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INTRODUCTION

Understanding the genealogical relationship between
sequences in a population has been central to recent
analysis of the dynamics of sequence evolution at the pop-
ulation level. The stochastic process generating the
genealogical relationship between k sampled sequences
from a population with constant size N and no recombina-
tion was first described by Watterson (1975) and further
developed into the theory of the coalescent by Kingman
(1982). The process of evolution of sequences subject to
both coalescence and recombination in a population was
first described by Hudson (1983). In Hudson's setup a
combined coalescent and recombination process is
followed back in time until any nucleotide position in the
extant sequences has only one ancestral nucleotide. The
ancestral nucleotides can be located on different sequences.
In this approach, operations are performed on sequences,
operations being either coalescence or recombinations.

In this article an alternative algorithm which generates
sample genealogies is given. The algorithm moves spatially
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is formulated not as going back in time and
along the sequences, updating the history of
ountered. This algorithm focuses on spatial
her than on temporal aspects as is the case of
d to spatial aspects of the coalescent with

along the sequences and updates the history of the
sequences as recombination points are encountered. The
algorithm is formulated as a point process indexed by
sequence length measured in expected number of recom-
bination events. It takes values in a set of graphs that
increase with sequence length.

By definition, the coalescent with recombination is a
Markov process since generation t+1 is determined
from the previous generation t going backward in time.
In contrast, the information necessary at any position p
to determine the genealogical history at position q>p
includes information on the non-ancestral material that
links regions of ancestral material. Sequences non-
ancestral to p must be added. This implies that the
coalescent tree describing the history of a single position
p is not sufficient to build an algorithm which moves spa-
tially along the sequences. The algorithm presented here
is thus not Markovian in the above sense.

Some mathematical results related to the new algo-
rithm and to spatial aspects of the coalescent with recom-
bination are derived and discussed in the paper.
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EVOLUTION OF SEQUENCES SUBJECT
TO RECOMBINATION

The model of a population of sequences subject to
recombination is the following: Each sequence is L
nucleotides long and recombination is assumed to occur
to the left of a nucleotide. The population is constant and
of size N and diploid; i.e., there are 2N sequences. A new
generation is obtained from the present by (1) sampling
2N sequences in the old population with replacement and
(2) forming random pairs of sequences and letting the
pairs recombine at a random position between any two
nucleotides with probability r. Time will start at the pre-
sent and increase going backward in time.

This process is transformed to a continuous time and
continuous sequence process by letting N � � and
measuring time in 2N generations, and letting L � �
and r � 0, such that 4rLN � \, where 2rLN is the
expected number of recombinations per 2N generations.
Sequence length will be measured in expected number of
recombinations per 2N generations. Hudson (1983)
showed that the waiting time until a sequence is created
by a recombination event from two sequences is
exponentially distributed with intensity parameter \0�2.
For the extant sequences, \0 �2 is simply the length of the
sequences; i.e., \0=\. For ancestral sequences, \0 �2 is
the length of the interval spanned by regions that have
ancestral material. This interval can include regions with
non-ancestral material. The recombination point will be
uniformly distributed within this material. The waiting
time going backward in time until k sequences have only
k&1 ancestors in the population is exponentially dis-
tributed with intensity parameter k(k&1)�2 and the two
sequences that coalesce are chosen uniformly from all dif-
ferent, unordered pairs of sequences.

The history of k sequences can be simulated by going
back in time, waiting for what occurs first, recombination
or coalescence, and then performing the appropriate
operation on the set of ancestral sequences. Recombina-
tion will increase the number of sequences carrying
ancestral material by one, but will not increase the total
amount of ancestral material. A coalescent event will
decrease the number of sequences with ancestral material
by one. It may increase the amount of material, where
recombination can occur, because a coalescence can trap
some non-ancestral material, called trapped material.
When any position on the extant sequences has found
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one ancestor, all segments with ancestral material spliced
together will constitute one sequence. Above this point
coalescence cannot reduce the amount of ancestral
material and all that will occur are redistributions of
ancestral material on different sequences by recombina-
tion and coalescent events.

The tree that describes the history of a given column in
the sequence alignment is called a local tree. Let p be a
position in (0, \�2) along the sequences, where \�2 is the
sequence length. The tree that describes the phylogeny of
the sequences at this point p is T( p), the local tree at this
point (or nucleotide). A local tree T( p) can be found by
starting at the present sequences and going back in time.
When a recombination node is encountered the branch
that describes the segment containing p is followed. That
is, if the recombination point is to the right of p, then the
arrow describing the fate of the left part of the sequence
is to be followed and vice versa. The local tree T( p) at p
will be distributed like the coalescent process since one
point cannot be subject to recombination.

