Bounded Coordinate-Descent for Biological Sequence
Classification in High Dimensional Predictor Space

Georgiana Ifrim
Cork Constraint Computation Centre (4C)
University College Cork
_Cork, Ireland
g.ifrim@4c.ucc.ie

ABSTRACT

We present a framework for discriminative sequence classi-
fication where linear classifiers work directly in the explicit
high-dimensional predictor space of all subsequences in the
training set (as opposed to kernel-induced spaces). This is
made feasible by employing a gradient-bounded coordinate-
descent algorithm for efficiently selecting discriminative sub-
sequences without having to expand the whole space. Our
framework can be applied to a wide range of loss functions,
including binomial log-likelihood loss of logistic regression
and squared hinge loss of support vector machines. When
applied to protein remote homology detection and remote
fold recognition, our framework achieves comparable per-
formance to the state-of-the-art (e.g., kernel support vector
machines). In contrast to state-of-the-art sequence classi-
fiers, our models are simply lists of weighted discriminative
subsequences and can thus be interpreted and related to the
biological problem — a crucial requirement for the bioinfor-
matics and medical communities.

Categories and Subject Descriptors

H.3 [Information Storage and Retrieval]: Content Anal-
ysis and Indexing; 1.2.6 [Artificial Intelligence]: Learning

General Terms

Algorithms, Performance, Experimentation

Keywords

Greedy Coordinate-Descent, Sequence Classification, String
Classification, Logistic Regression, Support Vector Machines

1. INTRODUCTION

Many problems in biology today require accurate com-
putational prediction of properties. For example, the pri-
mary DNA sequence is a main determinant of functional and
structural protein properties, yet little is known about this

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

KDD’11, August 21-24, 2011, San Diego, California, USA.

Copyright 2011 ACM 978-1-4503-0813-7/11/08 ...$10.00.

Carsten Wiuf
Bioinformatics Research Centre (BiRC)
C.F. Mgllers Allé 8
DK-8000 Aarhus C, Denmark
wiuf@cs.au.dk

relationship and we must therefore turn to computational
prediction for advancing our understanding. Likewise, accu-
rate gene and motif prediction is of crucial importance for
the annotation of recently sequenced genomes. To achieve
this goal, we need machine learning techniques that are fast,
highly scalable and preferably treat feature selection as an
integral part of the learning algorithm. The latter require-
ment means that neither time nor expertise is invested in
pre-processing the original data (e.g., for defining features)
and no potentially hard to validate assumptions are made
about data distribution. Recent advances in developing ef-
ficient machine learning tools such as fast logistic regression
[7, 27, 28] and support vector machines [16, 9, 36, 35] enable
learning of classifiers in very large predictor spaces, thus re-
ducing the need for pre-processing the data. Nevertheless,
most of these techniques are typically designed to exploit
the sparsity of the training set (i.e., many features occur
sparsely in the training data) which holds for many applica-
tions, such as text categorization [27, 9]. This assumption
unfortunately does not hold for biological sequences, where
many subsequences often occur very frequently.

We present an efficient coordinate-descent algorithm for
optimizing regularized fitting of classification loss in high
dimensional predictor space. Our approach does not rely on
feature sparsity assumptions. In our framework, the feature
space is spanned by all subsequences present in the training
set. Furthermore, the features can have a flexible number of
wildcard matches, which allows us to model complex biolog-
ical processes such as substitutions, insertions and deletions.
The optimization proceeds coordinate-wise by iteratively se-
lecting the feature with maximum (absolute) gradient value,
following the Gauss-Southwell rule [30, 37]. In order to se-
lect the best features quickly, we provide bounds on the
gradient value of any subsequence based on its prefix. This
drastically reduces the search space. We discuss the tight-
ness of the proposed bounds as well as the convergence of
the algorithm.

Our learning technique is applicable to both unregular-
ized and regularized loss functions. In this paper we show
bounds for the more complex case of elastic-net regularized
loss [10]. By adding an explicit elastic-net penalty (a convex
combination of {1 and [2 regularizers) to the loss function,
we allow the user to directly trade-off [1-regularization (en-
couraging model sparsity) for [2-regularization (correcting
for correlations) [8, 10, 6]. As can be observed in our ex-
periments this positively affects the prediction quality. We
present applications of our learning algorithm to protein re-
mote homology detection and fold recognition. In order to

compare to previously published results, we work with stan-
dard protein benchmarks. For homology detection we use
SCOP1.59 [15, 22, 24, 19], and for fold recognition we use
the challenging dataset of [3]. The classification problems
associated with these datasets are hard and the training
data is rather small scale (2,800 and 300 sequences respec-
tively). In order to further analyse the scalability of our
technique, we present a large scale experiment on the latest
version of the Silva-LSUPARC102 database (150,000 unique
sequences). We compare our algorithm to state-of-the-art
sequence classifiers, support vector machines with spectrum
kernel [24], mismatch kernel [22, 21], and the recent sparse
spatial sample kernel [19, 20]. Besides being fast and highly
accurate, our classification models are easily interpretable,
an important advantage for the bioinformatics and medical
communities.

