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INTRODUCTION

In this paper we study a sample from a subpopulation
consisting of those chromosomes sharing a neutral rare
allele. Assume that the frequency, q, of the allele in the
entire population is small. We give, within a coalescent
framework, a simple approximation to the exact condi-
tional genealogy of a sample (or of the subpopulation)
given q. It is assumed that the mutation giving rise to the
allele is unique in the history of the entire population.

The problem of describing the genealogy of a sample of
rare alleles has had considerable recent attention. Slatkin
and Rannala (1997) developed an approximate method
(combining a linear birth and death process with the
coalescent) to study the genealogy of a rare allele. In their
setup the time T, at which the mutation arose, is treated
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of a sample of chromosomes sharing a neutral
ise to the allele has only happened once in the
le is of known frequency q in the population.
nnelly (1999, Theor. Popul. Biol. 56, 183�201)
alogy but it is inconvenient for applications.
t distribution of the conditional genealogy,
f the time at which the mutation arose. The
5�10�. In addition, a simple and fast simula-
raphy parameterized by a d-dimensional vec-
l genealogy and the age of the mutation have

and that the effect of q is a linear scaling of
s of all branches in the genealogy are doubled.
raphies of some interest in the study of human
(2) a population of exponentially decreasing

; genealogy; rare allele; sampling scheme.

as a parameter. In contrast to this, T is in this paper (and
in Wiuf and Donnelly, 1999) treated as a stochastic
variable conditional on the frequency q. Wiuf and
Donnelly (1999) showed, based on an exact coalescent
analysis, that in the simple scenario of constant popula-
tion size the difference between the approximation of
Slatkin and Rannala (1997) and the exact results of Wiuf
and Donnelly (1999) becomes substantial for small q.
Similarly, Thompson and Neel (1997) use fractional
linear branching processes to model the demography of
a rare allele. Again the age T of the mutation is treated as
a parameter.

Treating the age as a parameter has a serious draw-
back. We should condition both on the fact that the
mutation is seen only in a fraction of the population, and
the fact that the mutation arose at all. The mutation is
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more likely to have arisen in genealogical trees with a
long branch between the most recent common ancestor
(MRCA) of the subpopulation of rare alleles, and the
ancestry of the rest of the population. As a consequence,
conditioning on the mutation has the effect of stochasti-
cally increasing the length of this branch. This effect turns
out to be important, especially for small q, and is not cap-
tured in Slatkin and Rannala (1997) and Thompson and
Neel (1997).

Throughout this paper, we adopt the coalescent as an
exact description of the genealogy of the entire popula-
tion, or equivalently of samples from it. The effective
number of chromosomes in the population is allowed to
vary with time such that the effective number at time t in
the past is N(t). Time starts at the present, t=0, and is
measured in units of N=N(0) generations. We consider
demographies parameterized by a d-dimensional vector,
:=(:1, ..., :d). Examples of this kind include a constant
population size scenario, :=( ), and a scenario with
exponentially decreasing population size (going back-
ward in time), :=(;), where ; is the rate of decrease in
population size per N generations.

In this setting, we consider a sample of n chromosomes
taken from the population at the present time. At a
particular locus, the sample is divided into two sub-
samples, D and C of size k and n&k, respectively, with
the property that all of the chromosomes in D share a
particular mutation. We assume in addition that the
mutation is neutral, and that it has arisen only once in
the history of the population. If the mutation rate at the
locus is very small this assumption is likely to be true;
the chance of more than one mutation event at the
locus becomes negligible. Formally, we examine the
limit as the mutation rate tends to zero, conditional on
the mutation having occurred. We are interested in the
genealogy of D and, in particular, in the case where the
sample sizes n and k both are large but such that
the frequency qrk�n is small; i.e., the mutants are
rare. The notation to be introduced is illustrated in
Fig. 1.

Let the event E be that all of the chromosomes in D

share a common ancestor before any chromosome in D

shares a common ancestor with a chromosome in C

(Fig. 1). Assuming E, let M denote the event that a single
mutation has occurred on the ancestral lineage common
to all of D between the time of the MRCA of D and the
time at which D first shares an ancestor with C. The event
that exactly those chromosomes in D share the mutation
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is given by E & M, and we proceed by first examining the
genealogy of D conditional on E, and then additionally
conditional on M. The event E affects the jump chain of
the coalescent for the sample only, and not the times
FIG. 1. Notation. In this example subsample D consists of k=4
individuals and subsample C of n&k=6 individuals. Time is measured
backward with zero denoting present time. Subsample D finds a
MRCA at time A, and there are five ancestors of the whole sample at
that time, the ancestor of D and four ancestors of C. At time B, the last
line of descent of subsample D coalesces with an ancestral line of C.
This is the second coalescence event further back in time from A. The
variables A( j), j=0, 1, ..., 4, count the number of ancestors of the entire
sample the first time there are j ancestors of D. For example, A(1)=5
and A(3)=9 (marked with a dotted line). The mutation shared in D is
marked with a dot and the branch at which it arose is called #.

between coalescent events (Kingman, 1982). Throughout
the paper, conditioning on E and the sample configura-
tion (the number of chromosomes in D and C) will be
suppressed in the notation.

This paper is organized into several sections. Section 1
concerns the jump chain of the genealogy of D. In
Sections 2 and 3 an approximation to the distribution of
the genealogy of D, conditional on E only, is derived. We
show that for small values of q the number of ancestors,
A( j), of the entire sample when there are j ancestors of D

can be assumed to be in a one-to-one correspondence
with time, and that the distribution of A( j), j�0, has a
particular, simple form. Sections 4�6 extend these results
to the genealogy conditional on both E and M and give
examples. It is shown that q affects the distribution of the
conditional genealogy essentially through a linear scaling
of time. A scheme for simulating the genealogy of a finite
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sample taken from D is developed in Section 7 and,
finally, in Section 8 we evaluate the theory presented in
the paper and display a few consequences. All proofs are
given in the Appendix.