Griffith and Marjoram (1997) embedded the coales-
cent with recombination in a birth and death process
with birth rate +k=k(k&1)�2 and death rate *k=k\�2.
The parameter \ is here defined by \=limN � � 4Nr and
is not dependent on sequence length. This process sim-
plifies mathematics on the account that the notion of an
ancestor will have a less restrictive meaning than usual:
An ``ancestral'' sequence in the birth and death process
need not have any genetic material in common with a
sequence descended from it. Hence the genealogy of a
sample of extant sequences described by the birth and
death process will in general include more ``ancestral''
sequences than those carrying material ancestral to the
sample. However, the process is useful as a general
framework for studying genealogies, and as such will
be used in this paper. The graph corresponding to this
process is called the ancestral recombination graph
(Griffiths and Marjoram, 1997).

THE SPATIAL ALGORITHM

We will now describe an algorithm which simulates the
history of k sequences in the coalescent process with
recombination. It starts at position 0 in the sequences
and describes more of the history of the sequences by
moving right, along the sequences; hence it is called a
spatial algorithm. The history of the nucleotides at posi-
tion 0 is automatically given by the traditional coalescent
without recombination. As the algorithm moves right,
along the sequences, recombinations that must be incor-
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porated into the genealogical history of the sequences
will be encountered.

The mathematical formulation of the algorithm is
cumbersome compared to the algorithm by Hudson



(1983), and the complexity of the algorithm measured in
expected number of events has only partly been derived
theoretically. Based on simulation studies, the com-
plexity is believed to be of the same order of magnitude
as that of Hudson's algorithm. The complexity of both
algorithms is compared to the complexity of the birth
and death process described above. The main objective of
the algorithm is to discuss the spatial aspect of the coales-
cent with recombination in contrast to temporal aspects.

Some preliminary considerations are required before
the algorithm is stated.

1. Sequence Length to Recombination Point

Essential to what follows is the distribution of the
sequence length until a recombination is encountered
conditional on the total branch length b of the genealogy.
For a fixed position p in the sequences consider L
nucleotides next to this position. Assume that the total
branch length of the genealogy measured in generations
is 2Nb. The number of recombination points, n, in these
segments of length L is binomially distributed,

p(n)=
(2NbL)!

n!(2NbL&n)!
rn (1&r)2NbL&n

tBi(n; 2NbL, r),

which tends to a Poisson distribution for large popula-
tion sizes N and long segments of nucleotides L,

(b\�2)n

n!
exp(&b\�2)tPo(n; b\�2).

From this it easily follows that the sequence length X
until a recombination point is encountered conditional
on b is given by

P(no recombination | b)=exp(&b\�2),

and

P(X>x | b)=exp(&bx)

for x<\�2. As \ � �, X conditional on b becomes
exponentially distributed with parameter b, and
otherwise X follows an exponential distribution trun-
cated at \�2. Moreover, the recombination event will
happen with equal chance in all generations and
ancestors of the genealogy, i.e., TtU(0, b), where T is
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the location of the event. This is an analogue to the state-
ment that given total sequence length the waiting time
until the first recombination event is exponential with an
intensity half the total sequence length.
2. Waiting Time for a Sequence to Coalesce to
Known Genealogy

The rate of coalescence between a pair of sequences is
1, so the conditional coalescence rate of an additional
sequence to a group of k sequences known not to
coalesce before the additional sequence does is k.

3. Notation

The notation used is adopted and modified from Grif-
fiths and Marjoram (1997). A sequence S of length x is
represented as an interval [0, x[ with a set A�[0, x[

FIG. 1. The graph HUD. This example will be continued on subse-
quent figures. Sequences are assumed to have length 7. The history of
a sample of size 3 is followed back in time until there is only one
ancestral sequence. The whole graph shows the ancestral recombina-
tion graph, ARG, and the thin lines constitute HUD. Recombination
points are written above the recombination event. The set [x, y[ writ-
ten to the right of an edge is the set A(e) of ancestral material that has
not yet found a common ancestor. Positions [0, 2[ find a common
ancestor at event A, whereas positions [2, 7[ find a common ancestor
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at event B. If event A happens at time tA and event B at time tB ,
then CA(tA)=[0, 2[ and CA(tB)=[2, 7[. For t{tA , tB we have
CA(t)=<. Recombination points 1 and 5 are both outside ancestral
and trapped material, and hence the two recombination events have no
influence on the history. Recombination point 3 is in trapped material.



being associated. A is the set of ancestral material on the
sequence S that has not yet found a common ancestor in
the sample. For extant sequences A=[0, x[, and a
sequence can have A=< if it is created by a recombina-
tion event outside ancestral and trapped material, or if all
ancestral positions in the sequence have found a common
ancestor.