The remainder of this paper proceeds as follows. Sec-
tion 2 addresses related work. Section 3 presents our learn-
ing framework. Section 4 and 5 analyse the experimental
setup and results. We conclude with pointers to future work
in Section 6.

2. RELATED WORK

Working in high dimensional predictor space and regular-
izing is statistically preferable to a two-step procedure of
first reducing the dimension, then fitting a model in the re-
duced space [32]. Recently, efficient regularized learning al-
gorithms for logistic regression and support vector machines
(SVM) were proposed for fitting classifiers in high dimen-
sional predictor space [27, 9]. In order to scale, most of these
techniques restrict the allowed features (i.e., use k-mers, for
fixed and reasonably small k) and exploit the feature space
sparsity. For some applications, such as text categorization,
where the features occur sparsely in the training instances,
existing techniques perform very well [12]. However, this is
not the case for applications involving biological sequence
classification where the feature space is dense (i.e., many
subsequences occur in many of the training sequences), thus
challenging the running time and memory requirements of
existing methods.

Recent work on efficiently computing string kernels for
SVM [22, 24, 19, 33, 36] addressed some of the computa-
tional challenges associated with this type of techniques.
Nevertheless, the kernels proposed still restrict the set of
features to subsequences of certain length (e.g, k = 10) or
format (e.g., allowing some mismatches) in order to scale.
In this paper we work with the space of all (unrestricted-
length) subsequences in the training set and allow wildcard
matches.

A popular class of models used for sequence classifica-
tion is the generative classifier family, such as profile Hidden
Markov Models [4]. Generative models only learn from posi-
tive training examples, while discriminative techniques (such
as SVM and those proposed in this paper) directly focus on
separating the positive and negative training examples. Pre-
vious work has shown that discriminative approaches out-
perform generative approaches for sequence classification [2,
22, 17].

In this paper we propose learning linear classifiers directly
in the explicit high dimensional feature space rather than
using an implicit mapping via a string kernel as in kernel-
SVM. The computational trick in our algorithm is to use
coordinate descent coupled with bounding the search for

the best coordinate. The idea of using branch-and-bound
to efficiently search the feature space has been proposed for
graph boosting [18]. Boosting approximately minimizes its
11-regularized loss criterion [32]. Our generic algorithm can
be used for ezact regularized fitting of a range of classifica-
tion loss functions, such as exponential loss, binomial log-
likelihood loss of logistic regression, gaussian loss and the
squared hinge-loss of SVM [8]. This work is an extension
of [14] which focused on (unregularized) logistic regression
applied to text categorization. Here, we extend the bounds
of [14] to a class of regularized loss functions, discuss the
tightness of the proposed bounds and focus on the aspect of
dense feature spaces characteristic of biological applications.

3. METHOD PROPOSED

In this section we present our generic learning algorithm
and its concrete implementation for logistic regression and
support vector machines.

3.1 Preliminaries and Basic Notation

We first introduce the theoretical framework and some
basic notation. Assume we have a training set of instance-
label pairs {z;, v}, with y; € {—1,+1}. The training
instances x; are sequences, e.g., biological sequences z; =
AGTCAACTGGAA...., text sequences ©; = ABCD..., se-
quences of rankings z; = A < B < (C < D < ..., sequences
of tasks z; = ABCD.... Let d be the number of distinct
subsequences in the feature space. We formally represent the
training sequences as binary vectors in the space of all subse-
quences of the training set: z; = (xi1, ... Tij, . .. :1cid)T7 Tij €
{0,1}, i=1,N. Let 8 = (f1,...,Bj,-..,34) be a parameter
vector (defining a linear classifier).

The goal is to learn a mapping, also called classification
model, f: X — {—1,41} from the given training set such
that given a new sample x € X, we can predict a label
ye{-1,+1}.

Let

N

L(B) = > &(yi,vi,) + CRa(B) (1)
i=1

be the regularized classification loss criterion. Here, &(y;, 3, 3)

is a classification loss function, C' is a constant and R ()

is a regularizer. Learning a classification model is achieved

by finding the parameter vector # that minimizes the regu-

larized classification loss on the training set

(3 = argming L(f3).

In Equations (2)—(5) we list a few examples of commonly
used classification loss functions.

