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1. INTRODUCTION

Suppose we examine a sample of chromosomes at a
given locus and find that some subset of them shares a
particular mutation, which is assumed to have arisen
only once in the population's evolutionary history. This
paper concerns the structure of the genealogical tree
which describes the ancestral relationships among the
subsample carrying the particular mutation, under the
assumption that the mutation is neutral.

The relationship between genealogical structure and
patterns of genetic variation is now well established.
Indeed, so-called ``coalescent methods,'' which exploit
this relationship, are proving to be a powerful tool in the
modelling and statistical analysis of molecular genetic
data from within species. See, for example, Donnelly and
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Tavare� (1995) or Hudson (1990) for reviews. In the
special setting considered here, aside from its inherent
interest, an understanding of the appropriate genealogy
is seen as an important first step in understanding the
patterns of variability to be expected at loci linked to the
one at which the mutation occurred, or in understanding
the distribution of the size of the chromosomal regions
around the mutation site shared, identical by descent,
between the chromosomes in the subsample.

In addition to population modelling, two important
classes of statistical questions arise from data of the
sort we are considering. The first relates to the uses of
variability at linked loci (so-called inter-allelic variability)
to estimate the age of the mutation, or to examine hypo-
theses about the demographic history of the population
in which it is found. The second (related) class of ques-
tions arises in studies of the patterns of linkage disequi-
librium at nearby loci, and the extent to which these are
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informative on aspects of population history. Our aim
here is to provide a rigourous study of the genealogy of
the alleles carrying the mutation. This should then sub-
sequently provide a solid base for the development of
efficient inference techniques for statistical questions such
as those just described.

One further motivation for this study comes from the
setting in which the mutation results in a predisposition
to a particular disease. Here there are also applications to
gene mapping, and subsequent positional cloning. After
linkage to a particular region has been established,
relevant data for fine mapping might consist of the
lengths of chromosomal segments shared between affected
individuals, with the goal of inference about the location
of a posited ``disease mutation'' (under specific assump-
tions about population history). The results here, which
assume that the mutation is neutral, may not be directly
applicable to this problem, and we aim to consider the
selected case elsewhere. Nonetheless, rigourous results in
the neutral case may give useful intuition more generally.
Further, approximate methods developed for the general
setting might usefully be ``tested'' by comparing their
predictions, in the special case of neutrality, with results
given here.

One specific aspect of the genealogy of the subsample
is the age of the mutation. We derive the distribution of
this, conditional on the number of sampled alleles carry-
ing the mutation. Kimura and Ohta (1973) used diffusion
approximations to derive the mean and variance of the
age in the case in which the sample coincided with the
whole population. Slatkin and Rannala (1997) developed
an approximate analysis in which they derived a maxi-
mum likelihood estimator for the age of the mutation on
the basis of inter-allelic variability. One very simple
special case of their analysis corresponds to a neutral
mutant in which the estimation is based only on the
fraction of alleles in the sample carrying the mutation. In
the Discussion we compare their estimator in this setting
with the formula (exact within the coalescent frame-
work) for the mean age of the mutation. Particularly
when the mutation is rare (frequency less than 0.2 say) in
the sample, the Slatkin�Rannala estimator is smaller
than the conditional mean age, with a relative under-
estimation by up to a factor of 4 or so for plausible
frequencies of the mutant allele. Approximations related
to those employed in Slatkin and Rannala (1997) are
used in assessing likely levels of linkage disequilibrium in
Thompson and Neel (1997), for example.
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Throughout, we adopt the coalescent as an exact
description of the genealogy of the population (or equiv-
alently of samples from it). The approximation is good
provided that the population is large (Kingman, 1982b).
one view is that our analysis is exact for the Moran
model of demography (Moran, 1958). Another is that the
coalescent approximation is effectively equivalent to the
classical diffusion approximations in population genetics.
In the coalescent approximation time is measured in
units of N generations, where N is the (variance) effective
number of chromosomes in the population (Kingman,
1982b).

To fix some notation, we consider the setting in which
we sample n chromosomes from the population. At a
particular locus, the sample is divided into two sub-
samples D and C of size i and k#n&i, respectively, with
the property that all of the chromosomes in D (and none
of those in C) share a particular mutation. We assume in
addition that the mutation is neutral, and that it has
arisen only once in the history of the population. This
would be reasonable for a mutation event (such as a
single base change) for which the a priori mutation rate
is very small. We consider this setting. In fact, formally,
we examine the limit as the mutation rate tends to zero,
conditional on a mutation having occurred.

We proceed in several stages. The event F that exactly
those chromosomes in D share the mutation can be
decomposed into two parts. The first of these, which we
denote by E, is the event that all the chromosomes in D

share a common ancestor before any of them shares a
common ancestor with a chromosome from C. The
second (assuming E) is that a mutation event, giving rise
to the mutation in question, occurred on the ancestral
lineage common to all of D between the time of the most
recent common ancestor (MRCA) of D and the time at
which D first shares an ancestor with C. We will denote
this latter event by M. It is evident that the conditioning
event F is equivalent to E & M.

Our approach is first to examine the effect of condi-
tioning on E, and then to condition on M. The condition-
ing on E affects only the jump chain of the coalescent for
the sample, and not the times between coalescent events.
In the next section we derive the topological structure of
the genealogy of D and C, jointly, back to the time of the
MRCA of D. We subsequently obtain the joint distribu-
tion of the times { and #, where { is the time back to the
MRCA of D and # is the time between this MRCA and
the first time at which any of D and C share a common
ancestor. The effect of the subsequent conditioning on M
is effectively like size-biased sampling: the mutation had
to occur during the time # and the probability of this (for
small mutation rate) is proportional to #, so it is more
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likely to have arisen in a genealogy in which # is large
than in one in which it is small. For most of the analysis
we assume a constant population size. This assumption
can be weakened, and we treat explicitly the particular



FIG. 1. Notation. In this example subsample D consists of i=5
individuals and subsample C of k=n&i=6 individuals. Time is
measured backwards with zero denoting present time. Subsample D

finds a MRCA at time {, and there are five ancestors to the whole
sample at that time, the ancestor to D and four ancestors to C. At time
{+#, the last line of descent of subsample D coalesces with an ancestral
line of C. This is the second coalescence event further back in time from
{, i.e., J=2 (this and the rest of the text concerns notation that will be
introduced later). Note that :=4+1=5. The genealogy G1 is below
the dotted line at time {, and G2 is above the dotted line at time {. The
mutation shared in D is marked with a dot. The time from the MRCA
of subsample D until the mutation event is denoted by ', and the total
time from the present back to the mutation event is denoted by T.

case of a population which has grown exponentially in
size to its current value.

Figure 1 illustrates the notation just described as well
as some of that introduced in subsequent sections.