The genealogy G of a sample of size k is represented as
a graph. Edges represent ancestors to one or more
sequences in the sample. Vertices in the graph denote
extant sequences or events: we denote the coalescence of
edges e1 and e2 to e3 by e3=e1Ce2 , and the recombina-
tion of e3 into e1 (left part) and e2 (right part) by
e3=e1Re2 . Note that the C relation is symmetric,
whereas the R relation is not. Positions at which breaks
occur and time of events (measured from the present) are
labeled on the graph. When necessary, the notation Ct ,
Rt , or Rp is used to indicate the time t of an event or the
break at point p. Let CA(t) denote the set of positions in
the sample with a most recent common ancestor at time
t. An edge e has ancestral material in common with the
sample if a sequence S(e) representing e has either (1)
A(e){< or (2) A(e)=< and CA(t){< assuming e is
created by an event at time t. If e3=e1Rpe2 then
A(e1)=A(e3) & [0, p[ and A(e2)=A(e3) & [ p, x[, and
if e3=e1Cte2 then A(e3)=A(e1) _ A(e2)"CA(t). Note
that CA(t) can only be non-empty, if the event at time t
is a coalescent event. The notation is illustrated in Fig. 1.

The ancestral recombination graph ARG possibly
includes sequences with no material ancestral to the sam-
ple, and describes the history of a sample until there is
only one sequence present in the ancestral sample. This
sequence is called the grand most recent common
ancestor (grand MRCA, Griffiths and Marjoram, 1997).
The genealogy HUD obtained by Hudson's algorithm
(Hudson, 1983) is the smallest genealogy containing all
ancestral sequences carrying material ancestral to the
sample, i.e.,

e # HUD iff A(e){< or

A(e)=<, e=e1Cte2 and CA(t){<,

for some ei , i=1, 2 in ARG and some t>0.
When subgraphs of ARG are considered, we use the

convention that a vertex with only two outgoing edges
will be ignored, so that the two edges reduce to one.

Coalescence and Recombination
4. The Spatial Algorithm Graph

The spatial algorithm graph will be defined recursively
as the limit of a series of subgraphs Gi of ARG, and will
be explained in detail below and in Figs. 2�5. Define G0

by

e # G0 iff 0 # A(e) or e=e1 Cte2 , 0 # CA(t),

for some ei , i=1, 2 inch ARG and some t>0. Only one
time point satisfies 0 # CA(t). G0 is the graph that con-
sists of all edges in ARG that describe the coalescent
history of position 0 and corresponds to the local tree
T(0).

Moreover, G0 describes the history of all positions
between 0 and the recombination point p1 nearest 0. The
graph G1 will he the graph that describes the genealogy
of all positions before the second recombination point p2 ,
and so forth: Gi will describe the history of positions
[0, pi+1[.

Denote by f10 the unique edge in G0 fulfilling
f10=e1Ct e2 and 0 # CA(t) for some ei , i=1, 2 and some
t>0. The edge f10 is the most recent common ancestor
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FIG. 2. Figures 2�5 illustrate the recursively defined Gi 's. The ARG
is as in Fig. 1. Thick lines show the coalescent tree G0 for position 0 in
the sample of size 3. At each recombination event encountered the edge
describing position 0 is chosen, i.e., the left branch.



FIG. 3. First recombination point encountered. There are four
recombination vertices in G0 with points greater than p0=0: 2, 3, 4,
and 5. The smallest of these is 2; i.e., p1=2. The history of position 2,
e10 , e11 , ..., is followed until an edge e1j either coalesces with an edge in
G0 or coalesces with an edge in the series of edges, f10 , f11 , ..., describing
the history of position 2 in the edge ancestral to all edges in G0 , f10 .
Here the latter is the case. G1 consists of G0 and the series e10 , ..., e12 and
f10 , ..., f13 , and f20 is defined by f20= f13 .