Exponential loss : &(yi, i, 8) = eyl wi (2)

Binomial loglikelihood loss : £(yi, xi, 3) = log(l—t—e*yiﬁtzi)

()

Squared hinge loss : £(yi, zi, 3) = max(1 — y;3'z:,0)> (4)

Gaussian loss* : £(yi, zi,) = log _ (5)
(yiBtai)

The penalty weight C' > 0 controls the amount of regu-

larization of the parameter vector 8. A large C' means more

1% is the cdf of the standard normal distribution.

penalty on the 3 parameters. The regularization term can
take various forms, the most common being the [1 and the [2
(Equation (6)). In our work R (/) is the elastic-net regular-
izer [10, 6] (defined in Equation (7)), which is a compromise
between the [2 (a = 0) and the I1 (o = 1).

d 1 ¢
n=318l, =3 8 (6)
j=1 Jj=1

d d
Ra(®)=ad 5|+ (-3 38 @

Jj=1

Depending on the type of regularization, increasing the
weight C of the penalty term results in many zero (3; (for 11-
regularization) or shrinking the coefficients (3; of correlated
predictors (for [2-regularization). The elastic-net regularizer
allows balancing the two effects.

3.2 Gradient-Bounded Coordinate-Descent
Algorithm
In this section we describe our learning algorithm and
characterize the properties of loss functions to which it can
be applied. Assume the following properties for the loss
function:

1. £ depends on y;, x; and 8 only through the classifi-
cation margin m; = yiﬂtm. Note that x; is correctly
classified if the margin m, is positive and the higher
the margin the higher the classification confidence. We

write £(y, z, 8) = &(m).
2. £ is a monotone decreasing function of the margin:
£'(m) <0.

3. ¢ is convex and continuously differentiable.

Properties 1-2 are required for the bounding strategy (The-
orem 1), while property 3 is required for the convergence
result (Theorem 2). The gradient of L(3) (defined in Equa-
tion (1)) with respect to a coordinate (; is

oL
9B;

or using the margin notation

N
(B) =D wimi;€ (yif'm:) + Clasign(B;) + (1 — @) ;]

i=1

oL &
8_[3-(6) = yiwi;€ (ms) + CRL(B;).
J i=1

If R.(B) is not differentiable in 5 = 0 we use the left-right
derivatives. We proceed minimizing L(3) by coordinate-wise
gradient descent in the feature space of all subsequences. In
each iteration we update only the coordinate correspond-
ing to the subsequence with the largest gradient magnitude,
following the Gauss-Southwell rule [30]:

Jj = argmax,

=)

1

This results in a greedy advance towards the optimum of the
objective function, without having to explicitly generate the
full space of subsequences. All we need is an efficient way
to find the best coordinate (i.e., feature) in each iteration.
We summarize the steps of our generic coordinate-descent
algorithm in Algorithm 1. The core part of the algorithm

Algorithm 1 Generic coordinate-descent algorithm

1. Set 3 =0
2. For t=1:T

(a) Find j; = argmax; %(ﬁ(tﬂ)) (using Theorem
Jt
1)

(b) Use line search to set the step length ¢ for coor-

dinate j:
(c) Set 3 = 7" — ey (847Y) and 5 =
]it71)7 k 75 jt

is a search routine (line 2(a) in Algorithm 1) that quickly
returns the best feature in each iteration. The search pro-
cedure relies on bounding the gradient value of any subse-
quence early on, by only looking at its prefix. This looks
difficult at first glance since the prefix may be a poor fea-
ture, while its extension can be highly discriminative. The
intuition behind our bound is based on two observations: the
gradient is determined by class-wise feature frequency and
the subsequence space has structure (that we can exploit to
bound the per-class frequency). More concretely, a feature
has high gradient value if its frequent in one class and infre-
quent in the other. Per class, the frequency of a given feature
is bounded by the frequency of its prefix. Thus, class-wise,
we can bound the gradient of a given subsequence based on
its prefix, and then build a global bound from the class-
wise bounds. Using this bound we can discard large parts of
the search space during the search for the best subsequence,
making the whole search process efficient, both time-wise
(fast running time) and space-wise (low memory). Once we
found the best feature, we do an adapted Armijo rule line
search [37, 12] to compute the feature weight and guarantee
convergence.

Let j be a coordinate corresponding to a given subse-
quence sj, and [be a coordinate corresponding to a super
sequence of s;, s;, i.e. s; is a prefix of 5;. We write s; € z;
to denote x;; # 0.

The following theorem gives a tight upper bound on the
gradient value of any subsequence.

THEOREM 1. For any loss function & satisfying properties
1-2 and any subsequence s; O sj, j=1,...,d,

oL

0 €' (mi) + CRL(B)],(8)

(ﬂ)‘ < max
{ilsjexi,yi=+1}
> —€(mi)+CRLB)

{ilsj€xi,y;=—1}

PRrROOF. We split the analysis in two parts, the first part
focuses on deriving a bound within the negative class, and
the second part focuses on the positive class. Recall that

&'(m) <0. Then,
oL

= (8) = yixal' (mi) + CRo (1) 9)
96y {i\slze:zi}
< > wimag (mi) + CRL(B)
{ilsi€x;,y;=—1}
< > yizi;€ (mi) + CRo(B)

{ilsj€xi,y;=—1}

> —&(m)+CRL(B)

{ilsj€zq,y;=—1}

The last inequality in Equation (9) holds because of the anti-
monotonicity property {i|s; € xi,yi = —1} C {i|s; € xi,yi =
—1}. Similarly, we can show for the positive class that

oL
8—@(5) > >

{ilsj€zq,y;=—+1}

€'(ms) + CRa(B)

Thus we obtain the lower and upper bounds

¢(mi) + CRAB) < 2Z(8) (10)

=95
{ilsj€zi,y;=+1} ﬁ

D>

{ils;€xi,y;=—1}

—&'(mi) + CRL(B).