1. THE ANCESTRAL CHAINS OF D

The topological structure of the genealogy of D is
described by two jump chains: A( j), j=0, 1, ..., k, and
D(m), m=1, 2, ..., n. The variable A( j) is the number of
ancestors of the entire sample the first time there are j
ancestors of D (Fig. 1). We say that there are zero
ancestors of D when any ancestor of the sample is an
ancestor of at least one chromosome in C. In particular,
there are zero ancestors of D when the last ancestral
lineage common to all of D is absorbed into the rest of
the genealogy, and A(0) denotes the number of ancestors
of the entire sample when this happens.

The variable D(m), m=1, 2, ..., n, is the number of
ancestors of D when there are m ancestors of the entire
sample. By the convention described above D(m) can be
zero. In fact we always have D(1)=0 because if there is
only one ancestor of the entire sample this ancestor is in
particular an ancestor of all chromosomes of C.

The two chains are called the ancestral chains of D. We
have the following relationship between A( j) and D(m)
(see Wiuf and Donnelly, 1999):

A( j)=m � D(m)= j and D(m+1)= j+1, (1)

and

D(m)= j � A( j)�m and A( j&1)�m&1. (2)

Thus, the distribution of either chain can be found from
the distribution of the other chain. We will in particular
focus on properties of the chain A( j), j=0, 1, ..., k. It
tells us the number of ancestors of the entire sample at
each coalescent event in subsample D, and thus also the
time from present until there are j ancestors of D.
For instance, under an assumption of constant effective
population size this time is distributed like a sum
Vn+Vn&1+ } } } +VA( j)+1 of exponential variables,
where Vh tExp(h(h&1)�2) and Vh is the time while
there are h ancestors of the entire sample. This follows
from the fact that the waiting times, Vh , are independent
of the jump chain A( j), j�0 (Kingman, 1982).

Let Pn denote the probability measure associated with
a sample of size n. Applying results in Wiuf and Donnelly
(1999) we find the distribution of the chain A( j), j�0.
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Lemma 1. The number of ancestors of the whole
sample the first time there are j ancestors of D, A( j),
j = 0, 1, ..., k, forms a Markov chain with marginal
distributions given by
Pn (A( j)=m)=
\n&m&1

k& j&1 +\
m

j+1+
\ n

k+1+
, (3)

for j=0, 1, ..., k&1, and m= j+1, ..., n&1. If j=k we
have Pn (A(k)=m)=1, if m=n and zero otherwise. The
transition probabilities are given by

Pn (A( j)=m | A( j&1)=l )=
\n&m&1

k& j&1 +
\n&l&1

k& j +
, (4)

with j=1, 2, ..., k&1, l= j, j+1, ..., n&2, and m=l+1,
l+2, ..., n&1. If j=k we have Pn (A(k)=n | A(k&1)=l)
=1 for all l=k, k+1, ..., n&1, and zero otherwise.

From (3) and (4) and the Markov chain property of
A( j), j=0, 1, ..., k, one can easily find the joint distribu-
tion of any vector A(0), A(1), ..., A( j), with 0� j�k. The
distribution of D(m), j=1, 2, ..., m, can be derived from
(1) and Lemma 1.

2. CONVERGENCE OF THE
ANCESTRAL CHAINS

In this section we discuss convergence properties of
the ancestral chains, A( j), j=0, 1, ..., k, and D(m),
m=1, 2, ..., n, as the size of the entire sample becomes
large and the frequency q becomes small. The condition-
ing on the event M (in different scenarios) will be
postponed to subsequent sections; i.e., the results given in
this section are derived conditional on E, the topological
structure, and the sample configuration only.

We show that as q decreases and n increases qA( j)
tends to a continuous variable. Thus, the number of
ancestors of the entire population is naturally measured
in units of 1�q. In the next two sections we show that the
distribution of the genealogy of D can be derived from
that of qA( j).

Formally, we consider a series of samples of size n,
n=2, 3, ..., and subsamples Dn of size kn such that
qn=kn �n � 0 and kn � �. We let D� refer to the model
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that emerges as n � �. The benefit of these assumptions
is that the fraction, qn , of the rare allele becomes small
while both the entire sample (of size n) and the sub-
sample of the rare allele become very large (as kn � �.)



In the limit this corresponds to sampling the whole popu-
lation. Subscript n is suppressed in the notation of A( j)
and D(m).

Let XtY denote that the variable X is distributed like
the variable Y, and let Xtg(x) denote that X has density
g(x) (wrt Lebesgue measure). The conditional variable X
given Y is denoted X | Y.

Theorem 1. Assume that qn � 0 and kn � �. The
chain qnA( j), j=0, 1, ..., converges in distribution to a
Markov process A� ( j), j=0, 1, ..., with marginal distribu-
tions given by

A� ( j)t
1

( j+1)!
x j+1 exp(&x) (5)

for x>0; i.e., A� ( j) is gamma distributed 1( j+2, 1). The
increments A� ( j)&A� ( j&1), j�1, form a series of
independent variables with

A� ( j)&A� ( j&1)tExp(1). (6)

Here Exp(*) denotes an exponential variable with inten-
sity *. In particular, A� ( j)&A� ( j&1) is independent of
A( j $), j $=0, 1, ..., j&1.

It is of interest to note that the distribution of A� ( j)
does not depend on how qn approaches 0, as long as
kn � �. Equations (5) and (6) imply that A� (0),
A� (1), ..., can be simulated by a series of exponential
variables Xj tExp(1), j�0,

A� ( j)tX0+X1+ } } } +Xj+1 . (7)

Here, the ancestral chain A� ( j), j�0, is constructed
from A� (0) and then ``moving'' toward the present with
increasing j. The present time corresponds to �j Xj=�
as the size of D� at the present time is infinity. Further,
the process is almost a Poisson process with intensity 1
apart from the distribution of the first point ``0'' which
arrives according to a 1(2, 1) distribution. This is effec-
tively the increase in ancestral lineages from the MRCA
of the entire population until the lineage ancestral to all
D� is introduced.

Denote by D(x�qn) the variable D(wx�qn x), where wux
is the integer part of u.