Griffiths and Tavare� (1998) also consider the problem
of the distribution of the age of a mutant allele, amongst
other things. Their approach is different from the one we
adopt here. It cleverly exploits the marginal distribution
of the jump chain of Kingman's coalescent and so applies,
as do our results from Section 2, to any genealogical tree
in which each coalescence involves exactly two existing
lineages, with each possible choice of lineages to coalesce
being equally likely. In the light of our eventual interest
in statistical inference based on linked variation in this
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setting (for the age of the mutation, its location, or popu-
lation demography) we focus instead on the conditional
distribution of the (entire) genealogy of the mutant class.
One specific application is to results on the age of the
mutation (which of course agree with those of Griffiths
and Tavare� (1998), when specialised to the current setting,
and earlier of Kimura and Ohta (1973)). Stephens (1999)
uses an approach similar to that of Griffiths and Tavare�
(1998) in studying the age of the mutation for general
mutation rate.

2. THE STRUCTURE OF THE
JUMP CHAIN

In this section we examine the jump chain of the
coalescent, specifically the joint topological structure of
the ancestral trees of the subsamples D and C, condi-
tional on the event E. Saunders et al. (1984) discuss the
ancestry of nested subsamples in the coalescent in the
absence of specific conditioning. Slatkin (1996) also
contains a discussion of subsamples in the coalescent, but
there the analysis is not performed conditional on the
subsample size, as in our approach.

Recall (Kingman, 1982a) that the probabilistic struc-
ture of the coalescent may be decomposed into two
independent pieces. One of these is the jump chain of
the coalescent, that is, the topological structure of the
genealogical tree, which records which pairs of branches
coalesce at each coalescence event. The second part is the
sequence of times between coalescence events. The event
E described above, that all the chromosomes in D share
a common ancestor before any of them share a common
ancestor with a chromosome from C, depends only on
the jump chain of the coalescent. It follows that condi-
tioning on E affects only the jump chain.

Consider tracing, jointly, the number of ancestors of
the two subsamples, D and C, in the sample. Initially
these have i and k ancestors. Write qik, jl for the probabil-
ity that when the number of ancestors changes from i and
k, there will be j and l ancestors, respectively, of the two
subsamples. It follows from the structure of the coales-
cent that the conditional probability that a coalescence
will involve two ancestors from D, respectively C, is

qik, (i&1)k=
i(i&1)
n(n&1)

,

(1)

qik, i(k&1)=
k(k&1)
n(n&1)

,
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and

1&qik, (i&1)k&qik, i(k&1)=
2ki

n(n&1)



is the probability that one individual from each sub-
sample shares a common ancestor.

From (1) we can derive the probability Q(i, k) of the
event E. The quantity Q(i, k) is given by the following
recursion formula

(k+1)(k+i&1) Q(i, k)

=i(i&1) Q(i&1, k)+k(k&1) Q(i, k&1)

with boundary condition Q(1, k)=1, and k, i�1. This
recursion eventually leads to

Q(i, k)=
2(i&1)!

(i+1)(k+1)(i&1)

, (2)

where we have used the notation a(x)=a(a+1) } } }
(a+x&1).

Since there are a total of {(n)=n!(n&1)!�2n&1 different
topologies of a sample of size n, we have {(n) Q(i, k)=
(k+i)! k!(i&1)!�(i+1) 2k+i&2 different topologies
fulfilling the constraint which defines E.

Now consider the numbers of ancestors of the two
subsamples D and C conditional on the event E. Let us
first consider the jump chain until D has found a most
recent common ancestor. This jump chain has transition
probabilities rjl, j $l $ given by

rjl, ( j&1) l=
j( j&1) Q( j&1, l )

R( j, l )
=

j+1
l+ j

,

(3)

rjl, j(l&1)=
l(l&1) Q( j, l&1)

R( j, l )
=

l&1
l+ j

,

with

R( j, l )= j( j&1) Q( j&1, l )+l(l&1) Q( j, l&1)

and j>1 and l>1. The transition probabilities are asym-
metric in j and l due to the asymmetry in this conditional
model: the chromosomes in D must find a common
ancestor before coalescing with any chromosome ancestral
to C, whereas no such constraint applies to C.

Consider now the jump chain further back in time:
prior to the time of the MRCA of the chromosomes in D

the process evolves according to an unconditional coales-
cent model. When there is a jump, the probability that
the common ancestor to D is involved in the coalescence

186
event is given by 2�(l+1), if there are l+1 ancestral
individuals in total. Hence (3) can be extended to all j�1
and l>1, and describes the jumps in the history of the
subsample D until the MRCA to D is absorbed into the
FIG. 2. Conditional genealogies. Here i=2 and k=n&i=2.
Subsample D is labeled D1 and D2 , and subsample C is labeled C1 and
C2 . There are four different topologies where subsample D finds a most
recent common ancestor before any ancestor to subsample D coalesces
with any ancestor to subsample C. In three of these, D1 and D2 share
a common ancestor before C1 and C2 share one. Hence conditional on
E, the probability of this event is 3�4.

rest of the ancestral sample. Prior to this time we put
r0l, 0(l&1)=1, for l>1, with (0,1) being absorbing.

An illustration of the jump chain conditional on the
event E is found in Fig. 2.

Until further notice, we condition on E. Let us intro-
duce the following notation:

A(t)=number of ancestors to the entire sample t
generations before present,

AD ( t ) = number of ancestors to subsample D, t
generations before present,

T(m)=min[t | A(t)=m],

TD( j)=min[t | AD(t)= j],

A*( j)=A(TD( j)),

A*D(m)=AD(T(m)).

(This notation is similar to that of Saunders et al. 1984.)
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The Markov chain (AD(t), A(t)) counts the number of
ancestors to D and the whole sample at time t condi-
tional on E. The time TD( j) is the first time there are j
ancestors of D, and A*( j) is the number of ancestors of



the entire sample at this time. Similarly T(m) is the first
time there are m ancestors of the entire sample, and
A*D(m) is the number of ancestors of the subsample D at
this time. The independence of the jump chain and the
times between events in the coalescent means that the
A*D 's are independent of the times T( } ). The random
variables A* and A*D are related through

A*( j )=m � A*D(m)=j and A*D(m+1)=j+1.

(4)

All results below are derived conditional on AD(0)=i,
A(0)=n=k+i (in addition to the conditioning on E ),
and henceforth this will be suppressed in the notation.
The first lemma is effectively just a restatement of (3).

Lemma 1. The sequence A*D ( m ) , m=n , . . . , 1, is
Markov, with transition probabilities given by

P(A*D(m&1)= j&1 | A*D(m)= j)

=1&P(A*D(m&1)= j | A*D(m)= j)

=
j+1
m

for (m&1) 7 i� j�1, and

P(A*D(m&1)=0 | A*D(m)=0)=1

for j=0.

Proof. Note that the jump chain in (3) is given by
(AD(T(m)), A(T(m)))=(A*D(m), m), so that the result
follows from (3). K

The transition probabilities are thus independent of
the initial subsample sizes, and dependent on the present
sample only.