We are interested in an upper bound on the absolute mag-
nitude of the gradient at a given coordinate, thus we write
more conveniently

oL / /
S < ma € (m) + CRL(A)|
! {ilsj€zi,yi=+1}
> —€(m)+CRL(B)
{ilsj€xi,yi=—1}
[l

The main property on which Theorem 1 relies on (last in-
equality in Equation (9)) is anti-monotonicity: the prefix
frequency is higher than that of its extension subsequence.
This means that the same bound holds for any weight z;
as long as x; > z;. This observation is useful for example
if we want to integrate prior biological knowledge about the
target problem, such as the fact that some amino acids in
protein sequences are more useful than others. We could
encode this information by giving weights wq € (0,1) to in-
dividual amino acids and still have the property that z; =
Iy we > 2.

As we can observe from Equation (8), without explicit
regularization of the loss function, the upper bound on the
gradient of a subsequence s; solely depends on the frequency
of its prefix s;. This means that we can decide not to expand
the s; prefix further, without inspecting the longer feature
s1. If we use a regularizer, we have the term (; in the bound
which depends on the longer subsequence, rather than the
prefix alone. Thus, we have to take care to compute the
correct bound whenever 3; # 0. Since at start all §; are
zero, during the iterations we only need to check those fea-
tures that have non-zero 3; because they were selected in the
model in previous iterations. In practice, as supported by
our experiments, this part is fairly fast due to the sparsity
of the final model learned by this algorithm.

The bound presented in Theorem 1 is tight since we can
construct examples for which the inequality is an equality.
Consider the simple case of a training set with positive ex-
amples of the type AAAAAAA, and negative examples of
the type BBBBBB. Whenever the subsequence set of oc-
currences is the same as that of its prefix, the inequality
becomes equality.

The iterates generated by Algorithm 1 converge to the
optimal solution of the objective function given in Equation
(1). Based on results from [37] characterizing the conver-
gence of iterates generated by coordinate-descent using the
Gauss-Southwell rule for 11-regularized convex minimization
we have:

THEOREM 2. Let 8% be a sequence of iterates generated
by Algorithm 1. Then /W converges to the optimal solution
of (1).

In the next subsections we describe the specific bounds
used to design learning algorithms in the style of Algorithm
1 for logistic regression and support vector machines. We
choose these popular classifiers for concrete implementations
because their loss functions satisfy the properties 1-3 and
they are margin maximizing [32]. The latter property typi-
cally translates into good generalization ability in practice.

3.3 Logistic Regression
Let
N t
L(B) = Y _log(1+e "7 ") + CRa(f)
i=1

be the elastic-net-regularized binomial log-likelihood loss [8].
The gradient of L(3) with respect to a coordinate j at a
given parameter vector [is:

oL - -1 ,
8_[3]»(5) = ;yifcij (m) +CR.(B)
= —_——

&' (my)
COROLLARY 1. For binomial log-likelihood loss and any

subsequence s; O s, j=1,...,d,
oL —1 /
8_[31(6)‘ < max W‘FCRa(ﬂl))

{ilsj€xi,y;=+1}

1
Z T4 o—Per + CRL(B)

{ils;€xi,y;=—1}

3.4 Support Vector Machines
Let

N
L(B) = 3" max(1 - y:B'2:,0)* + CRa(B)

i=1
be the elastic-net-regularized squared hinge loss [1]. We can
rewrite L(3) in the equivalent form

LB = > (1—yB'w)’+CRa(B)
{i|1—y;Btz; >0}

The gradient of L(3) with respect to a coordinate j at a
given parameter vector (3 is:

oL
a—ﬂj(ﬂ) = >

yiwi; 2(yiB s — 1) +CRL(B)
) N
{i|l1—y;Btz; >0}

&' (my)

COROLLARY 2. For squared hinge loss and any subsequence
s12s5,7=1,....4d,

g—g(ﬂ)’ < max >

{ilsj€x;,1-Bte;>0,y;=+1}

> 2(1 + 8':) + CRL(5)

{ilsj€x,14+Btx;>0,y;=—1}

3.5 Algorithmic Details

In this section we give some details on using the bound of
Theorem 1 to prune the search space.

Before starting the optimization iterations we build an
inverted index on all the distinct unigrams in the training
set, i.e., a list of document ids and positions of occurrence
for each unigram. In each iteration we start the process of
searching for the best feature from the level of unigrams.