(MRCA) to position 0 in the sample. Let p0=0 and
assume that Gi&1 is defined for some i>0: Put

Pi=[ p<pi&1 | Rp vertex in Gi&1

with e2=e1Rpe, e1 , e2 # Gi&1].

Pi is the set of recombination points in Gi&1 larger than
pi&1. Define pi=minPi , and denote by ei0 the edge such
that e2=e1Rpi

ei0 for some ei , i=1, 2. If Pi=< let
Gi=Gi&1 , else let fi0 , fi1 , ..., fim be the edges describing
the history of position pi in fi0 until the grand MRCA,
fim . Let ei0 , ei1 , ..., ein , ei(n+1) be the finite series of edges
describing the history back in time of p in e until either
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(1) ei(n+1) # Gi&1 or

(2) ei(n+1) # [ fij]j=1, ..., m .
FIG. 4. Second recombination point encountered. Continuing
similarly to Fig. 3, the smallest recombination point larger than p1=2
is position 3. Hence p2=3. Moving spatially along the sequences, the
sequence e that experiences the recombination event has A(e)=[0, 2[
(Fig. 1, only ancestral material up to position 3 is taken into account),
and the event would possibly not affect the sample's history. However,
the third recombination point encountered makes sure that the pre-
vious event cannot be disregarded (Fig. 1). In this case the series
e20 , ..., e22 describing the history of position 2 in e20 coalesces with an
edge in G1 .

In the first case, the recombined segment coalesces with
an edge in Gi&1 and otherwise it coalesces with an
ancestral edge to fi0 . There are only these two
possibilities, since ARG is continued until there is
one ancestral edge, the grand MRCA, fim . Define
f(i+1) 0= fil , where l=0 if ei(n+1) # Gi&1 , and else l is
determined uniquely by (2). Define Gi by

Gi=Gi&1 _ [eij]j=0, ..., n _ [ fij]j=1, ..., l ,

and SAG by

Wiuf and Hein
SAG= .
�

i=0

Gi .



FIG. 5. Fourth recombination point encountered. Similar to the
second one the fourth recombination point happens outside ancestral
material. The event has no effect on the history of the sample, but if the
sequences were prolonged, the event potentially could affect the geneal-
ogy (compare Fig. 4). Since the edge e40 does not carry any ancestral
material to the sample it is not included in HUD (Fig. 1).

The edge fi0 belongs to Gi&1 for all i, and is thus not
included in the definition of Gi . Figures 2�5 illustrate the
recursive definition of Gi 's.

Due to the definition of G0 , a single edge is the
ancestor to all edges in G0 , and by induction on i, it
follows that Gi has the same property.

Since ARG is a finite graph, there can only be a finite
number of different Gi 's; therefore SAG is finite and there
is a single edge being ancestral to all edges in SAG.

If e # Gi then an induction argument on i shows that
there exists a path from e # Gi to an extant edge in
G0 �Gi . This property and the definition of the series eij

ensure that there are only two possibilities for ein ,

Coalescence and Recombination
z= yC ein ,
where either

y= fi(l&1) , z= fil or y, z # Gi&1.

Moreover for j<n either

ei( j+1)=eij Cx, eij=ei( j+1) Rqx, q>pi ,

or

eij=xRq ei( j+1) , pi>q,

x denoting different edges not in Gi&1.
As defined G0 is the history of position 0. Moving spa-

tially along the sequences the first recombination event
happens in position p1 , and hence G0 describes the
history of all the positions in [0, p1[. The fate of position
p1 in the sequence e10 recombining at position p1 is
followed through the edges e11 , ..., e1n until the sequence
containing p1 finds a common ancestor, either with a
sequence included in G0 or with one ancestral to p1 in f10

( y, z # G0 and y= f1(l&1) , z= f1l respectively). This
describes the history of all positions [0, p2[ in the
sample, since the next recombination point effecting the
genealogy is p2 . The edges f10 , ..., f1l describe the history
of the positions [ p1 , p2[. The history of the positions
p>p2 in f10 might be affected by the recombination
break in p2 , whereas the history of the positions [0, p1[
in f10 is not important, because the positions have found
a common ancestor, f0 . This argument applies for all
i>1, thereby completing an increasing part of the
samples history. Since ARG is finite, one will complete the
history of the full sequences for some finite i. Recombina-
tion events that do not affect the history of the sample
might be encountered as one moves along the sequences,
thus making both the number of sequences and the num-
ber of events greater than the same numbers in HUD.

The total length of the series ei0 , ..., ein is the coalescent
time until ei0 coalesces with one of the sequences in Gi&1

or an ancestral sequence to position pi (Figs. 2�5).

