bj is exponential with parameter j(1+2s)(1+2r)�2. In
Eq. (32), t (t$) is { ({$) expressed in real generations and
Bj is ;j measured in real generations. Similarly, we find

P{($j>{$)=Pt(Dj>t$)rexp {&
j
2

t$= , (33)

where Dj is $j measured in real generations.
We conclude that the evolution of A1 lineages in the

Moran model converges in distribution for N(0) � � to
a continuous-time linear birth�death process with birth
rate *=(1+2s)(1+2r)�2 and death rate +=1�2,
provided the number of A1 lineages is small compared to
N(0) and the mutation rate fulfills u=o(1�N(0)). Note
that the expected offspring number of an allele in one real
generation is exp(*&+)=exp(s+r+2rs)r1+s+r, if r
and s both are small (Kendall, 1948). This allows s to be
interpreted as the selective (dis) advantage of hetero-
zygotes. Further, as seen from (32) and (33), the fitness,
s$, of homozygotes is asymptotically insignificant.

The same result is true (with s=0) for the evolution of
a small number of A2 lineages provided the number of
variant alleles, A1 , is small compared to N(0). The argu-
ment for this is similar to the one given above and will,
therefore, not be presented again.

In one Moran generation, one or two individuals give
birth. Because the relation between Moran generations
and real time is not linear, the birth rate per real time unit
depends on t. Consider the number, nB(t, t$), of births in
the real time interval [t, t$),

nB(t, t$)= :
{$&1

@={

cr(@), (34)

where { ({$) is t (t$) in Moran time. Using (22), the birth
rate, b(t), per real time unit at time t is, for large N(0),

b(t)= lim
N(0) � �

1
N(0)

nB(t, t+1�N(0)) B exp[&rt]. (35)

APPENDIX 2

Figure 3 illustrates the genealogy of D going forwards
in time. Consider an individual A in some generation {0 .
If A is the first common ancestor of D and a normal
allele, then the following is true: At generation {0=T 0*
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individual A give birth to a new lineage, L2 , in which the
mutation arise. Note that there is at most two individuals
that give birth in each generation (see Appendix 1). The
individual A has descendants in lineage L1 (normal



FIG. 3. Descendants of A. Solid lines represent lineages that sur-
vive until present time and dotted lines represent lineages that die out
before present time. At time T 1* , there are k1=4 descendants of A in
lineage L2 (lineage L1 is not shown). None of the three dotted lineages
survive because otherwise A could not be the first MRCA of D and a
present-day normal allele. They die out at some time after T 1* . The
parent of the variant survives at least until time T 2* along with one
other lineage. In total there are k2=3 descendants of the mutant at time
T 2* . The two mutant lineages at time T 2* has k3=6 descendants at time
T 3* , of which only 2 survive till present time.

alleles) in the present-day population. From generation
T 0* to generation T 2* no new lines that survive until the
present-day are born in lineage L2 . Otherwise D could
not have a MRCA at time T 2* (but at some generation
{>T 2*) or A could not be the first common ancestor of
D and the class of normal alleles (the first common
ancestor would be at some generation {<T 0*). At time
T 2* the lineage L2 splits into two lineages, both with
descendants in the present-day population, and so forth
(Fig. 3).

The probability P(T j*={j , 0� j�k, M(D)) is split in
a sum of probabilities, one for each population history
that coincide with T j*={j , 0� j�k, and M(D). If
T 0*={0 and {0 is a generation in which two individuals
have offspring, the summation is (amongst more) over
these two individuals. If only one individual has off-
spring, the summation is over this individual. We
proceed in the following way. Define the events, Ej ,
0� j�k&1, and the events Fj , 1� j�k, by (Fig. 3)

v E0(k0) is the event that A has offspring (lineage L2)
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at time {0 and the parent lineage L1 has k0>1
descendants in the present day population;

v E1(k1) is the event that L2 has k1 descendants at
time {1+1, one of them gives birth to a mutant, the
parent and the other k1&1 lineages die out before
present time;

v Ej+1(kj+1) is the event that the j�1 mutants at
time {j evolve into kj+1� j lineages at time {j+1+1, such
that the number, k( j+1) i , of descendants of mutant i,
i=1, 2, ..., j, is at least one and k( j+1) i&1 of them die out
before present time. Additionally one of the remaining j
mutants give birth to a new lineage at time {j+1+1;

v Fj (k) is the event that the j�1 mutants at time {j

evolve into k lineages at present time, such that all j
mutants have at least one descendant each.

If {0={1+1, the parent of the mutant offspring sur-
vives and E0 and E1 are replaced by

v E01(k0) is the event that A gives birth to a mutant
(lineage L2) at time {0 and the parent lineage L1 has
k0�1 descendants in the present day population.