Lemma 1 implies that the probability of a path A*D(n),
A*D(n&1), ..., A*D(m) with A*D(n)=i and A*D(m)= j,
j�0, fixed is independent of the path. This has as a con-
sequence that all subtopologies describing the history of
a sample until time T(m) and conditional on A*D(m)= j
have an equal chance to occur. This is not true for the
part of the topology further back in time than T(m)
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(unless j=0).
The next lemma shows the distribution of A*D(m)+1

to be almost hypergeometric except that the outcomes 0
and 1 are pooled.
Lemma 2. The distribution of A*D(m), m=1, ..., n, is
given by

P(A*D(m)= j)=
\n&m

i& j + \
m

j+1+
\ n

i+1+
(5)

for j=1, ..., (m&1) 7 i, and

P(A*D(m)=0)=P(0)+P(&1),

with P( j) being the probability expression in (5) evaluated
at j.

Proof. If m=n then A*D(n)=i, which can be written
in the form above. Consider j�1 and m<n. From
Lemma 1 we have that A*D(n&1), ..., A*D(m) can be
considered as n&m draws without replacement from an
urn with initially i+1 white balls, n balls in total. Each
white ball drawn reduces by one the number of ancestors
of D, so that we require exactly i& j white balls and
n&m&i+ j other balls to be drawn for A*D(m)= j. The
probability of this is straightforward, for example, from
the hypergeometric distribution, and rearrangement then
gives the desired probability, (5). Since the sum of the
probabilities of all outcomes is one, it must be that the
probability for j=0 is given by P(0)+P(&1). K

Now define a[x] #a(a&1) } } } (a&x+1). Then we
have:

Corollary 1. The sequence A*( j), j=i, i&1, ..., 0,
is Markov, with transition probabilities given by

P(A*( j&1)=l | A*( j)=m)=\ l
j+ \

m
j+1+

&1

,

for l= j, j+1, ..., m&1.

Proof. That A*( j) is Markov follows from (4) and
Lemma 1, and using (4) and the Markov property we
have

P(A*( j&1)=l | A*( j)=m)

=P(A*D(l )= j&1 | A*D(l+1)= j) P(A*D(l+1)
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= j | A*D(m)= j).

Applying Lemma 1 gives the desired result. K



Corollary 2. The distribution of A*( j), j=0, ...,
i&1, is given by

P(A*( j)=m)=
\n&m&1

i& j&1 + \
m

j+1+
\ n

i+1+
for m= j+1, ..., j+k. For j=i we have A*(i)=n.

Proof. From (4) and Lemma 1 we have

P(A*( j)=m)=P(A*D(m)= j, A*D(m+1)= j+1)

=
j+2
m+1

P(A*D(m+1)= j+1),

and the result follows from Lemma 2. K

Two of the distributions in Corollary 2 are of par-
ticular interest: The first is the distribution of the number
of ancestors when the subsample D has found its MRCA
( j=1), and the other is the distribution of the number of
ancestors when this last ancestral line of D is absorbed
into the rest of the ancestral sample ( j=0).

Corollary 3. The mean and variance of A*( j), j=
0, ..., i, are given by

E(A*( j))=
(k&1)( j+2)

i+2
+ j+1,

and

Var(A*( j))=
(k&1)(k+i+1)(i& j)( j+2)

(i+2)2 (i+3)
.

Proof. Simply evaluate the mean and variance of the
distributions in Corollary 2. K

Lemma 3. Conditional on the event [A*(1)=:], A*D
forms a Markov chain, with transition probabilities

P(A*D(l&1)= j&1 | A*D(l )= j, A*(1)=:)=
j&2

l&:&1

for l=:+2, ..., n and j=2, ..., (l&:+1) 7 i. If l=:+1
then j must be 2, and then with probability one, A*D(l&1)
=A*D(:)=1.

Proof. Let ;( j, l ) be the number of paths of A*D with
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initial subsample sizes j and l& j, respectively, that fulfil
A*(1) = :. Then we have ;( j, l ) = ;( j&1, l&1)+
;( j, l&1), and moreover ;( j, l ) is given by the number of
ways l&:&1 coalescent events can be arranged into two
groups, one of size j&1. The final coalescent event is
fixed, reducing the subsample size from 2 to 1. Since

P(A*D(l&1)= j&1 | A*D(l )= j, A*(1)=:)

=;( j&1, l&1)�;( j, l )

(the remark below Lemma 1), the result follows by
evaluating the quotient. K

In a close analogy with Lemma 2, the conditional
distribution of A*D(l ) given A*(1) can also be derived
explicitly:

Corollary 4. The conditional probability of A*D(l)
=j given A*(1)=: is given by

P(A*D(l )= j | A*(1)=:)=
\n&l

i& j + \
l&:&1

j&2 +
\n&:&1

i&2 +
for l=:+2, ..., n and j=2, ..., (l&:+1) 7 i.

Proof. Similar to the proof of Lemma 2, with n&l
draws from an urn with initially i&2 white balls and
n&:&1 balls in total. K

3. THE SAMPLE COALESCENT
CONDITIONED ON E

As noted above, the event E depends only on the jump
chain of the coalescent, and is independent of the respec-
tive waiting times Wn , Wn&1 , ..., W2 between coalescent
events in the ancestry of the sample (where Wk is the time
during which the sample has exactly k ancestors). It
follows that conditional on E, these waiting times are still
independent exponential random variables with E(Wk)
=2�(k(k&1)). In particular they are independent of A*D .

To handle the waiting times, we introduce the follow-
ing notation, which is illustrated in Fig. 1. Let G be the
genealogy of the whole sample until its most recent com-
mon ancestor. Write G in the form G=(G1 , G2), where
G1 is the genealogy of the sample until time {#TD(1),
i.e., until the subsample D has found a most recent com-
mon ancestor. Write G2 #G&G1 for the genealogy of
the entire sample further back in time than {. Let # be the
branch length of the branch from the MRCA of D until
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this line is absorbed in the rest of the ancestral sample,
that is, #=TD(0)&TD(1)=TD(0)&{. Finally let :=
A*(1) be the number of ancestors to the whole sample at
time {, and J the number of coalescent events in the time



interval ({, {+#], that is, the number of coalescence
events in the ancestry of C between the MRCA of D and
the first time at which D and C share an ancestor (includ-
ing the coalescence event which causes them to share an
ancestor).

The following list of basic distributional results now
follows from the structure of the coalescent and the
conditional independences described above. We have
written ``t'' for ``has the same distribution as,'' and ``|''
for ``conditional on'':

G1 and G2 are conditionally independent, given :. (6)

{ | :tWn+ } } } W:+1 . (7)

# | (:, J)tW:+ } } } +W:&J+1 . (8)

The distribution of J can be derived using Corollary 2
with n=:, i=1, and j=0:

P(J=x | :)=
2(:&x)
:(:&1)

, x=1, ..., :&1. (9)

There are two special cases: For i=1 we see that {=0,
and that # is the time until a single line of descent is
absorbed. And for i=n&1 we see that :=2 with
certainty, and # is the waiting time until there are first two
ancestors of the entire sample. In that case all coalescence
events (up to {) happen in the subsample D, but with rate
( j+1) j�2, if the subsample size is j.