Theorem 2. With the assumptions of Theorem 1, the
Markov process D(x�qn), x>0, converges to a Markov
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process D� (x), x>0, with marginal distributions

P(D� (x)= j)=
1

( j+1)!
x j+1 exp(&x), (8)
if j�1 and

P(D� (x)=0)=(1+x) exp(&x) (9)

if j=0. Let x> y>0. The transition probabilities of the
process D� (x), x>0, are given by

P(D� (x)= j | D� ( y)=i)

=
1

( j&i)!
(x& y) j&i exp[&(x& y)] (10)

if j�i�1,

P(D� (x)= j | D� ( y)=0)

=
x+ jy

( j+1)! ( y+1)
(x& y) j exp[&(x& y)] (11)

if j>0 and i=0, and finally

P(D� (x)=0 | D� ( y)=0)=
x+1
y+1

exp[&(x& y)] (12)

if j=i=0.

The variable D� (x), x>0, is Poisson distributed with
intensity x, except that the outcomes 0 and 1 are pooled.
Note that whenever i>0, the increment D� (x)&D� ( y)
is independent of D� ( y)=i, and its distribution is
Poisson with intensity $=x& y. This is in agreement
with (6). If i=0 the distribution of D� (x)&D� ( y)
given D� ( y)=0 depends on both $=x& y and y (see
Eqs. (11) and (12)). We find that P(D� ($+ y)=
0 | D� ( y)=0) decreases in y for all $. Equations
(8)�(12) are in agreement with Eq. (7). New ancestral
lines to subsample D� arrive almost like points in a
Poisson process with intensity 1.

Here, we will briefly discuss two other scenarios: (2)
qn � 0 but kn remains fixed, kn=k for all n, and (3)
kn � � but kn �n � q>0. Both cases are natural exten-
sions of the previously discussed case, (1) kn �n � 0 and
kn � �, but both have limitations wrt applications. Case
(2) cannot handle infinite size samples, but results similar
to those given in case (1) can be proven. Case (3) can
handle large sample sizes, but a good approximation
does not exist.
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Theorem 3. Assume that qn � 0 and kn=k for all n.
The chain A( j)�n, j=0, 1, ..., converges in distribution to a
Markov process A� ( j)�k, j=0, 1, ..., k (this notation is



consistent with the notation adopted in Theorem 1), with
marginal distributions given by

A� ( j)
k

t
1(k+2)

1( j+2) 1(k& j)
x j+1 (1&x)k& j&1, (13)

with 0<x<1. That is, A� ( j)�k is beta distributed,
Beta( j+2, k& j). The ratios Rj=[A� ( j)&A� ( j&1)]�
[k&A� ( j&1)], j�1, form a series of independent
variables with

Rj tBeta(1, k& j). (14)

In particular, Rj is independent of A� ( j $), j $=0,
1, ..., j&1.

As k increases the distribution of the process A� ( j),
j�0, in Theorem 3 tends to that of A� ( j), j�0, in
Theorem 1.

Theorem 4. Assume that kn �n � q>0 and kn � �.
The chain A( j), j=0, 1, ..., converges in distribution to a
Markov process A� ( j), j=0, 1, ..., with marginal distribu-
tions given by

P(A� ( j)=m)=\ m
j+1+ q j+2 (1&q)m& j&1 (15)

for j=0, 1, ..., and m= j+1, j+2, ..., or

A� ( j)& j&1tNB( j+2, q), (16)

where NB(:, }) denotes a negative binomially distributed
variable with parameters : and } (in the notation of Feller,
1950, p. 165). Further, the increments A� ( j)&A� ( j&1),
j�1, form a series of independent variables with

A� ( j)&A� ( j&1)tGeo(q). (17)

Here Geo(*) denotes a geometrical variable with
parameter *. In particular, A� ( j)&A� ( j&1) is inde-
pendent of A� ( j $), j $=0, 1, ..., j&1.

As q decreases to zero the distribution of the process
qA� ( j), j�0, in Theorem 4 tends to that of the process
described in Theorem 1. Also Eqs. (13) and (14), respec-
tively Eqs. (16) and (17), provide simple schemes
analogous to (7) to simulate an approximate distribution
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of A( j), j�0, if kn is fixed, respectively if kn �n � q>0
applies.

When kn �n � q>0, the chain converges to a process in
which the distribution depends on the frequency q.
A similar remark applies to the previous case, kn fixed,
where the limiting process depends on k, the fixed
number of chromosomes in subsample D.

Further, there is a striking difference between on the
one hand cases (1) and (2), kn �n � 0, and on the other
hand case (3), kn �n � q>0. In the former cases the dis-
tribution of A� (0), A� (1), ..., A� ( j) has a continuous
density (wrt Lebesgue measure on R j, ) whereas in the
latter case the distribution is discrete. Also, under (1) and
(2) the number of ancestors of the entire sample while
there are j ancestors of D is very large, about A� ( j)�q, a
number that becomes infinity as q � 0. This fact has
important consequences for the distribution of waiting
times between coalescent events in subsample D and will
be discussed in the next section.

3. TIME IN THE GENEALOGY OF D

In this section, and here only, we assume that the pop-
ulation is of constant size. Let Vh denote the waiting time
while there are h ancestors of the entire sample. The
variable Vh is exponentially distributed with parameter
h(h&1)�2. Define U( j), j�1, to be the time while there
are at least j ancestors of subsample Dn ; U( j+1)=
Vn+ } } } +VA( j)+1 , j�0. We have U( j)>U( j+1), for
all j�1. The process U( j), j�1, is not Markov because
the value of the chain A( j), j�0, is not known. Subscript
n is suppressed in the notation of U( j). If q is small, A( j)
is large (Theorem 1) and U( j) is a sum of variables with
almost negligible variances, Var(Vh)=4�h2 (h&1)2,
thereby indicating that U( j+1) is in an almost deter-
ministic relation to A( j). The next theorem states this
relation.

Theorem 5. Assume that qn � 0 and kn � �. The
process (U( j+1)�qn , qnA( j)), j�0, is Markov and
converges in distribution to a Markov process
(U� ( j+1), A� ( j)), j�0, that fulfills

U� ( j+1)=
2

A� ( j)
. (18)

The distribution of the process U� ( j+1), j�0, can be
found from the distribution of the process A� ( j), j�0,
and a simple transformation taking A� ( j) into
U� ( j+1). It follows that U� ( j), j�1, forms a Markov
chain because A� ( j), j�0, is Markov (Theorem 1). We
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find that it is natural to measure time in units of qN
generations as the variable U( j)�q, converges for qn � 0
and as time in the coalescent is measured in units of N
generations.