Double branching events in one generation (which
occur with probability o(1�N({)2)) are ignored. The
events Ej and Fj give all possible population histories
that agree with T j*={j and M(D). Note that two events,
Ei and Ej , i< j, or Ei and Fj , i� j, either deal with dif-
ferent lineages or with lineages in different time epochs.
Now,

Mj = ,
j

i=0

[T i*={i] & M(D)

=\,
j

i=0

,
ki

Ei (ki)+& Fj (k) & M(D), (36)

and the probability of Mj can be obtained as a sum of
probabilities over i and ki , each addend is of the form
P(E0(k0) & } } } & Ej (kj) & Fj (k) & M(D)) for some ki ,
0�i� j.

1. Proof of Theorem 1. In Appendix 1 it is shown
that the evolution of a finite number of lineages can be
approximated by linear birth�death (b�d) processes with
time scaled in real generations. If this approximation is
applied to each addend in (36) separately, we obtain an
approximation to the probability of Mj . Formally, this is
justifiable because the approximation applies to the
evolution of the ancestor A itself (Appendix 1). One
important feature of b�d processes is that lineages evolve
independently of each other, such that each addend in
the probability of Mj splits up in a product of terms and
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such that summation over ki can be performed before
multiplication of terms. Further, the mutation rate u can-
cels in P(Mj | M(D))=P(Mj)�P(M(D)) and will hence-
forth be ignored, e.g., in P(Mj) and P(M(D)).



Up to real generation T1 lineage L2 evolves with birth
rate *1 and death rate +1 determined by the demographic
structure of the whole population. After time T1 , the
birth rate, *2 , is also determined by the selection coef-
ficient, whereas the death rate, +2 , is left unchanged,
+2=+1 . In lineage L1 , the process evolves with rates
determined by the demographic structure solely; that is,
with rates *1 and +1 . In Appendix 1, it is shown that the
birth and death rates are given by

*1 =
1
2

+r, *2=
(1+2r)(1+2s)

2
, and

+1=+2=
1
2

, (37)

where s and r are the selection coefficient of the variant
allele and the rate of increase in population size per real
generation, respectively. In the absence of selection,
Slatkin and Rannala (1997) derived *1 and +1 using
heuristic arguments.

Now, consider a linear b�d process with constant birth
and death rates, * and +. The general theory for b�d pro-
cesses was developed by Kendall (1948) and a notation
similar to his is adopted. If +{*; let

pt=
+[e(*&+) t&1]

*e(*&+) t&+
, (38)

and

't=
*
+

pt . (39)

If +=*, let

pt='t=
*t

1+*t
. (40)

The probability, Pk(t), that a single lineage has k, k�1,
descending lineages t generations later is given by

Pk(t)=(1& pt)(1&'t) 'k&1
t , (41)

and the probability, P0(t), that the lineage is extinct t
generations later, i.e., it has no descending lineages, is

Rare Alleles and Selection
P0(t)= pt . (42)

Let pit ('it) be pt ('t), if *=*i and +=+ i , i=1, 2.
Applying (35), (41), and (42), the probabilities p01(t0),
pj+1(tj , tj+1), and qj (t j), respectively of E01 , Ej+l , and
Fj , respectively, are given by

p01(t0)=p0(t0)=b(t0)(1& p1t0
) dt0 , (43)

p1(t0 , t1)= :
�

k1=1

g1(t0&t1) 'k1&1
1(t0&t1) pk1

1t1
k1 dt

=g1(t0&t1) h1(t0 , t1)2 p1t1
dt1 , (44)

pj+1(tj , tj+1)= :
k(j+1) i�1

g2(t j&tj+1) j 'kj+1& j
2(tj&tj+1)

_pkj+1& j
2tj+1 _`

j

j=1

k( j+1) i& dtj+1

= g2(tj&t j+1) j h2(tj , tj+1)2 j dtj+1 , (45)

qj (tj)= :
mi�1

g2(t j)
j 'k& j

2tj

=C(k) g2(tj)
j 'k& j

2tj
. (46)

The sum in (46) is over all tuples (m1 , ..., mj+1) such that
�i mi=k and m i�1 for all i and C(k)=�mi�1 1.
Further, the functions gi and hi , i=1, 2, are defined by
gi (t)=(1&'it)(1& pit) and h i (t, u)=1�(1&'i(t&u) piu),
and b(t) in (43) is given by b(t) B exp[&rt], Eq. (35).

The Markov property of (T0 , T1 , ..., Tk) now readily
follows from writing P(Mj) as the product qj (tj) p0(to)
> j

i=1 p i (t i , ti+1) (or qj (t j) p01(t0) > j
i=2 p i (ti , ti+1)).

Also the inequality 0<P(T0=T1 | M(D))<1 is a conse-
quence of (43)�(46).

2. Proof of Theorem 2. Upon transformation of
variables, vj=t j �k, it follows that

P(T0=T1 | M(D))

=
k � p01(kv0) q1(kv0)

k � p01(kv0) q1(kv0)
+k2 � p0(kv0) p1(kv0 , kv1) q1(kv1)

� 0,

(47)

for k � �. Equations (6)�(8) are easily obtained using
(47), (38)�(46), and standard limit considerations. Equa-
tions (9)�(11) follow from showing that if Xj , j�1, is a
series of independent variables that fulfill (10)�(11), then
Vj , j�1, defined by (9), fulfill (6) and (7).
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