Below we list a number of results on moments that will
be used in the following. All expressions are derived by
conditioning on : and (possibly) on J, and then using
well-known results on moments of waiting times from
the coalescent model. Proofs are straightforward, but
cumbersome, and we omit them.

Expressions concerning {:

E({ | :)=2 \1
:

&
1
n+ ,

E({2 | :)=8 :
n

j=:

1
j2+

8
n

&
8
:

&
8

n:
, (10)

E({)=
i&1

n
.

Expressions concerning #:

E(#)=
i+1

,
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E(#2)=4 \ n
i+1+

&1

:
k+1

m=2

1
m \n&m

i&1 + ,
E(#3)=24
(i+1) i
n(n&1)

&24 \ n
i+1+

&1

:
k+1

m=2

1
m \n&m&1

i&2 + :
m

j=1

1
j
.

(11)

The expression for the third moment of # is valid for i>1
only. The result for i=1 is obtained by replacing the
double summation by (1�n) �n

j=1 (1� j ). Moments of #
conditional on : can be derived from (11) by letting i=1,
k=:&1, and n=:.

4. THE EFFECT OF CONDITIONING
ON THE MUTATION

In the previous section we described the genealogy of
a subsample D in a larger sample with the constraint, E,
that the chromosomes in D were forced to find a most
recent common ancestor before coalescing with any
chromosome ancestral to the rest of the sample. We will
now impose the condition that a single mutation occurred
on the branch #, and that no other mutations have occurred
(at the particular locus in question, in the history of the
sample). In doing so, we will assume that the mutation
rate is very small. Formally, we will consider the limiting
case in which the mutation rate tends to zero.

In the coalescent approximation, mutations occur on
the branches of the tree at the points of a Poisson process
with rate %�2: conditional on a branch length w, the
number of mutations on that branch has a Poisson distri-
bution, Po(w%�2) with mean w%�2, independent of the
locations of mutations elsewhere on the tree. In approxi-
mating a real population with N chromosomes at the
locus in question, %=2N+, where + is the chance of a
mutation at the locus per chromosome per generation.

Denote by M the event that there is a single mutation
along #, and by ' the time measured from { until the
mutation arises (see Fig. 1). Then we have

P(M | G)=P(M | #)=
%
2

# exp[&#%�2], (12)

and

G1and the triple (G2 , ', M) are conditionally

independent given :, (13)

G1 and G2 are conditionally independent given (:, M).
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(14)

In particular, (13) and (14) are valid with G1 and G2

replaced by { and #, respectively. The properties (13) and



(14) are both consequences of (6) and the assumption
that mutations follow a Poisson process on the tree.

We will derive results about the waiting time until the
mutant arises in the sample as well as results related to
the number of ancestors to the subsample D conditional
on M. The method of proof consists of conditioning on
the number of ancestors : when subsample D finds a
most recent common ancestor, using (13) and (14), and
applying the results from the previous two sections. Most
parts of proofs consist of evaluations of elementary and
finite sums and details of these will be omitted. Moreover
we have dropped lim% � 0 in front of expressions, where it
formally should be, and merely indicated by � when the
limit for % � 0 is taken. Finally we have adopted the
following notation for densities: all density functions are
denoted by f and distinguished by the variable for which
f is a density; that is, f (#) is the density of # and f ({) the
density of {.

We will first consider the jump chain A*D , conditional
on M. From Corollary 4 we know that conditional on
A*(1)=:, A*D forms a Markov chain, and this turns out
to be of importance.

Lemma 4. Conditional on M, the sequence A*D(l ),
l=n, ..., 2 is Markov with transition probabilities given by

P(A*D(l&1)= j&1 | A*D(l )= j, M)=
j

l&1
(15)

for l=3, ..., n and j=2, ..., (l&1) 7 i, and with the conven-
tion that state j=1 is absorbing.

Proof. Consider the case l>3 and 2> j:

P(A*D(l&1)= j&1 | A*D(l )
= j, A*D(l+1)= j $, ..., A*D(n)=i, M)

=

P(A*D(l&1)= j&1, A*D(l )= j,
A*D(l+1)= j $, ..., A*D(n)=i, M)

P(A*D(l )= j, A*D(l+1)= j $, ..., A*D(n)=i, M)

#
P1

P2

,

say. Conditioning on :, using (13) and Lemma 3 we get

P1= :
l& j+1

:=2

P(A*D(l&1)= j&1 | A*D(l )= j, :) } } }

P(A*D(l )= j | A*D(l+1)= j $, :)

_P(A*D(n)=i | :) P(M | :) P(:)

( j&2)( j&1) } } } (i&2)(l&:& j+2)
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= :
l& j+1

:=2

_(l&:& j+3) } } } (k&:+1)
(l&:&1)(l&:) } } } (n&:&1)

_P(M | :) P(:).
A similar equation holds for P2 , and note that P1 and P2

depend on j and l only, not on j $, etc. If l�3 and j=2
the calculations are similar, but P1 turns out to consist
of just one term. If l=3 and j=2 then it is easily seen
that P1 �P2=1. Hence the conditional jump chain is
Markovian. Either by simplifying P1 and P2 or by straight-
forward calculation of P(A*D(l&1)= j&1 | A*D(l )= j, M)
using (13), (11), Lemma 3, and Corollary 4 we get (here
l>3 and j>2)

P1=C(n, i) :
l& j+1

m=2

(m&1) \l&m&2
j&3 +=C(n, i) \ l&2

j&1+ ,

and

P2=C(n, i) :
l& j+1

m=2

(m&1) \l&m&1
j&2 +=C(n, i) \l&1

j + ,

where C(n, i) is a constant dependent on n and i only.
Hence P1 �P2= j�(l&1). Similarly for l�3 and j�2,
and if l=3 and j=2 then P1 �P2=1=2�(3&1). This
completes the proof. K

If we compare Lemma 1 and Lemma 4 we see that con-
ditional on M, the probability that the next coalescence
event is among ancestors to D is less than the probability
of the equivalent event in the chain conditioned only on
E. Again, this is to be expected, since the probability of
M is increasing in :.