We implement two strategies of prefix-expansion. The
breadth-first-search (BFS) expands all unigrams to bi-grams,
then all bi-grams to tri-grams, etc. For each unigram, we
compute the gradient value, we keep track of the best gra-
dient /feature seen so far and we compare the bound to the
current best gradient. If the bound is lower than the current
best gradient value, no subsequence starting with this uni-
gram can improve the current optimum and we prune this
part of the search space (i.e., we discard this prefix). Then
we move on to the next level of expansion, and repeat this
process. The depth-first-search (DFS) strategy expands the
unigram to its longest subsequence until the pruning con-
dition is met, and it then backtracks to the longest valid
prefix and re-attempts to expand. Depending on the se-
quence tokenization used, word-level or character-level, the
two strategies have different benefits. For word-level tok-
enization, such as in text categorization, short subsequences
are more likely to be useful than long ones (e.g., phrases of
2-3 words are typically good discriminators), and therefore
BFS may be a better expansion strategy. For character-level
tokenization, such as for biological sequences, longer subse-
quences tend to be more useful than shorter ones (e.g., sub-
sequences of length 3 or less may occur in all the sequences),
so DFS is a better expansion choice. For the experiments
in this paper we have used DFS. In order to keep track of
the occurrences of all active prefixes (e.g., subsequences that
could not be pruned using Theorem 1), we expand the in-
verted index on-demand. The inverted index does not grow
excessively due to the effectiveness of the bound. After se-
lecting the feature with the best gradient in a given iteration,
we do a line search to compute the final feature weight [12].
We stop the optimization iterations based on a threshold on
the change of predicted scores [12].

The worst-case complexity of each iteration is O(dN),
where d is the number of features and N is the number
of training samples. In practice, our algorithm drastically
prunes the search space and is thus very fast. For exam-
ple, for the classification task Scorpion-toxin like (presented
in detail in Section 5) we have observed the following be-
haviour. There are 23 distinct unigrams in the training set
(22 amino acids and we add the wildcard as an additional un-
igram). The longest sequence in the training set has length
892, and the average sequence lenght is ~ 50. Even if we
were to restrict the maximum k-mer size to k = 50, the num-
ber of features d is O(23°°) (all the subsequences up to size

2(8'w; — 1) + CRL(A)|,

k = 50 created using the 23 unigrams; in practice, without
wildcards, there are 6.5 million features in the training set).
For finding the best feature in the first iteration using SVM
loss and unrestricted k, our algorithm checks the pruning
bound 1,113 times, and prunes the space 1,104 times (i.e.,
discards 1,104 prefixes out of the total 1,113 analysed). The
algorithm stops in 3 seconds, after 77 iterations. In the last
iteration, it checks the bound 14,077 times and prunes the
space 13,952 times. Thus, the bound in Theorem 1 efficiently
prunes the huge search space. For future work we will focus
on quantitative measures of index growth as a function of
the alphabet size and number of training examples.

For simplifying the implementation we currently prune the
space using a prefix-expansion strategy. Theorem 1 however
can be used for pruning all features that contain a given
subsequence, not necessarily in the start position as a pre-
fix. This observation could be used to further speed up the
training process.

4. EXPERIMENTS

We implement the generic coordinate-descent algorithm in
our machine learning tool SEQL (SEQuence Learner), avail-
able from http://www.daimi.au.dk/"ifrim/seql (v2.0). For
now, SEQL implements the two elastic-net-regularized clas-
sifiers presented in the previous section: logistic regression
and support vector machines. In this section we describe
the datasets, the techniques compared and the methodology
for designing experiments.

4.1 Datasets

In order to compare our results to the state-of-the-art we
compare directly to published results and perform experi-
ments on the same benchmarks.

For protein remote homology detection we use the
benchmark SCOP1.59 [22, 24, 38, 19]. This is an expert-
curated database of protein domains organized heirarchi-
cally into folds, superfamilies and families. Protein sequences
belonging to different families, but the same superfamily, are
considered to be remote homologs in SCOP. This dataset
contains 2,862 labeled sequences organized into 54 binary
classification problems simulating homology detection by pre-
dicting the super-family using a hold-one-family-out strat-
egy. No pair of sequences shares more than 95% identity.
The positive training sets are quite small and the learning
task is challenging. For more details on this benchmark see
[15, 24, 38].

For protein remote fold recognition we use the bench-
mark published by [3]. This dataset consists of sequences
from 27 folds divided into two independent sets such that
the training and test sequences share less than 35% sequence
identities and within the training set, no sequences share
more than 40% sequence identities. There are 311 training
sequences and 383 test sequences.