Note that if kn �n � q>0, A� ( j) has a discrete dis-
tribution. Thus, the time from the present until there are
j ancestors is given by a sum of exponential variables
U� ( j+1)=VA�( j)+1+VA�( j)+ } } } and there is no
deterministic relation between A� ( j) and U� ( j).

Let W� ( j)=U� ( j)&U� ( j+1) be the time while
there are j ancestors of D� . We have from (5),

U� ( j)t
2 j+1

j ! u j+2 exp(&2�u), (19)

with u>0, and j�1. The variable U� ( j) follows a
generalized inverse Gaussian distribution, GIG(&
( j+1), 4, 0) (in the notation of Seshadri, 1993, p. 27).
Further, by evaluation of the joint distribution of (W�( j),
U� ( j+1)) (Theorems 1 and 5) we find

W� ( j) | U� ( j+1)=ut( j+1) \ u
w+u+

j+1 1
w+u

, (20)

with w, u>0. Especially, we see that W� ( j) is not inde-
pendent of U� ( j+1) as is the case in the ordinary
coalescent setup where Vh is independent of all times Vh$ ,
h$>h. However, it follows from (20) that the relative
increment 2j=W� ( j)�U� ( j+1), j�1, is independent of
U� ( j+1) and has distribution 2j t( j+1)(1+x)&( j+2),
x>0. Further, because U( j+1), j�1, is Markov, the
relative increments, 2j , j�1, form a series of independent
variables.

For reasons of comparison we note the following
moments of U� ( j):

E(U� ( j))=
2
j

and Var(U� ( j))=
4

j2 ( j&1)
. (21)

In particular, U� (1) has expectation 2 and infinite
variance, and U� (2) has expectation 1 and variance 1.
This is in agreement with results in Wiuf and Donnelly
(1999). The times W� ( j), j�2, have moments

E(W� ( j))=
2

j( j+1)
,

Var(W� ( j))=
4( j+3)

( j&1) j2 ( j+1)2 , (22)
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and

Cov(W� ( j), W� ( j+1))=
4( j+4)

j2 ( j+1)2 ( j+2)
,

where Var and Cov denote variance and covariance,
respectively.

Theorem 5 also holds if qn � 0 and kn is fixed; kn=k.
However, the form of the densities of U� ( j), j�1,
depends on whether kn � � or kn=k (Theorems 1 and
2).

4. CONDITIONING ON THE
MUTATION

We now impose the condition that a single mutation
occurred at the locus on the branch # of length W(1)r

qn (U� (1)&U� (2)), and that no other mutations have
occurred at the locus in the history of the sample. The
branch # spans the time from the MRCA of D until D

shares an ancestor with C (see Fig. 1). Recall that M
denotes the event that there is a single mutation along #.
We assume that the mutation process at the locus is
Poisson with rate %�2. The parameter % is related to the
effective size N=N(0) of the population by %=2N+,
where + is the chance of a mutation at the locus per
chromosome per generation. To ensure that at most one
mutation occurs, we consider the limiting case in which
the mutation rate tends to zero. Formally, for n fixed we
let % � 0 and then qn � 0 and kn � �.

The effect of conditioning on the mutation is studied in
a general demography and exemplified in two scenarios;
see Sections 5 and 6. The results, obtained in Section 2,
on the ancestral chains A( j), j=0, 1, ..., and D(m),
m=1, 2, ..., conditional on E only, apply here as well
because the jump chains are stochastically independent
of times between coalescent events (Kingman, 1982).
However, the conditioning on the mutation has effects on
the tines between coalescence events, effects that depend
on changes in the population size.

Assume that &(t; :)=N(t)�N depends on a vector of
parameters :=(:1, ..., :d) describing the demography.
For example if N(t) is constant then &(t; :)=1 and
:=( ), and if N(t)=N exp(&;t) then &(t; :)=exp(&;t)
and :=(;). Following Griffiths and Tavare� (1994), we
define the population size intensity function by

4(t; :)=|
t

0

1
&(u; :)

du. (23)

Put *(t$; :)=&(4&1 (t$; :); :), where 4&1 (t$; :) denotes
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the inverse of (23).
Consider a sequence of models Dn each with a given :n

and qn . Assume that :n and qn are related such that
:n qn � a=(a1, ..., ad) as n tends to infinity.



Theorem 6. Assume that qn � 0 and kn � �. Put
s=t�q, s$=t$�q, and a=q:. Further, assume that &
expressed as a function of s, a, and q satisfies

&(s; a, q)=&(s; a), (24)

i.e., depends on s and a only, and that &(s; a) is a continuous
function in s and a. Then also * expressed as a function of
s$, a, and q satifies *(s; a, q)=*(s; a). Further, the process
(U( j+1)�qn , qn A( j)), j�0, conditional on M, is Markov
and converges in distribution to a Markov process
(U� ( j+1), A� ( j)), j�0, that fulfills

|
U�( j+1)

0

1
&(z; a)

dz=
2

A� ( j)
. (25)

Essentially, the proof of Theorem 6 relies on
Theorem 5 obtained under the assumption of a popula-
tion of constant size (see Appendix). If the size of the
population is constant, & is constant and we retrieve the
relation between U( j+1) and A( j) from Theorem 5;
U( j+1)=2�A( j).

Theorem 7. With the assumptions of Theorem 6, the
chain A� ( j), j�0, conditional on M, is Markov and
fulfills

(A� (0), A� (1)) | M

t
1

Q(M; a)
x0 exp(&x1) |

2�x0

2�x1

*(z; a) dz, (26)

with x1>x0>0, and

Q(M; a)#E _|
2�A�(0)

2�A�(1)
*(z; a) dz& . (27)

Further,

A� ( j+1) | (A� ( j), M)tA� ( j+1) | A� ( j) (28)

for j�1. The distribution of A� (1) given A� (0) and M is
not independent of M.

It is interesting to note that A( j) | M, j�0, is not in
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general Markov, though A( j), j�0, is. The process
A� ( j) | M, j�0, becomes Markov because of the one-to-
one correspondence with time and the Markov property
of (U� ( j+1), A� ( j)), j�0 (see Theorem 6).
Corollary 1. With the assumptions of Theorem 6,
the processes A� ( j), j�0, and U� ( j+1), j�0, condi-
tional on M, have distributions that depend on q and :
through a only.