The transition probabilities in Lemma 4 are very
similar to those obtained earlier in Lemma 1. Exactly as
in Corollary 2, one can then obtain the marginal distri-
bution of A* conditional on M. We will not do so in
general, but focus instead on two special cases of interest.
The derivations are analogous to those given earlier and
are omitted. The first concerns the distribution, condi-
tional on M, of :#A*(1), the number of ancestors to the
sample when D finds a most recent common ancestor (at
time {=TD(1)). We have

P(: | M)=(:&1) \n&:&1
i&2 + \n&1

i +
&1

(16)

for i=2, 3, ..., n&1, and :=2, 3, ..., k+1. Further,
conditional on M, the mean of : is (Corollary 3)

E(: | M)=
2n

i+1
.
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Hence (:&1) | M is distributed like A*(0) in a model
with i&1 individuals in D and n&1 in total. Com-
parison with Corollary 3 shows that the mean of : condi-



tional on M is about two-thirds of its unconditional
mean. This decrease is not surprising, since the probabil-
ity of M is increasing in #, and the distribution of # is
stochastically increasing as : decreases.

Next, consider :*, defined to be the number of
ancestors of the entire sample at the time the mutation
occurs. Suppose :#A*(1)=l. Then the probability that
the next event is a mutation on the lineage ancestral to D,
rather than any of the possible coalescences, is

%
2 \

%
2

+
l(l&1)

2 +
&1

.

Also,

P(M | :=l)r
%
2

E(# | :=l )=
%
l

from (11) (with i=1, n=l ). Thus, the probability,
conditional on M, that the next event is a mutation on
the lineage ancestral to D, rather than a coalescence, is

%
2 {\

%
2

+
l(l&1)

2 + P(M | :=l)=
&1

�
1

l&1
. (17)

Now, for the moment, redefine A*D so that A*D takes the
value 0 when the mutation shared by D occurs. It follows
from (17) that the transition probabilities (15) still
apply, with j=1, l>1. Then, again by analogy with the
derivation of Corollary 2,

P(:* | M)=\n&:*
i&1 + \n&1

i +
&1

(18)

for i=1, 2, ..., n&1, and :*=2, 3, ..., k. Note that ( n&:*
i&1 )

is the number of ways n&:* coalescent events can be
partitioned into i&1 subsets, so that since the extension
of Lemma 4 to the case j=1 just given ensures that all
allowable sample paths of the jump chain back to the
mutation have equal probability, the result (18) would
also follow by a counting argument. The distribution
(18) was originally due to Stephens (1999).

The distribution (18) has mean (Corollary 3)

E(:* | M)=1+
n

i+1
, (19)

Conditional Genealogies
and variance

Var(:* | M)=
ni(n&i&1)

(i+1)2(i+2)
. (20)
Let :0 be the number of ancestors when the last ancestral
line of subsample D is absorbed into the rest of the
sample at time {+#=TD(0). The distribution of :0

conditional on M is more complex,

P(:0 | M) �
�k+1

:=2 E(# | :, :0) P(: | :0)
E(#)

P(:0)

as in the argument above for the conditional distribution
of :, with an additional conditioning on :. Note that

P(:0 | :)=P(J=:&:0 | :),

and so by using (8) and (9) we have

P(:0 | M)=2 \n&1
i +

&1

{\n&:0&1
i&1 +

& :
k+1

m=:0+1

:0

m \n&m&1
i&2 += (21)

for :0=1, ..., k. The mean of :0 , conditional on M, is

E(:0 | M)=
2n

3(i+1)
+

1
3

.

Consider now the distribution of J conditional on :
and M. By applying Bayes' formula, and conditioning on
#, we have

P(J | M, :)=|
#

P(M | :, J, #)
P(M | :)

dP(# | :, J) P(J | :)

�
E(# | :, J)

E(# | :)
P(J | :).

Using (11) and (9) we get

P(J=x | M, :)=
2x

:(:&1)
(22)

for x=1, ..., :&1. That is, J | M, : t :&J | :. Thus the
effect of also conditioning on M is to increase stochasti-
cally the distribution of J relative to its distribution
conditional only on :. Again, this is to be expected.

Consider now the time, denoted by ' (see Fig. 1), from
{ back until the mutation event giving rise to the muta-
tion shared in D. Conditional on M and # we have as a
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consequence of the mutation process being Poisson that
' is uniformly distributed on #:

' | (M, G)t' | (M, #)tU(0, #). (23)



The density function of ' can be derived as

f (' | M)=|
�

'
f (' | M, #) dP(# | M)

=
1

P(M) |
�

'
P(M | #)

dP(#)
#

�
1

E(#)
P(#>')

=
n

i+1
P(#>'), (24)

where we have used (23) and (11). The density of ' is
strictly decreasing from the value n�(i+1) at '=0, and
tends towards zero for ' � �. The probability P(#>')
can be found by conditioning on : and J and using
results on tree heights from the coalescent (Tavare� 1984,
p. 131ff). Here we will not be concerned with the exact
form of the distribution but report the first two moments
only,

E(' | M)=|
#

E(' | M, #) dP(# | M)

=
1
2

E(# | M) �
1
2

E(#2)
E(#)

=2 \n&1
i +

&1

:
k+1

m=2

1
m \n&m

i&1 + , (25)

where we have used (23), (12), and (11). Similarly

E('2 | M) �
1
3

E(#3)
E(#)

=
8i

n&1
&8 \n&1

i +
&1

:
k+1

m=2

1
m \n&m&1

i&2 + :
m

j=1

1
j
.

(26)

For i=1 the second moment is obtained by replacing the
double summation in (26) by (1�n) �n

j=1 (1� j).
There are two special cases we will mention. The first

one is when i=n&1. Here we have that E(' | M)=1 and
E('2 | M)=2. This is as it should be, because the case
reduces to considering the waiting time until a mutation
occurs in a sample of size 2 (given that it occurs). The
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other case is i=1, and here we have

E(' | M)r
2

n&1
log(n&1) and E('2 | M)r

8
n&1

.

In this case, the variable ' is the time until a mutation
arises in a specific line conditional on its occurrence.

The distribution of { conditional on M can also be
expressed as a weighted sum of waiting time distributions
from the coalescent model,

f ({ | M)= :
k+1

:=2

f ({ | :) P(: | M) (27)

according to (14) and with P(: | M) given by (16). An
expression for f ({ | :) can be found from Tavare� (1984,
p. 131ff), leading to an explicit expression for f ({ | M).
Again we will be more concerned with moments of { | M
than of the exact distribution. Using (27), (16), and (10)
we find that

E({ | M)= :
k+1

:=2

E({ | :) P(: | M)

=
2i

n&1
&

2
n

&2 \n&1
i +

&1

:
k+1

m=2

1
m \n&m&1

i&2 + ,

(28)

and

E({2 | M)

=
8(k&1)
n(n&1)

&
8i

n&1

+8 \n&1
i +

&1

{n+1
n

:
k+1

m=2

1
m \n&m&1

i&2 +
& :

k

m=2

1
m \n&m&1

i&1 +=
+8 :

n

m=2

1
m2&8 \n&1

i +
&1

:
k

m=2

1
m2 \n&m&1

i + .