5. Spatial Algorithm Simulating the History of
k Sequences

With the above considerations, 1�4, and the descrip-
tion of SAG, the spatial algorithm for simulating
histories of a sample of extant sequences can be stated:

Start leftmost at the sequences.
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(1) Choose a coalescent tree (graph) T(0) for the first
position p0=0 in the k sequences according to the dis-
tribution of the coalescent processes.



(2) Let b0 be the total branch length of T(0), and put
B0=b0 , P0= p0 , and G0=T(0).

For i=1, 2, ... repeat the following procedure as long
as Pi&1�\�2.

(3) Choose recombination point pi tE(Bi&1) and
location ti tU(0, Bi&1) as described in (1).

(4) Coalesce the recombined edge (sequence) ei to
the spatial algorithm graph Gi&1 (4) according to the dis-
tribution of the coalescent process (2).

(5) Set Gi=Gi&1 _ ei , Bi=Bi&1+bi , and Pi=
Pi&1+ pi .

Since the ancestral recombination graph is finite with
probability one (Griffiths and Marjoram, 1997), and the
spatial algorithm graph created by the algorithm is
embedded in the ancestral recombination graph, this
algorithm will stop eventually.

The spatial algorithm is formulated as a Markov pro-
cess with state space being the set of spatial algorithm
graphs with no sequence information added. The
Markov property is however artificial in the sense that
coalescence information will discretely be added as one
encounters more recombination points along the sequences.
No information will be subtracted. Figure 6 illustrates
that it is not possible to formulate an algorithm as a
Markov process on the set of local trees: The local tree
T( p) at position p is not sufficient to determine the local
trees T(q) for q>p. If only the local tree were considered
then the branch representing sequences with the
ancestral material [0, p[ would be ignored and the
probability that T( p) has the same tree height as T(0)
would be zero.

Break points are only needed to determine the local
trees at each position, and are as such no essential part of
the algorithm. The graphs are strictly growing as one
moves along sequences in number of edges and vertices,
as well as in total branch length. In Hudson's algorithm
the amount of ancestral material is a decreasing function
with time, but not strictly decreasing.

6. Complexity

For all types of graphs discussed here, the following
two relations are valid,

coal=rec+k&anc, and hence
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ev=rec+coal=2rec+k&anc,

where k denotes sample size, ev the number of events in
the graph, coal the number of coalescent events, rec the
FIG. 6. Counterexample against ``only local tree'' algorithm.
The genealogy of two sequences of length 3 is shown. Recombinations
occur in positions 1 and 2 in ancestral sequences. The positions
[0, 1[ _ [2, 3[ find a common ancestor at event A, and the positions
[1, 2[ find a common ancestor at event B. If only the local tree of a
position p # [1, 2[ (marked with thick lines) is known, we will have no
chance to determine whether the positions [2, 3[ find a common
ancestor at the same time as the positions [0, 1[. Information on the
local trees for the positions q<p is necessary to account for the
possibility of common ancestry of the positions [0, 1[ and [2, 3[.

number of recombination events, and anc the number of
``ancestral'' sequences. In ARG and SAG anc is one, and
in HUD it is stochastic.

The complexity of the algorithms will be measured
in number of events, and only asymptotic results for
k � � and \ � � will be considered. Due to the above
relations, attention can be restricted to the number of
recombination events rec and the number of ancestral
sequences anc. Ethier and Griffiths (1990) calculated the
expected number of recombination events in the birth
and death process and found that for k � � and \ fixed

E(rec)t\ log(k),

and for \ � � and k fixed

E(rec)texp(\).

Wiuf and Hein
For all \ and k Ethier and Griffiths (1990) found

E(rec)�exp(\)&1.



The last inequality means that even for large sample sizes
the dominant term will be exp(\), and not \ log(k). The
expectation of the number of recombination events is not
known for Hudson's algorithm, but since this number is
greater than the number of recombination events Rk

within ancestral material (i.e., not counting recombina-
tion events within trapped material), Rk is a lower
bound. Hudson and Kaplan (1985) found that

ERk=\ :
k&1

i=1

1
i
t\ log(k).

Moreover Griffiths and Marjoram (1997) found that

1�E(anc)�1+\1&
2

k2+k+ \�1+\.