Theorems 6 and 7 allow us to find the distribution of
the time, T� , at which the mutation arose.

Corollary 2. The age of the mutation, T� , has
distribution given by

T� | (M, U� (1), U� (2))tZW� (1)+U� (2), (29)

where Z is uniform on (0, 1) and independent of U� ( j),
j�1. The distribution depends on q and : through a only.

Corollaries 1 and 2 are somewhat remarkable results;
if a is fixed the frequency q affects time only through a
linear scaling. Again we stress that the natural measure of
time in the genealogy of D is in units of qN generations.

In some instances simulations from the process A� ( j),
j�0, given M can successfully be performed using an
acceptance�rejection scheme; simulate A� ( j) from
the unconditional process, and accept the outcome
with a probability p(A� (0), A� (1)) proportional to
�2�A�(0)

2�A�(1) *(z; a) dz (see, e.g., Ripley, 1987). Values of T�

can easily be obtained from those of A� (0) and A� (1).
Theorem 6 and Corollaries 1 and 2 also hold if kn=k

and qn � �, but the distribution of A( j), j�0, condi-
tional on M, will take a different form (compare
Theorems 1 and 3).

5. CONSTANT POPULATION SIZE

The first example concerns the scenario where the
effective size N of the number of chromosomes remains
constant through time; i.e., N(t)=N. The chains A( j),
j=0, 1, ..., and D(m), m=1, 2, ..., conditional on M, are
discussed in some length in Wiuf and Donnelly (1999),
and closed expressions for the distributions of A( j) and
D(m) conditional on M are obtained. These allow us to
prove very similar results to the results derived in
Sections 1 and 2. Here, however, we apply the general
results from Section 4.

Applying the theory in the preceding section with
&(t; :)=*(t$; :)=1 and :=( ) we find
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(A� (0), A� (1)) | Mt2 \1&
x0

x1+ exp(&x1), (30)



with x1>x0>0. In particular,

A� (1) | Mt1(2, 1), (31)

and

A� (0) | Mt2 exp(&x0)&2x0 |
�

1

1
u

exp(&x0 u) du.

(32)

Based on (31) and Theorems 1 and 7 the distribution of
A� ( j), j�1, given M can be found,

A� ( j) | Mt1( j+1, 1), (33)

and there exist exponential variables Xj , j�0, such that
Xj tExp(1), and

A� ( j) | MtX0+X1+ } } } +Xj . (34)

Comparing with the distribution of A� ( j) conditional
on E only, we find A� ( j)t1( j+2, 1), and the effect of
conditioning on the mutation is the ``removal'' of an
exponential variable. The number of ancestors goes
down when conditioning on M. This is not a surprise
because if A(1) is small the branch # tends to be longer
and there is a higher chance of a mutation along # (see
also Wiuf and Donnelly, 1999, for a discussion of this).

From Theorem 6 we find U� ( j+1)=2�A� ( j) and
conclude from (33) that

U� ( j) | Mt
2 j

( j&1)! u j+1 exp(&2�u), (35)

with x>0, and j�2. The variable U� ( j) | M follows a
generalized inverse Gaussian distribution, GIG(& j, 4, 0).
Further, the joint distribution of (W� ( j), U� ( j+1))
given M is given by

W� ( j) | (M, U� ( j+1)=u)tj \ u
w+u+

j+1 1
w+u

, (36)

with u, w>0 and j�2. Similarly to the case conditional
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on E only, the relative increment, 2j=W� ( j)�
U� ( j+1), is independent of U� ( j+1) and has distribu-
tion 2j tj(1+x)&( j+1), x>0. Also here the relative
increments form a series of independent variables.
Note that the moments of U� ( j), j�1, take the form

E(U� ( j))=
2

j&1
and

Var(U� ( j))=
4

( j&1)2 ( j&2)
. (37)

In particular, U� (1) has infinite expectation variance,
and U� (2) has expectation 2 and infinite variance. This
is in agreement with results in Wiuf and Donnelly (1999).
The times W� ( j) while there are j, j�1, ancestors of
subsample D� have moments

E(W� ( j))=
2

( j&1) j
,

Var(W� ( j))=
4( j+2)

( j&2)( j&1)2 j2 , (38)

and

Cov(W� ( j), W� ( j+1))=
4( j+3)

( j&1)2 j2 ( j+1)
.

The variables W� ( j), j�1, conditional on E only,
have first and second moments given by 2�j( j+1) and
4( j+3)�[( j&1) j2 ( j+1)2] (see (22)). Thus, the condi-
tioning on M increases both the expectations and the
variances.

Comparing with the ordinary coalescent model we see
that the first moment of W� ( j) given M is identical to
the first moment of the ``same'' variable in the ordinary
coalescent model. But the expressions of variances as well
as covariances are not shared in the two models.

If j=1 the joint distribution of (U� ( j), U� ( j+1))
given M takes the form (see (30))

(U� (1), U� (2)) | Mt
8

u2
1u2

2 \1&
u2

u1+ exp(&2�u2), (39)

and in combination with (29) this gives in turn the
distribution of the age, T� , of the mutation:
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T� | Mt
2
t2 exp(&2�t)tGIG(&1, 4, 0). (40)



Note the strong similarity between the distributions of
U� ( j), j�2, and T� . By inspection, it can be seen that
Eqs. (35)�(38) hold as well for j=1 if U� (1) is replaced
by T� . These facts are also explored and elaborated on
in Wiuf and Donnelly (1999). The expected age of the
mutation is infinite in agreement with Kimura and Ohta
(1973) among others.

6. EXPONENTIAL DECREASING
POPULATION SIZE

Consider now a population where the effective number
of chromosomes decreases exponentially going back-
ward in time, N(t)=N(0) exp(&;t). The parameter ; is
related to N=N(0) by ;=Nr, where r is the rate of
decrease in the population size from generation
to generation. Both Griffiths and Tavare� (1998) and
Wiuf and Donnelly (1999) discuss this setting in some
detail, but only a few analytical results have been
derived.