(29)

Moreover, using (13) and conditioning on : gives

E({' | M)= :
k+1

:=2

E({ | :) E(: | M, :) P(: | M)

=
1
2

:
k+1

:=2

E({ | :)
E(#2 | :)
E(# | :)

P(: | M).

Applying (11) with i=1, k=:&1, and n=: and (10) we
get

&1 k+1

Wiuf and Donnelly
E({' | M)=4 \n&1
i + :

m=2

1
m \n&m&1

i&2 +
_ :

m

j=2

1
j
&

2
n

E(' | M). (30)



For i=1, {=0 and (28), (29), and (30) reduce to zero,
and for i=n&1 we have E({ | M)=1&2�n and E({')=
1&2�n. The mean and variance of T={+' (Fig. 1) can
be derived using (25), (26), (28), (29), and (30). For
example,

E(T | M)=
2i

n&1
&

2
n

+2 \n&1
i +

&1

:
k+1

m=2

1
m \n&m&1

i&1 + .

This is also in Griffiths and Tavare� (1998) and Stephens
(1999). Later we will give the limiting values of E(T | M)
and Var(T | M) for n � � and i�n � f.

The joint density of ({, #) conditional on M can be
obtained by conditioning on : and applying Bayes'
formula (analogously to calculations above):

f ({, # | M) �
#

E(#)
:

k+1

:=2

f (# | :) f ({ | :) P(:). (31)

The density f (# | :) can be obtained by conditioning on J
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FIG. 3. Density of T in units of Ne (the effective number of chromosom
fraction f =i�n takes the values 0.025, 0.05, 0.1, and 0.2.
and using Tavare� (1984, p. 131ff). From (31) we can
derive the joint density of ({, ') if we apply (23):

f ({, ' | M)=|
�

'
f ({, # | M)

d#
#

.

Inserting (31) then gives

f ({, ' | M)=
1

E(#)
:

k+1

:=2

P(#>' | :) f ({ | :) P(:). (32)

Finally we will derive the density function for T={+'
from (32) by convolution. We have

f (T | M)= :
k+1

:=2
|

T

0
P(#>T&{ | :) f ({ | :) d{

P(:)
E(#)

.

(33)

Since P(#>t | :) can be written as a weighted sum of
exponentials, an explicit expression for the density of T,
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es) in a population of constant size. The sample size is n=1000 and the



f>
ing
FIG. 4. Mean and variance of the age of the mutant allele. For
approaches 1. Also shown is the mean E({+#)=2f where the condition

the time since the mutation event, can be obtained from
Tavare� (1984, p. 131ff). The density is zero for T=0 and
tends to zero for large T. Figure 3 plots the density for a
large sample size, n=1000, and various values of i.
(Recall that time is measured in units of Ne generations,
where Ne is the (variance) effective number of chromo-
somes in the population.) Figure 4 gives the mean and
variance of the age of the mutation, in the limit of large
sample size, as a function of the proportion of chromo-
somes in the sample carrying the mutation.

The results on the density and the moment of T are
independently obtained by Griffiths and Tavare� (1998,
Eqs. (5.6) and (5.8)).

5. LIMITING BEHAVIOUR FOR LARGE
SAMPLES
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In this section we will discuss the behaviour of various
quantities derived above in the limit of large sample
size: n � � with f denoting the limiting proportion of
0.5 the variance is almost constant, tending to 4?2�3&12r1.16 as f
is on the event E, but not on M.

chromosomes in the sample carrying the mutation:
i�n � f. Numerical evaluations show the approximations
derived here to be quite good even for small sample sizes.

Let us start by noting that

\n&x
i& j + \

n
i+

&1

=
i[ j](n&x)[i& j]

n[ j](n& j)[i& j]
� f j (1& f )x& j,

(34)

where we have defined a[x] #a(a&1) } } } (a&x+1).
The technique of proof will in all cases be to pass to the

limit using (34), and then evaluate the infinite series that
result. The limit operation is interchangeable with
summation in all cases, because all terms in summations
are positive and moreover all summations are uniformly
bounded in n and i.

Equations (34), (16), and (21) immediately give

2 :&2

Wiuf and Donnelly
P(: | M) � (:&1) f (1& f ) , (35)

for :=2, 3, ... . That is, (:&2) | M has a negative bino-
mial distribution with parameters 2 and 1& f. Further,



P(:0 | M) � 2f (1& f ):0&1

+
2:0 f 2

(1& f )2 \log( f )+ :
a0

j=1

1
j

(1& f ) j+
=2 f (1& f )a0&1&

2:0 f 2

(1& f )2 |
1& f

0

x:0

1&x
dx,

for :0=1, 2, ... . Some moments of : | M and :0 | M are

E(: | M) �
2
f

, Var(: | M) �
2
f \

1
f

&1+ ,

and E(:0 | M) �
2

3 f
+

1
3

.

The limiting distribution of :* conditional on M is

P(:* | M) � f (1& f ):*&2,

that is, :*&1 is geometrical with parameter 1& f. The
mean and variance are given by

E(:* | M) � 1+
1
f

and Var(:* | M) �
1
f \

1
f

&1+ .

Of more interest is the distribution of T. From (25),
(26), (28), (29), and (30) we derive

E(' | M) � &
2 f

(1& f )2 (log( f )+1& f ),

E('2 | M) �
8 f

1& f
+

8 f 2

(1& f )2 |
1& f

0

log(1&x)
x(1&x)

dx,

E({ | M) � 2 f +
2 f 2

(1& f )2 (log( f )+1& f ),

E({2 | M) �
4
3

?2&
8 f

1& f
&

8 f (2 f &1)
(1& f )2 log( f )

+8 |
1& f

0

log(1&x)
x

dx,

E({' | M) �
4 f 2

(1& f )2 log( f )

&
4 f 2

(1& f )2 |
1& f

0

log(1&x)
x(1&x)

dx,
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which in turn give us the mean and variance of T :

E(T | M) � &
2f

1& f
log( f ), (36)
and

Var(T | M) �
4
3

?2+
8 f

1& f
log( f )

&
4 f 2

(1& f )2 log2( f )+8 |
1& f

0

log(1&x)
x

dx.

(37)

The moments (36) and (37) were first derived by
Kimura and Ohta (1973) using the diffusion approxima-
tion and recently the first moment (36) was derived by
Griffiths and Tavare� (1998). Figure 4 shows plots of
E(T | M) and Var(T | M), and the mean is compared
with E({+#), which is the time until the sample D first
shares an ancestor with C (evaluated conditional on E but
not on M). From (10) and (11) we have E({+#) � 2 f.

6. EXPONENTIALLY INCREASING
POPULATION SIZE

As noted in a previous section, the results on the jump
chain are independent of the population size. However,
conditioning on the existence of the mutation will have
effects that depend on the changes in the population size.
In this section we will derive some results in a framework
where the population size is exponentially increasing
forwards in time. Mutation will still be assumed to be
Poisson with constant rate %�2, with % very small. We
also assume that the demography of the population is
such that the effect of variation in population size can
be accounted for by the ``usual'' non-linear timescaling,
effectively by the inverse of the population size. (See, e.g.,
Donnelly and Tavare� , 1995.)