In order to analyze the scalability of our method in a
large scale experiment, we have downloaded the latest ribo-
somal RNA (rRNA) database Silva-LSUParc? [31], version
102 (released in February 2010.) The LSUParc102 database
contains 180,344 rRNA sequences. After removing dupli-
cate sequences we obtain a dataset of 150,780 unique se-
quences organized in 3 (one-vs-all) binary classification tasks

2Silva-LSUParc database: http://www.arb-
silva.de/documentation/background /release-102/.

according to the Bacteria, Archaea and Eukarya domains.
The distribution by domain is dominated by Eukarya with
141,601 sequences, followed by Bacteria with 8,967 and Ar-
chaea with 212 sequences. All datasets are available from
http://www.daimi.au.dk/"ifrim/seql/data.

4.2 Techniques Compared

Previous studies have shown that discriminative approaches
for sequence classification (such as kernel-SVM) outperform
generative approaches (such as profile HMM) by a large mar-
gin [2, 17, 22, 26].

‘We compare our algorithms to the latest sequence kernels
for SVM: the spectrum kernel, the mismatch kernel [22, 24,
29], and the recent sparse spatial sample kernel (SSSK) [20,
19]. All these methods aim at computing similarity for all
pairs of sequences (the kernel matrix) in a particular feature
space. Due to computational challenges, these techniques
typically restrict the length and expressive power of the sub-
sequences used as features. For example, the spectrum-k
kernel [23] implicitly compares sequences in the space of all
k-mers, where the length k& of subsequence-features is a pa-
rameter of the model. The mismatch kernel [22] generalizes
the spectrum-k kernel by allowing up to m mismatches or
substitutions to accomodate mutations. The sparse spatial
sample kernel (SSSK) further generalizes the mismatch ker-
nel by sampling the sequences at different resolutions and
comparing the resulting spectra [19]. SSSK has 3 parame-
ters, (k,t,d), where k is the probe size, t is the number of
probes and d is the number of maximum allowed positions
between the probes. Our learning algorithm SEQL uses all
(unrestricted-length) subsequences in the training set as fea-
tures. Furthermore, we also allow mismatches or so called
wildcard matches, by a parameter that controls the maxi-
mum number of consecutive wildcards allowed. This allows
us to model complex biological processes such as substitu-
tions, insertions and deletions. Figure 1 gives examples of
the types of features implicitly used by the above described
kernels, as compared to the features used by our technique.

One advantage of kernel techniques is their ability to in-
tegrate unlabeled data during kernel computation to relax
labeled data requirements [19]. However, computing all-pair
similarities for large datasets (resulting from the addition
of unlabeled sequences) remains computationally very chal-
lenging for kernel methods both time and memory-wise. For
example, we couldn’t apply any of the above mentioned ker-
nel methods on our large dataset (150,000 sequences) since
this would require more than 90GByte memory. In con-
trast, by exploiting the feature space structure, SEQL can
use more expresive features and still be able to scale.

For completion we also report the results of a technique
published by [26] which applies SVM using an empirical ker-
nel map based on pairwise Smith-Waterman sequence align-
ment scores (SVM-pairwise in Tablel).

We use SEQL-LR and SEQL-SVM to denote the logistic
regression and support vector machines implementations of
our generic learning algorithm.

4.3 Methodology

Previous studies on biological sequence classification have
extensively used the AUC (area under the ROC curve) and
AUCS0 for evaluation [5, 24, 34]. AUC describes the rank-
ing of prediction scores rather then being dependent on a
fixed classification threshold. The ROC curve is obtained

by plotting the fraction of true positives versus the fraction
of false positives for a binary classifier as its discrimination
threshold is varied [5]. A common aggregate measure is to
report the area under the ROC curve (AUC) where an area
of 1 represents a perfect ranking of all positives above all
negatives and an area close to 0.5 represents a random clas-
sifier. The AUC50 focuses on top ranked examples and is
defined as the normalized area under the ROC curve com-
puted for up to 50 true negatives [34]. It is typically used
to evaluate classifiers on datasets where the number of posi-
tives is much lower than the number of negatives. While for
a complete test set the AUC is betwen 0.5 and 1, the AUC
values for truncated top lists are between 0 and 1. The
shorter the top list is, the smaller the AUC values [34]. In
some studies instead of AUC or AUC50 only the balanced-
error-rate (BER) is reported. To compare our results to the
state-of-the-art, we also show the balanced-error (Equation
(11)) which measures the average of the errors on each class
for a fixed classification threshold. It can equivalently be
interpreted in terms of Specificity and Sensitivity [25].

1 FN " FP
2 TP+ FN FP+TN
—_——— —

1—Sensitivity

BER =

(11)
1—Specificity

The benchmarks for remote homology detection and fold
recognition have pre-defined training and test splits. We use
the same data for experiments for all methods compared,
and for the prior techniques we report directly the results
published in the original papers. For the large scale experi-
ment on ribosomal RNA, we show 5-fold cross-validation re-
sults on the full dataset. Since the prior techniques required
more than the available memory, for the large dataset we
only report results using our method.

All experiments were run on a Linux laptop with 2.5GByte
memory and 2.8GHz Intel CPU.