Here &(t; :)=&(t; ;)=exp(&;t) and *(t$; ;)=1�
(;t$+1). Let the limit of ;nqn be b. We find (Theorem 7)
that

(A� (0), A� (1)) | M

t
x0 exp(&x1)

C(b)
[log(2b�x0+1)&log(2b�x1+1)]

(41)

with x1>x0>0, and C(b) being a norming constant. In
particular, by integration over x0 in (41)

A� (1) | Mt
b exp(&x1)

C(b)
[x1&2b log(1+x1 �2b)].

(42)

If b is large, A� (1) | M almost follows a gamma dis-
tribution, 1(3, 1), and simulations of A� (1) | M can in
general be performed using an acceptance�rejection
scheme with acceptance probability 1&2b log(1+
X�2b)�X and proposal Xt1(2, 1).

Simulation results (not shown) show that the number,
A� (1), of ancestors increases (in expectation) with
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increasing b. Remember that in the constant population
size case the expectation of A� (1) given M is less
than the expectation of A� (1), i.e., E(A� (1) | M)<
E(A� (1)), to allow for longer branches #. A similar effect
is expected for b>0, but as b increases the population
size decreases fast and branches between events become
tiny. In order to allow for the mutation to occur at all,
the MRCA of D� must be put forward in time; that is,
A� (1) is likely to increase with increasing b.

From Theorem 6 and (41) we can find the joint dis-
tribution of (U� (1), U� (2)) given M,

(U� (1), U� (2)) | M

t
8b6 (u1&u2) eb(u1+u2)

C(b)(ebu1&1)3 (ebu2&1)2 exp {&
2b

ebu2&1= ,

(43)

with u1>u2>0. The distribution until the MRCA of D�

can be found from (43) by integration over u1 , u1>u2 ,
and the distribution of the age of the mutation, T� , can
be found using Corollary 2 and (43). This results in

T� | Mt
2b3

C(b)(ebt&1)2 exp {&
2b

ebt&1= . (44)

It is easily seen that the expectation of (44) is finite for
any b>0 in contrast to the case of a population of con-
stant size where the age of the mutation has infinite
expectation.

7. A SIMULATION ALGORITHM

In this section we review some results obtained by
Saunders et al. (1984) on nested subsamples and relate
them to the results found in the previous sections. The
results found by Saunders et al. (1984) apply to binary
coalescent trees (Griffiths and Tavare� , 1998), trees where
each pair of genes has an equal chance of forming the
next coalescence, independently of the times between
events. Thus, in particular, they apply to the trees dis-
cussed in this paper.

Consider two samples D0 and D such that D0 is a sub-
sample of D. Assume that the sample size of D is infinite
and that of D0 is k0 , with k0 finite. Saunders et al. (1984)
found the probability that there are j ancestors of D at
the time just before the (k0&1)th coalescent event, going
backward in time, among ancestors of D0 ,
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pk0&1 ( j | k0)=
k0! (k0&1)

j( j+1) } } } ( j+k0&1)
(45)



for j�2. Further, the conditional probability that there
are j ancestors of D at the time just before the ith co-
alescent event among ancestors of D0 given that there
are j $ ancestors just before the (i+1)th coalescent event
is

pi( j | j$, k0)=
pi ( j, j $ | k0)

p(i+1) ( j$ | k0)

=
i( j$+k0&i)( j $+k0&i+1) } } } ( j$+k0&1)

( j+k0&i&1)( j+k0&i) } } } ( j+k0&1)
(46)

for j� j $+1. Equation (45) is of the same form as (46);
in fact, if we put j $=1 for i=k0&1 then (46) reduces to
(43). It can be shown that the expectation of (46) and
(45) is finite unless i=1 or k0=2. Moreover, the
variance is finite unless i=1, 2 or k0=2, 3.

The conditional distributions in (46) can easily be
simulated: simulate a uniform variable Z on (0, 1) and
find the number j such that pi ( j&1 | j $, k0)<Z�
pi ( j | j $, k0). If the expectation or the variance is infinite,
it is useful to adopt another approach. For example,
if i=1 the variable w( j $+k0&1)�Zx&k0+1 is dis-
tributed like (46).

Consider now a sample D0 taken from D, the popula-
tion of rare alleles. The genealogy of D is described in
Section 4 and the genealogical structure of D0 can be
simulated as follows:

1. Simulate, according to (46), the number of
ancestors j1 , j2 , ... and jk0&1 of D the first time there are
1, 2, ... and k0&1 ancestors of D0 , respectively.

2. Put j0=1, and perform the following according
to Theorems 5 and 6.

3. Simulate A� (1) | M.

4. Simulate A� ( ji)&A� ( j i&1)t1( ji& j i&1 , 1),
1�i�k0&1.

5. Transform A� ( ji) into U� ( j i), 1�i�k0&1.

Note that j1 can be 1; that is, j1= j0=1. In that case we
take 1(0, 1) to be constantly zero.

In the special case with a population of constant size
the distribution of the time until there are k0&i,
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1�i�k0&1, ancestors of D0 can be found. We state
without proof (the proof is cumbersome and consists in
evaluating a summation) the density function fi (t) of the
time until there are k0&i ancestors
fi (t)=
k0 !(k0&1)!

(i&1)! (k0&i)! (k0&i&1)!
tk0&2

2k0

} { :
k0&i&1

j=0
\k0&i&1

j + (&1) j (k0+1)(k0+2)

} } } (k0+ j)
2k0&i&1& j

tk0&i&1& j

&e&2�t :
k0

j=0

2 j

j!t j (&1) j (k0+1& j)(k0+2& j)

} } } (2k0&i& j&1)= . (47)

The distributions of other waiting times as well as the dis-
tribution of the genealogy of the sample D0 can be found,
but the expressions are even more complicated than (47),
and some do not reduce to finite sums. The expectation
of the time while there are i ancestors, Wi=U� ( ji)&
U� ( ji&1), can be found from (37), (45), and (46). We
find that E(Wi)=2�i(i&1).