In allowing for variation in population size in this
framework, one can either rescale the coalescence rates,
keeping the mutation rate constant over time, or keep the
coalescence rates constant over time and rescale the
mutation rate (e.g., Griffiths and Tavare� , 1994). Here it is
more convenient to adopt the second approach, and keep
the coalescence rate constant. This implies that the times
between coalescence events are described by the usual
coalescent model (Kingman, 1982a), and that the rela-
tion between time t in this framework and real time t~ ,
measured in generations per the effective (haploid)
population size at time t=0, is given by
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t=
1
;

(e;t~ &1) or t~ =
1
;

log(;t+1)



(e.g., Griffiths and Tavare� , 1994) with ;=N!, where !
is the rate of decrease in the population size (viewed
backwards in time) each generation. Moreover in this
formulation, the mutation rate is given as a function of
time by

%(t)=%e&;t.

We will take { and # to denote the same quantities as
before. Formulas (6), (7), (8), and (9) are all valid in this
setting, as well as (10) and (11). However, the last two
are difficult to relate to real time {~ and #~ , and hence of less
importance.

The probability of M conditional on { and # is given by

P(M | {, #)r1&exp {&|
{+#

{
%(t)�2 dt=

r
%

2;
e&;{(1&e&;#), (38)

where r indicates that only first-order terms in % are
taken into account. The probability of M is then given by

P(M)=|
{, #

P(M | {, #) dP({, #)

(39)

= :
k+1

:=2
|

{, #
P(M | {, #) dP({ | :) dP(# | :) P(:).

Substituting (38) then gives

P(M)r
%

2;
:

k+1

:=2

E(e&;{ | :) E(1&e&;# | :) P(:).

The distribution P( } ) is given in Corollary 2 and the two
expected values can be found by exploiting the fact that
{ and # are sums of exponential random variables:

E(e&;{ | :)= `
n

j=:+1

j( j&1)
j( j&1)+2;

, (40)

and

E(1&e&;# | :)=1& :
:&1

x=1

E(e&;# | J=x, :) P(J=x | :)
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=1& :
:&1

x=1

2(:&x)
:(:&1)

`
:

j=:&x+1

j( j&1)
j( j&1)+2;

.

(41)
Finally we have

P('�t | M, {, #)=
P('�t, M | {, #)

P(M | {, #)
r

1&e&;t

1&e&;# (42)

for t # (0, #). That is, ' | M, {, # follows a truncated
exponential distribution.

With (38), (39), and (42) in hand and

f ({, # | M)=
P(M | {, #)

P(M)
f ({, #),

we can derive expressions for distributions of waiting
times {, #, ', and T conditional on M. For application,
these must then in turn be transformed into distributions
of similar waiting times expressed in the timescale for a
constant population size coalescent. The relation
between ({, #) and ({~ , #~ ) is given by

({~ , #~ )=
1
;

(log(;{+1), log(;({+#)+1)&log(;{+1)).

Table 1 gives approximate expected values of waiting
times for different ; 's, evaluated numerically. These are
in time units of Ne degenerations, where Ne is now the
variance effective number of chromosomes in the popula-
tion in the present.

The first line of Table 1 effectively corresponds to the
constant population size case. The effect of a decrease in
population size in the past is to hasten coalescent events.
It is not surprising then that all times are decreasing in
the parameter ;.

Plots of the density of the age of the mutation (again
in time units of Ne generations) can be obtained numeri-
cally. Some of these are exhibited in Figs. 5 and 6.

TABLE 1

Simulated Expected Values of Waiting Times, f=0.2

Conditional on M and E Conditional on E

; ' T # {+#

10&2 5.05_10&1 8.02_10&1 1.98_10&1 3.97_10&1

1 1.94_10&1 4.13_10&1 1.26_10&1 3.00_10&1

103 5.09_10&4 5.60_10&3 5.33_10&4 5.63_10&3

106 5.10_10&7 1.25_10&5 5.35_10&7 1.25_10&5

Wiuf and Donnelly
Note. Simulated expected values of waiting times for different ; 's
are given in units of Ne ; 1,000,000 simulations were performed for each
entry using a importance sampling scheme.
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FIG. 5. Density of T in an exponentially decreasing population. Th
100. The density of T is shown for three values of the fraction f =i�n: 0.0
number of chromosomes in the population at the time the sample was ta
constant size.

Recall that in the constant population size case, the
effect of the additional conditioning on M is to increase
#, the time to the MRCA of D. The intuition is that
conditioning on M stochastically decreases :, hence
increasing #.

There is a second effect in the variable population size
case, for large enough ;, which works in the opposite
direction. Conditioning on M will stochastically increase
the real time between the MRCA of D, and the first time
this lineage shares an ancestor with C. In a population
whose size decreases monotonically into the past,
coalescence rates increase as we go into the past. Thus,
the longer into the past the MRCA of D is found, the
faster are all coalescence rates at that time, and hence
(other things being equal) the sooner the lineage from
this MRCA will coalesce with an ancestor of the rest of
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the sample. It follows that (other things being equal)
conditioning on M would have the effect of moving the
MRCA of D closer to the present, and hence shortening
#. We now formalise this last heuristic argument.
mple size is n=1000, and the scaled rate of decrease ; takes the value
0.1, and 0.4. The x-axis is given in units of 102Ne . Here Ne is the effective
. Compare also with Fig. 3 showing the density of T in a population of

Here we will only be concerned with the density
f ({ | M) of { conditional on M in proportion to f ({). Let
Q(M)=2;P(M)�%. Then we have

f ({ | M)
f ({)

�
�# P(M | {, #) dP(# | {)

Q(M)
=

e&;{E(1&e&;# | {)
Q(M)

after substitution from (38). The density f ({) does not
depend on ; whereas f ({ | M) does. Note that for
0<=1<1 we can choose ; large such that E(1&e;# | :) is
bounded uniformly from below in : by =1 . This gives us

f ({ | M)
f ({)

�
e&;{

E(e&;{) =1

�
e&;{

=;
2 =1

for large ; and 0<=i<1, i=1, 2. The last inequality
follows the fact that [E(e&;{)]1�; A &e&{&�=1 for
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; � � (Hoffmann-Jo% rgensen, 1994). Hence we have that
for all { there exists a ; such that

f ({$ | M)<< f ({$)
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FIG. 6. Density of T in an exponentially decreasing population. Th
1,000,000. The density of T is shown for three values of the fraction f =i
effective number of chromosomes in the population at the time the samp

for all {$>{ and ;$>;. This indicates, although does not
prove, that for large ; the waiting time {~ will tend to be
smaller in mean than the unconditional waiting time. It
proves that E({ | M)<E({) for large ; but not the similar
inequality for the real time {~ . This is in contrast to the
constant population size case where E({)<E({ | M)
(here there is no difference between { and {~ ).