Thus for fixed \ and increasing sample size the spatial
algorithm and Hudson's algorithm perform equally well
in terms of complexity, since \ log(k) is the asymptotic
growth of the expected number of recombination events
in the birth and death process. For increasing sample
size the number of events ev will grow like k, and not
like \ log(k), because E(ev)=2E(rec)+k&E(anc)r

2\ log(k)+ktk.
For increasing sequence length the bound on ERk is

too low to be used in comparison: For large sequences
there will be large regions of trapped material enlarging
the rate of recombination considerably and the linear
bound on ERk does not reflect this. Simulation results
(not shown) indicate that the number of events grows
subexponentially in \ in SAG. Hence both algorithms are
considerably faster than the birth and death process for
large values of \.

MATHEMATICAL RESULTS

The coalescent process with recombination has been
studied to some extent in the literature (Hudson, 1983;
Hudson and Kaplan, 1985; Kaplan and Hudson, 1985;
Griffiths and Marjoram, 1996, 1997; Wiuf and Hein,
1997; among others). Some new results will be derived
which are related to the spatial algorithm, and the spatial
aspects of the coalescent with recombination.

We consider sequences of infinite length, i.e., \=�.

1. Sequence Length until First Recombination

Coalescence and Recombination
Point

As proved in the previous section the distribution of
sequence length Xk until the first recombination point
conditional on the total branch length b of the genealogy
of the first nucleotide is exponential with intensity
parameter b. Moreover it is shown in the Appendix
that the total branch length Bk=�k

i=2 iWi , W it

E(i(i&1)�2), in the coalescent process is distributed like
the maximum of k&1 exponential variables with inten-
sity 1

2; i.e., the density takes the form

fk (b)= 1
2(k&1)[1&exp(&b�2)]k&2 exp(&b�2).

It follows that the unconditional sequence length until
the first recombination point is

gk (x)=|
�

0
b exp(&bx) fk(b) db,

which by induction is

gk (x)=2 :
k&1

i=1

(&1) i&1 (k&1)!
(i&1)! (k&i&1)!

1
(i+2x)2 .

For k=2 and k=3 this reduces to

g2 (x)=
2

(1+2x)2 , g3 (x)=
4

(1+2x)2&
1

(1+x)2 .

The mean value of Xk is given by

EXk=|
�

0
xgk (x) dx

=
1
2

:
k&2

i=1

(&1) i&1 (k&1)!
i!(k&i&2)!

log(i+1)

for k�3 and

EX2=�

for k=2.

2. Tree Heights

If one compares the coalescent tree of the first position
and the tree just to the right of the first recombination
point, there are three possibilities: The trees are of equal
height, the first tree is higher than the second tree, or the
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first tree is lower than the second. In general it is difficult
to calculate the probabilities for these three possibilities,
but for samples of size 2 this can be done. Let H1 denote
the tree height of the first tree, and H2 the tree height of



the second. Formally H2=H(X2), where H(x) is the
height of the local tree in position x. Then (see Appendix)

P(H1=H2)=P(H1>H2)= 1
2& 1

4 log(3)r0.225,

and

P(H1<H2)= 1
2 log(3)r0.549.

Hence P(H1<H2)+P(H1>H2)r0.775 and in about
three out of four cases the first recombination will result
in a change in most recent common ancestor.

An expression for the probability that H2=H(X2) is
higher than H1 can be given for samples of arbitrary size
(see Appendix):

P(H1<H2)=
1
2

(k&1) |
�

0

1
x

[1+exp(&x�2)]

_[1&exp(&x�2)]k&1 exp(&x�2) dx

=
1
2

(k&1) :
k

i=1

(&1) i

_
(k&1)!

(i&1)!(k&i)!
[log(i+1)+log(i)].

Even for larger samples this probability is high, tending
slowly to zero; e.g., for k=2, P(H1<H2)=0.549; k=3;
0.405; k=5; 0.292; k=10; 0.206; k=100; 0.102; and
k=1000; 0.069.

3. Second Recombination Point

The number of different genealogies makes it difficult
to deduce general results on the length until the ith
recombination point. To give an idea of this, the density
h2 of the length between the first and second recombina-
tion break in a sample of size 2 is stated here. The proof
is sketched in the Appendix:

h2 (x)=
1

(2x+1)2 { 4x+3
(2x+2)2 log(2x+3)

+
4x+1
(2x)2 log(2x+1)&

1
2x(x+1)= .