8. DISCUSSION

In the previous sections we described an approximation
to the distribution of the genealogy of D, a subpopulation
of neutral rare alleles in a general demography. The
restrictions put on the demography are very mild, and are
fulfilled in all cases of interest known to the author.
Assume that the demography is described by a numberof
parameters :=(:1, ..., :d) in a coalescent framework.
The model is reparameterized such that time is measured
in units of qN and such that the parameters are
a=q:=(q:1, ..., q:d). Here N is the effective size of the
population at the present time and q the frequency of the
rare allele. The dependence of q upon the distribution of
the genealogy of D is only through a linear scaling of the
time; if q is doubled, the lengths of all branches in the
genealogy are doubled. For example, if the size of the
population is decreasing exponentially at rate ;=rN per
N generations, the genealogy has a distribution that
depends on b=q; and qN only.

The convergence in distribution of the variables A( j),
j�0, is slowest for j=0 because the number of ancestors
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of the entire population becomes smaller with decreasing
number of ancestors of D. When the number of ancestors
of the entire population is small it is less likely to be
accurately approximated by a continuous variable.



Therefore, the rate of convergence of A(0) or A(1) (which
relates to the time of the MRCA of D) measures the rate
of convergence of the whole process.

The approximation seems to be fairly accurate, even
for frequencies of the neutral rare allele as high as 100.
For example, the approximated density of the time until
a MRCA of D (assuming constant population size)
is almost indistinguishable from the densities in the
exact coalescent framework (Figs. 2 and 3). But the
expectation of the time until a MRCA differs under
the approximation and the exact coalescent. The
approximated value is 2 whereas the exact values are 1.65
if q=100 and 1.93 if q=10 (Wiuf and Donnelly,
1999). The discrepancies in the expectations are more
profound for the distribution of the age of the mutation;
under the approximation the expectation is infinity
whereas in the exact coalescent the expectation is
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FIG. 2. The approximation versus the exact coalescent, q=100. The
MRCA of the population of the rare alleles under the approximation and u
two curves follow each other very closely. The exact curve has a slightly hig
to obtain the exact density and the approximated density was obtained usin
&2 log(q)�(1&q) (Kimura and Ohta, 1973). For
example, if q=100 the expected age is 5.1 and if q=10

the expected age is 9.3. In contrast to this, it is seen that
the mode of the approximated distribution and that of
the exact distribution are close to each other for both
q=10 and q=100.

Several variables have particular interest: (1) The age
of the mutation. We found an expression for the distribu-
tion of the age of the mutation, T� , in a general
demography, and we showed that the expected age of the
mutation is finite for any b>0 in the example discussed
above. In contrast, the expected age is infinity under an
assumption of constant population size (corresponding
to b=0). This is illustrated in Fig. 4. (2) The time,
U� (2), until a MRCA of subpopulation D. The expected
age was shown to be finite for all values of b�0 (Fig. 4),
and the ratio of the expectation of T� to that of U� (2)
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figure shows the density of the time, in units of qN generations, until a
nder the exact coalescent. Although the frequency is as high as 100 the
her peak than the approximated curve. 104 simulations were performed
g (35).
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FIG. 3. The approximation versus the exact coalescent, q=10. T
MRCA of the population of the rare alleles under the approximation and
104 simulations were performed to obtain the exact density and the appr

tends to one as b tends to infinity. For small values of b
the ratio becomes arbitrarily large.

APPENDIX

Proof of Lemma 1. The Markov property of A( j),
j=0, 1, ..., k, follows from the Markov property of the
reversed chain A( j), j=k, k&1, ..., 0 (indices decreasing)
proven in Wiuf and Donnelly (1999). Corollary 1 in
Wiuf and Donnelly (1999) gives (3) and the transi-
tion probabilities can be found from Lemma 2 and
Corollary 4.
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Proof of Theorem 1. Consider mn such that mn�n
and qnmn � x. It follows that mn � � because qn � 0,
and mn�n � 0 because kn � �. From here on subscript n
igure shows the density of the time, in units of qN generations, until a
well under the exact coalescent. There are hardly any visual differences.

mated density was obtained using (35).

is dropped at mn and kn for notational convenience. Con-
sider (3). It can be rewritten as

Pn (A( j)=m)

=
1

( j+1)!
(n&m&1)(n&m&2) } } } (n&m&k+ j+1)

(n&1)(n&2) } } } (n&k+ j+1)

}
k(k&1) } } } (k& j) m(m&1) } } } (m& j)

(n&k+ j)(n&k+ j&1) } } } (n&k)
(k+1)

n

=
1

( j+1)!
(k+1)

n
F1F2 .
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There are k& j&1 terms in both the denominator and
the numerator in the first fraction, F1 , and there are j+1
terms involving k, m, and n, respectively, in the second
fraction, F2 .
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FIG. 4. Age of the mutation and time until a MRCA. The figure show
until a MRCA for various values of b=;q. Time is measured in units o
expected age of the mutation is infinity. As b increases the ratio between

We have km�n � x so that F2 � x j+1. Concerning F1

we find

log(F1)=& :
m+k& j&1

i=m+1

i
n

+ :
k& j&1

i=1

i
n

& :
m+k& j&1

i=m+1

:
�

r=2

1
r \

i
n+

r

+ :
k& j&1

i=1

:
�

r=2

1
r \

i
n+

r

,

using the series expansion of the logarithm. The sum of
the first two terms converges to &x. The absolute value
of the third term is easily seen to be bounded by

(m+k& j&1) m+k& j&1
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&(k& j&1)
n

log \1&
n +

�
k3

n2 (1+ f1 (m, k, n)), (48)
he expectation of the age of the mutation and the expectation of the time
generations. When b=0, the expected time to a MRCA is 2 while the

two expectations decreases toward a limit of one.

and the fourth by

&(k& j&1)
(k& j&1)

n
log \1&

k& j&1
n +

�
k3

n2 (1+ f2 (k, n)), (49)

where fi , i=1, 2, are functions that tend to zero under
the above conditions. Note that m and k& j&1 in
log(F1) are symmetric in the sense that

& :
m+k& j&1

i=m+1

ai+ :
k& j&1

i=1

ai=& :
m+k& j&1

i=k& j

ai+ :
m

i=1

ai ,
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where ai denotes the inner sum over r. Thus, Eqs. (48) and
(49) also apply with k& j&1 replaced by m and vice versa.
It follows that the two terms are dominated by m3�n2 also.