TABLE 2

Simulated Expected Values of {

f=0.025

; M, E E M, E

10&2 4.45_10&2 2.30_10&2 1.63_10
1 3.82_10&2 2.25_10&2 1.27_10

102 1.12_10&2 1.07_10&2 2.22_10
4 &4 &4
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10 5.14_10 5.17_10 6.66_10
106 9.74_10&6 9.77_10&6 1.13_10&5

Note. Simulated expected values of { conditional on M, E and E, respect
each entry using an importance sampling scheme.
mple size is n=1000, and the scaled rate of decrease ; takes the value
0.025, 0.1, and 0.4. The x-axis is given in units of 106Ne , where Ne is the
as taken.

f=0.1 f=0.4

E M, E E

9.79_10&2 5.13_10&1 3.97_10&1

9.09_10&2 3.61_10&1 3.20_10&1

2.20_10&2 3.54_10&2 3.55_10&2

&4 &4 &4

The effect just described is visible in Table 1 and
Table 2.

7. DISCUSSION

We have given a rigourous treatment of the structure
of the genealogy of a sample when part of that sample, D,

Wiuf and Donnelly
6.67_10 8.11_10 8.12_10
1.13_10&5 1.27_10&5 1.27_10&5

ively, are given in units of Ne ; 1,000,000 simulations were performed for



shares a mutation, assumed to have arisen uniquely in
the population's history. In particular we have derived
expressions for the distribution and the moments of
the age of the mutation, conditional on the size of the
subsample which carries it.

Our motivation stems from the fact that an under-
standing of the genealogy will lead to properties of
various related types of data, including inter-allelic
variability (patterns of variability within D at linked
loci), and patterns of linkage disequilibrium, and lengths
of shared segments, around the site of the mutation. This
will, in turn, provide a foundation for statistical methods
which aim to infer aspects of the genealogy, or of popula-
tion history, from such data. These issues will be pursued
elsewhere.

One statistical question which we can address is the
estimation of the age of the mutation, conditional (only)
on its frequency within the sample. The age of the muta-
tion, T in our notation, is a random quantity within the
coalescent model, not a parameter in the conventional
sense. Inference (for either a Bayesian or a Frequentist
statistician) should thus consist of reporting the condi-

Conditional Genealogies
FIG. 7. The ratio of E(T | M) to T� SR . The curve shows the ratio of E(T
in Slatkin and Rannala (1997). The ratio increases towards infinity for f tend
tional distribution of this age given the data, or perhaps
summaries of this distribution, such as its mean and
variance. Expressions for these, and their limits for large
samples, are given in earlier sections.

Slatkin and Rannala (1997) developed a method for
estimating the age of the mutation. Their setting is
considerably more general than ours in two respects.
First, they give a procedure for estimation based on
information on variability at linked loci, in addition to
the frequency of the mutation. Second, they allow for the
mutation not to be neutral. On the other hand, their
method involves several heuristic approximations. It may
thus be of interest to compare their estimator with our
exact results in the special setting of this paper.

In the setting here, for large sample size and constant
population size, Slatkin and Rannala's estimator of
the age of the mutation, T� SR say, is 2f, where f is the
frequency of chromosomes in the sample carrying the
mutation. Their approach is to treat the age as a param-
eter and derive its maximum likelihood estimator under
an approximate model. Our approach derives the condi-
tional distribution of the age. For the purposes of com-
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| M) to T� SR, which is the estimator of the age of the mutant allele given
ing to 0, and tends to 1 as f approaches 1.



1.1
4.8

2.7
1.8

6.0
5.8
parison we have compared the mean of this conditional
distribution, E(T | M)=&2f log( f, )�(1& f ), with T� SR .
The Slatkin and Rannala estimator is always smaller
than the conditional mean, and Fig. 7 plots the ratio of
the latter to the former as a function of f. It can be seen
that, especially for small f, the relative underestimation
of T� SR can be quite marked. Some caution may thus
be appropriate in applying their estimator in more
complicated settings.

There would seem to be several factors which may
affect the comparison of the estimators. The first is the
fact that Slatkin and Rannala rely on various approxima-
tions. The second stems from their treatment of the age of
the mutation as a parameter. As we mentioned earlier,
this seems to us inappropriate as a matter of statistical
principle: the age is a random variable, not a parameter
in the usual sense. Aside from issues of principle, treating
the age as a parameter has a serious practical drawback.
We should condition on both the fact that the mutation
is seen only in D and the fact that the mutation arose at
all. (Recall our conditioning on first E, and then M,
above.) The mutation is more likely to have arisen in
genealogical trees with a long branch between the
MRCA of D and the ancestry of the remainder of the
sample. As a consequence, as we have seen, conditioning
on M has the effect of stochastically increasing the length
of this branch. This effect works directly, but it also has
an indirect effect in pushing the MRCA of D further into
the past. Both effects increase the age of the mutation.
(We know the age must be less than {+#, but note from
Fig. 4 that E(T | M) is substantially larger than the mean
of {+# without conditioning on M.) Informally then,
conditioning on the fact that the mutation arose at all

TABLE 3

Comparison of E(T | M ) with T� SR

f ; 0 10&2

0.025 E(T | M) 1.89_10&1 1.82_10&1

T� SR 5.00_10&2 5.00_10&2

Ratio 3.78 3.64

0.1 E(T | M) 5.12_10&1 5.03_10&1

T� SR 2.00_10&1 2.00_10&1

Ratio 2.56 2.52

0.4 E(T | M) 1.22 1.20
T� SR 8.00_10&1 7.97_10&1
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Ratio 1.53 1.51

Note. The expected value of T is compared to T� SR=log(2; f+1)�;, the
The expected value of T is very close to the mode of the density (Figs. 5 and
is not a monotone function in ;.
1 102 104 106

0_10&1 1.55_10&2 5.67_10&4 1.03_10&5

8_10&2 1.79_10&2 6.22_10&4 1.08_10&5

2.25 0.87 0.91 0.95

4_10&1 2.70_10&2 7.18_10&4 1.18_10&5

2_10&1 3.04_10&2 7.60_10&4 1.22_10&5

1.51 0.89 0.94 0.97

6_10&1 4.04_10&2 8.62_10&4 1.32_10&5

8_10&1 4.39_10&2 8.99_10&4 1.36_10&5

increases its age. This effect is real, and should be allowed
for. If one treats the age as a parameter, it seems difficult
to allow for this.

Table 3 relates to the setting of a population whose
size has increased exponentially through time. It com-
pares the Slatkin and Rannala estimator in this context
(here T� SR=log(2;f +1)�;) with E(T | M). The relative
discrepancy between the estimators decreases with the
growth rate ;, though we note that for large ;, T� SR is
slightly larger than the conditional mean age.
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