For x � 0, h2 (x) tends to 3
4 log(3)+2r2.824. The

chance that the length between the first and second
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recombination point is small is thus higher than the
chance that the length until the first recombination point
is small (g2 (x) � 2 for x � 0). Moreover in contrast to
the mean value of g2 , the mean value of h2 is finite.
4. Expected Height of the Second Tree

For samples of size 2 the expected height of the tree
just to the right of the first recombination point is (see
Appendix)

EH2=1+ 3
8 log(3)r1.412.

Griffiths and Marjoram (1997) calculated the expected
time until the most recent common ancestor (TMRCA)
at position p given a recombination event at that point,
and found for samples of size 2 that

E(TMRCA at p | recombination at p)=2.

These two expected values are not supposed to be equal:
The former is the unconditional expected height of the
tree in the first recombination point (which is a stochastic
point, X2), whereas the latter is the conditional expected
value given a recombination event in a fixed position.
Due to symmetry the expected tree height on both sides
of the recombination point is 2. This symmetry is not pre-
sent in the first case, since the expected height of the tree
just to the left of the first recombination point is 1
(H1 tE(1) in the coalescent process).

Furthermore the expectation of H2 given H1=s is (see
Appendix)

E(H2 | H1=s)=
1
4

+
3
4

s+
3
8s

[1&exp(&2s)].

E(H2 | H1=s) is a growing function of s with
E(H2 | H1=s)r

3
4s for large values of s. For small values

of s the distribution of H2 given H1=s is approximately
exponential with intensity 1 (see Appendix), as expected,
and in agreement with E(H2 | H1=s) � 1 as s � 0.

DISCUSSION

In this paper a new algorithm, the spatial algorithm,
for simulating genealogical histories of a sample of k
sequences subject to recombination is developed and dis-
cussed. It points to the fact that the coalescent with
recombination can be considered a point process along
sequences. Some new results related to the algorithm are
derived.

The complexity of the algorithm measured in terms of

Wiuf and Hein
expected number of events in the genealogical history
produced by the algorithm was shown to be of the same
order of magnitude as Hudson's algorithm for constant
sequence length and variable sample size. Simulation



studies indicated that for increasing sequence length \
and constant sample size, both algorithms are sub-
exponential in \.

Some of the derived results under Mathematical
Results hold for the coalescent process with mutation in
an infinite-site model: In 3 all results carry over by chang-
ing ``sequence length until first recombination point''
with ``sequence length from the ith to the (i+1)th muta-
tion point.'' For example, the mean length between muta-
tion points in a sample of size 2 is infinite. The reason
that this results holds for all i, and not just i=0, is loosely
speaking that all positions share the same history.

The spatial algorithm can be extended to cover
demographic scenarios other than a population of con-
stant size. To see this, consider the distribution of the
length until the next recombination point conditional on
the total length of the genealogy, b. This on distribution
depends on b only, and not on the population history, on
sizes of subpopulations, or on which ancestral sequences
belong to which subpopulations. If sequences are of dif-
ferent ``types'' (e.g., from different subpopulations), the
above holds true as long as all sequences involved in a
recombination event is of the same type. In the situation
with several subpopulations, if two sequences recombine
to create a new sequence, all sequences must necessarily
belong to the same subpopulation, i.e., be of the same
type. The distribution of the length until the next recom-
bination point conditional on b will not change if the dis-
tributions of the waiting times between coalescent events
are changed accordingly. Simulated sample histories
from other demographic scenarios can then easily be
obtained by modifying 1 and 4 in Section 5 under The
Spatial Algorithm. Griffiths and Tavare� (1997) and
references therein provide methods for sampling coales-
cent times from different scenarios.

APPENDIX

In this Appendix proofs of statements found under
Mathematical Results are given. Bold numbers refer to
the section numbers used under Mathematical Results.

1: Proposition. Assume that Xi tE(*++i), i=
0, 1, .... Put Yi=Yi&1+Xi , i>0, and Y0=X0 . Then the
density f i of Yi is given by

fi ( y)=exp(&*y)[1&exp(&+y)] i 1
i `

i

(*++j).
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+ i! j=0

Proof. The proof can easily be obtained by induc-
tion. K
Corollary. Assume as in the above Proposition, and
that *=+. Then Yi is distributed like the maximum of i+1
independent E(*) variables.

A proof of a similar result can be found in Ross (1982,
p. 144). The application to the branch length of a coales-
cent tree seems to be new; however, in Tavare� (1984,
p. 153) one can find an indication of the result.