The following suffices to prove that log(F1) converges
to &x: For all =, there exists an N such that either
m3�n2<= or k3�n2<= for each n>N (not necessarily the
same inequality for all n). To prove it choose N such that
k3m3�n4<=2 for all n>N. This can be done because
km�n � x and, thus, k3m3�n4

rx3�n. But then either
k3�n2<= or m3�n2<= which completes the proof.

Combining the results gives

1
q

Pn (A( j)=m) �
1

( j+1)!
x j+1 exp(&x)

which proves (5). Equation (6) is obtained similarly
using (4).

From the Markov property of the chain qnA( j) and
Eqs. (5) and (6) it follows that any finite vector
qn A(0), qn A(1), ..., qnA( j $) converges in distribution to a
vector A� (0), A� (1), ..., A� ( j $) which is Markov. Con-
vergence of finite dimensional marginals ensures con-
vergence of the whole process (see, e.g., Pollard, 1984).

Proof of Theorem 2. Equations (8) and (9) are
proven similarly to (5). From (1), (2), and (7) the condi-
tional probabilities in (10), (11), and (12) can easily be
derived. Together this proves convergence in distribution
of any finite dimensional vector, D(x1 �qn), D(x2 �qn), ...,
D(xj �qn), to D� (x1), D� (x2), ..., D� (xj), and con-
vergence of the whole process D(x�qn), x>0, to D� (x),
x>0, follows thereupon (see, e.g., Pollard, 1984). The
Markov property of D� (x), x>0, follows from the
Markov property of D(x�qn), x>0.

Proof of Theorem 3. The number of terms in F1 and
F2 (see the proof of Theorem 1 are independent of n and
the limit probability is easily evaluated. The rest follows
similarly to the proof of Theorem 1.

Proof of Theorem 4. Similarly to considerations in
Wiuf and Donnelly (1999).

Proof of Theorem 5. The Markov property of
(U( j+1)�qn , qn A( j)), j�0, follows easily from the
Markov property of A( j), j�0, and that A( j), j�0, and
Vh , h�2, are independent. To prove (18) we consider the
finite dimensional conditional distributions of
U( j+1)�qn , j�0, given the qn A( j), j�0. For reasons of
simplicity we consider the one-dimensional case only. Let
m and l be such that l<m�n, qnm � x and qn l � y. It

74
follows that m, l � � because qn � 0, and m�n, l�n � 0
because kn � �. On the event [A( j)=wx�qn x], U( j+1)
=Vn+ } } } +Vwx�qnx+1 #Twx�qnx . Further, Twx�qnx is
independent of qnA( j). Next we prove that Twx�qnx
converges to a degenerate variable. Note that
En (Twx�qnx �qn) � 2�x and Var(Twx�qnx �qn) � 0. The last
statement follows from

Varn (Vm+ } } } +Vl+1)=8 :
m

h=l

1
h2&

4
m2&

4
l2+

8
m

&
8
l

(Tavare� et al., 1997), and

1
q2

n { :
m

h=l

2
h2&

1
m2&

1
l2+

2
m

&
2
l=

=
n
k2 |

m�n

l�n

2
z2 dz+

2n2

k2m
&

2n2

k2l
+O(1�l )=O(1�l ).

The variables Twx�qnx , n�2, can be constructed such that
all of them are defined on the same probability space. If
so done the above equation proves that the series Twx�qnx ,
n�2, converges to 2�x in L2-norm, hence also in dis-
tribution. In conclusion, P(U� ( j+1)=2�x | A� ( j)=x)
=1 which proves (18). The Markov property of
(U� ( j+1), A� ( j)), j�0, follows from that of
(U( j+1)�qn , qn A( j)), j�0.

Proof of Theorem 6. The equation *(s; a, q)=*(s; a)
follows from (24). In allowing for variation in population
size, one can either rescale the coalescent rates, and keep
the mutation rate constant over time, or keep the coales-
cent rates constant and rescale the mutation rate
(Griffiths and Tavare� , 1994). In this proof we rescale the
mutation rate and keep coalescent rates constant. The
times between coalescent events (conditional on the
event E only, not M) are thus described by the usual
coalescent model, and the results obtained in Section 3
apply. The relation between time, t$, in setup (A) with
constant coalescent rates and real time, t, in setup (B)
with variable coalescent rates is given by

4(t; :)=t$. (50)

Time variables in setup (A) are marked. For simplicity we
consider only the two-dimensional marginals (A(0), A(1))
and (U$(1), U$(2)). Let U$ and A be short for (U$(1), U$(2))
=(qn u$1 , qn u$2) and (A(0), A(1))=(wx0 �qn x , wx1�qn x),
respectively. Apply Bayes' theorem to obtain

Pn (U$ | M, A)=
Pn (M | A, U$)

Pn (M | A)
Pn (U$ | A).
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According to Griffiths and Tavare� (1994), %(t$)=
%*(t$; :) and the probability of M conditional on A and
U$ is given by



Pn (M | A, U$)r1&exp {&|
qnu $1

qnu $2

%(t)�2 dt=
r

%
2 |

qnu $1

qnu $2

*(z; :) dz, (51)

where r indicates that only first-order terms in % are
taken into account. Applying (51) and the continuity of
* (which follows from that of &)

Pn (U$ | M, A)==
Pn (M | A, U$)

En[Pn (M | A, U$) | A]

_Pn (U$ | A) � Pn (U$ | A).

The relation between A( j) and U$( j+1) follows from
Theorem 5. Using (50) and (24) we find

|
U�( j+1)

0

1
&(z; a)

dz=U$( j+1)=
2

A� ( j)

as desired. The Markov property follows from that of
(U( j+1)�qn , qn A( j)), j�0, given M. The proof that the
last process is Markov is proven similarly to the proof
given in Theorem 5 that (U( j+1)�qn , qn A( j)), j�0
(conditional on E only), is Markov.

Proof of Theorem 7. Similarly to Theorem 6. The
Markov property of A� ( j), j�0, follows from the
Markov property of (U� ( j+1), A� ( j)), j�0, and the
relation between U� ( j+1) and A� ( j) given in
Theorem 6.

Proof of Corollary 1. Follows from Theorems 6
and 7.

Proof of Corollary 2. Conditional on U� (1) and
U� (2), T� is uniform on U� (1)&U� (2) because the
mutation process is Poisson with constant rate.
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