S. RESULTS AND DISCUSSION

In this section we present the results of applying SEQL-LR
and SEQL-SVM to protein remote homology detection and
fold recognition. Furthermore, to evaluate the scalability of
our approach, we present a large-scale experiment on the
latest release of the Silva-LSUParc database [31].

5.1 Comparison to State-of-the-Art

We first compare the performance of SEQL-LR and SEQL-
SVM to that of kernel-SVM techniques on two protein clas-
sification tasks.

5.1.1 Protein remote homology detection

In Table 1 we show results on the SCOP1.59 benchmark
for all compared methods. The numbers in brackets next
to the name of each method refer to their explicit param-
eters as discussed in the previous section (e.g., length k of
subsequences used as features or maximum number of wild-
cards). The results are averaged over all 54 binary classifi-
cation tasks which correspond to superfamilies.

For SEQL-LR and SEQL-sVM we do grid search to set d
(the maximum allowed number of consecutive wildcards, d €
{0,1,2,..,5}), and the regularization parameters C' and «
of the elastic-net penalty (C' € {0,0.001,0.01,..,100}, a €
{0,0.1,0.2, ..,1}). We show the most accurate results across

k=6

Spectrum-k Kernel

-~
L L[[alefclofele] [[T [[1]]]

k=6

Mismatch-(k,m) Kernel

LI L] [Ale

* | *x

Effl LTI

-
m=2

= t=3
<k_2>/ Yy

Sparse Spatial Sample Kernel-(k.t,d) [[[[[A[B[*[*[*[c[o[*[*[E[F[[[[]
- -
d=3 d,=2
SEQL-d, no restrictions on t or k ‘ ‘ ‘ ‘ ‘A‘B |*|*|Cl*|D*|*|E" F‘ ‘ ‘
-

d=3

Figure 1: Features employed by state-of-the-art kernels versus our method SEQL. Spectrum-k Kernel, k is
the length of features. Mismatch-(k,m) Kernel, k is the length of features, m is the maximum number of
mismatches. Sparse Spatial Sample-(k,t,d) Kernel, k is the probe size, t is the number of probes and d
is the number of maximum allowed positions between the probes. SEQL-d, d is the maximum number of

consecutive wildcards.

Method AUC AUC50 BER
SVM-SPECTRUM 0.8581 0.3583 -

(2)

SVM-SPECTRUM(3) 0.8723 0.4037 -
(5
)

svM-MISMATCH(5,1) | 0.8749 0.4167 -
SVM-SssK(1,2,5 0.8901 0.4629 -
SVM-sssk(1,3,3) 0.9148 0.5118 -
SVM-pairwise 0.8930 0.4340 -
SEQL-LR(5) 0.9155 | 0.5184 | 0.4477
SEQL-SVM(5) 0.9220 | 0.5237 | 0.4158

Table 1: Remote homology detection on the
Scopl.59 dataset. The average AUC, AUC50 and
BER scores over the 54 target superfamilies. Re-
sults for kernel-SVM methods cited directly from
[24, 19]. SEQL-LR and SEQL-SVM are the methods pro-
posed in this paper.

the parameter values tried. We observe that our techniques
are comparable to the state-of-the-art methods regarding
classification quality. We believe it is important to allow
flexible features, (e.g., allowing wildcards and not restricting
the feature lenght in advance), although here the training
sets are quite small and the gain is not large. We note
that SEQL-SVM has slightly better AUC and AUC50 than
SEQL-LR. Learning SEQL classifiers on this dataset took a
few seconds per topic and about 80MByte memory. The
computational requirements of SEQL are mainly influenced
by the maximum allowed number of consecutive wildcards.

Figure 2 shows a graphic comparison of some of the meth-
ods (for which we had access to published per class AUC50
scores) by plotting the total number of superfamilies above
an AUC50 score threshold, as a function of the threshold
value. The threshold is changed so as to generate the next
AUCS50 value in the ranked list of AUC50 scores of the re-
spective method. The numerical integral of this cumulative

60

séql-svn‘(S) —
seql-Ir(5) ——
P, sssk(1,3,3) -
SO TN sssk(1,2,5) o
g % mismatch(5,1)
8 4oy
E
k]
5 30
b}
=)
]
Z 20+
10 |
0 ‘
0 01 02 03 04 05 06 07 08 09 1
AUC50
Figure 2: Comparison of mismatch-SVM, SSSK-

SVM, SEQL-LR and SEQL-SVM on SCOP1.59.
The total number of superfamilies for which a given
method exceeds an AUCS50 score threshold.

AUCS50 curve is the arithmetic average of the AUC50 val-
ues shown in Table 1 [34]. SVM with sparse-sample-spatial
kernel (sssk-svM) behaves best among the prior techniques.
Even though the features employed by SSSK-SvM are quite
flexible (see Figure 1), we observe we can gain some perfor-
mance by imposing less restrictions on features.