The formula for gk (x) can be found by conditioning on
branch length

gk (x)=|
�

0
b exp(&xb) fk(b) db,

and applying 3.432 in Gradshteyn and Ryzhik (1994).
Similarly for the mean value of gk ,

|
�

0
xgk (x) dx=|

�

0
|

�

0
xb exp(&xb) fk (b) dx db

=|
�

0

1
b

fk (b) db,

and then apply formula 3.411 (19) in Gradshteyn and
Ryzhik (1994).

3: The expression of the probability that the tree of the
first position is lower than the tree of a position just to
the right of the first recombination point can be derived
in the following way:

If the second tree is higher than the first, the recom-
bined sequence cannot coalesce with any ancestral
sequence until all positions [0, p[, p denoting the recom-
bination point, have found a common ancestor. Let wi be
the time while there are i ancestral sequences to the sub-
sequences consisting of positions [0, p[ in the sample.
Put l=(l1 , l2 , ..., lk) with l1=0, li=� i

j=2 jwj , and let k
be sample size. li denotes the total branch length while
there are at most i ancestral sequences to positions
[0, p[. Hence

P(H1<H2)=|
R+

k&1
P(H1<H2 | l ) f (l ) dl,

where f (l ) denotes the density function of l. If there are i
lineages, there are i possible branches where a recom-
bination event can occur, and conditional on the location
x of the recombination point the probability takes the form
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P(H1<H2)=|
R+

k&1
:
k

i=2
|

wi

0

i
lk

_P(H1<H2 | l, i, x) f (l) dx dl,



where wi=(1�i)(li&li&1) and f (x | lk)=1�lk is the
uniform density of the location of the recombination
point. But

P(H1<H2 | l, i, x)=e&(li&li&1&ix) `
i&1

j=2

e&(lj&lj&1)=eix&li,

with the j th term being the probability that the recom-
bined sequence does not coalesce with any of the
ancestral sequences. Inserting the above expression in the
integral and evaluating yield

P(H1<H2)=
1
2

(k&1) |
�

0

1
lk

(1&e&lk�2)k&1 elk�2 dlk

=
1
2

(k&1) :
k

i=1

(&1) i

_
(k&1)!

(i&1)! (k&i)!
[log(i+1)+log(i)].

The last equality is due to formula 3.411 (19) in
Gradshteyn and Ryzhik (1994).

In a sample of size 2, P(H1=H2)=P(H1>H2), and
hence 2P(H1=H2)=1&P(H1<H2)r1&0.549=0.451.

4: The derivation of the expression of h2 consists in
evaluating a series of integrals, the first being the follow-
ing conditional probability:

P(H2=s | H1=s)=
1
2 |

s

0

1
s

(1&e&2(s&x)) dx

=
1
2

&
1
4s

(1&e&2s).

The location x of the recombination point has condi-
tional density 1�s, and the probability given x that the
two recombined sequences coalesce is 1

2(1&e&2(s&x)).
Similarly one obtains

P(H2�t<s | H1=s)=
t

2s
&

1
4s

(1&e&2t),

P(s<H2�t | H1=s)=
1
2s

(1&e&2s)(1&es&t).
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The density function of H2 can be derived using the
above expressions. Obviously

P(H2�t)=P(H2�t, H1=H2)+P(H2�t, H1 {H2).
Both probabilities on the right side can be calculated
conditioning on H1 , and using the above conditional
expressions,

F1 (t)=P(H2�t, H1=H2)=|
t

0

1
2

e&s

&
1
4s

e&s (1&e&2s) ds,

and

F2 (t)=P(H2�t, H1 {H2)=|
�

t

t
2u

e&u

&
1

4u
e&u (1&e&2t) du+|

t

0

1
2

e&u

+
1

4u
e&u (1&e&2u)&

1
2u

e&t (1&e&2u) du.

Denote by f1 and f2 the derivatives of F1 and F2 with
respect to t, respectively. Then h2 can be written in the
form

h2 (x)=|
�

0
2t e&2tx[ f1 (t)+ f2 (t)] dt,

since sequence length until a recombination point is
exponentially distributed with parameter 2t, twice the
height of the tree. Interchanging the order of integration
in the double integral expression of h2 , and evaluating
using formula 3.411 (19) in Gradshteyn and Ryzhik
(1994), one obtains

h2 (x)=
1

(2x+1)2 { 4x+3
(2x+2)2 log(2x+3)

+
4x+1
(2x)2 log(2x+1)&

1
2x(x+1)= .

5: The expected values of H2 , H2 | H1=s and the dis-
tribution of H2 given H1=s for small values of s are
easily computed using results in 6 above.
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