[19] analyzed the biological relevance of features learned
by $SSK-SVM taking the Scorpion toxin-like superfamily as an
example. This classification task has 16 members of this su-
perfamily as positive training examples, 1067 non-members
as negative examples and the short-chain scorpion toxin
family as a test case. Sssk-svM(1,2,5) achieved an AUC50
of 0.7661 for this task [19]. In their work [19] present the
schematic representation of the short-chain scorpion toxin

family obtained from PROSITE [11]. The PROSITE database
consists of a large collection of manually-curated biologically
meaningful signatures that are described as patterns or pro-
files [11]. In Figure 3 we show the PROSITE representa-
tion. The scheme shows that these type of toxins contain six

D0.0.0.0.0.0.00.090.00900006000004
FR KKK KRR Rk (R R Rk Ok KRk Ck (R XX

'C': conserved cysteine involved in a disulfide bond.
'x': position of the consensus pattern

Figure 3: Schematic representation of the short-
chain scorpion toxins family from PROSITE.

conserved cysteines (C) residues involved in disulfide bonds.
PROSITE also lists a consensus pattern present in all the
members of this family shown as well in Figure 3 (marked
with "X’). We focus here on the same superfamily and look
at the features learned by SEQL-svM(5). In Table 2 we show

| Positive Features | [Negative Features |

Weight Feature Weight Feature
0.0460 SG*C -0.0329 G
0.0450 NH**CHE-C -0.0313 A
0.0415 C*C**L -0.0292 S
0.0410 CHFFCHFRRG -0.0279 Q
0.0340 C*C -0.0271 E
0.0329 G**G*C -0.0248 | A¥FRFXK
0.0326 | CFFxCHRRC -0.0217 K
0.0308 GYC -0.0216 CP
0.0308 CFF*C -0.0206 C**G
0.0307 G¥**G*C -0.0205 C**C

Table 2: Top-10 positive and negative SEQL-SVM fea-
tures on the SCOP.1.59 Scorpion-toxin-like super-
family.

the top-10 positive and top-10 negative features selected by
SEQL-SVM on this superfamily.

SEQL-SVM(5) has an AUC50 of 0.9573 on this task. [19]
analyzed the support vectors of their method and observed
that the feature C***C had the highest weight. Similarly,
SEQL-SVM(5) selects the feature C***C in top-10, but ranks
features such as SG*C and N**C***C higher. In order to
understand the effect of these features on the AUC50 score,
we took a closer look at the quality of some of the selected
features. We observed that although C***C occurs in all
positive examples, it is also present in many negatives and
is thus less useful than SG*C, which occurs in most positive
examples, but in very few negative examples.

5.1.2 Protein remote fold recognition

In this section we show an application of SEQL-LR and
SEQL-SVM to protein remote fold recognition on the dataset
published by [3]. They proposed a technique based on build-
ing an SVM classifier using features deemed biologically rele-
vant for this problem, such as percentage composition of the
20 amino acids, predicted secondary structure, polarity. In
Table 3 we show results comparing the technique of [3], de-
noted by svM(D&D), with published results of kernel-SVM
methods and with our SEQL-LR and SEQL-SVM algorithms.
Recall that lower BER means better classification quality.

Method AUC AUC50 BER

svM (D&D) - - 0.5650
SVM-MISMATCH(5,1) - - 0.5322
SVM-SssK(1,2,5) - - 0.4619
SVM-sssk(1,3,3) - - 0.4499
SEQL-LR(H) 0.7882 | 0.3551 | 0.4412
SEQL-SVM(5) 0.7982 | 0.3742 | 0.4222

Table 3: Remote fold recognition on the D&D
dataset. The average AUC, AUC50 and BER over
the 27 target folds. Results for SVM(D&D) and
other kernel-SVM methods cited from [3, 19].

Even if we don’t use any domain-specific knowledge in
this experiment, we observe that our techniques have better
classification quality than the method of [3] which relies on
deep biological insight. We believe this advantage results
from having feature selection as a part of the learning al-
gorithm and allowing for a large degree of flexibility in the
features. SEQL-LR and SEQL-SVM outperform the state-of-
the-art techniques in terms of balanced-error-rate on this
benchmark.

5.2 Large-Scale Experiment

In this section we analyze the scalability of our method
on a ribosomal RNA (rRNA) domain-prediction task.

5.2.1 Ribosomal RNA Domain-Prediction

The dataset used for this task contains 150,780 unique
rRNA sequences. It is estimated that based on the new ca-
pacity for cheap and rapid sequencing there is a steady flow
of about 10,000 rRNA sequences per month into the public
sequence databases [31]. Furthermore, many sequences are
derived from cultivation independent biodiversity surveys,
which rely on rapid pattern- or clone-based approaches that
often generate partial rRNA sequences [31] (problematic for
sequence alignment).

We show the average results of SEQL-LR and SEQL-SVM
over 5-fold cross-validation splits for fixed parameter values.
We set the amount of regularization C' = 1.0, we balance
[1 and [2 regularization by setting o = 0.5 and allow no
wildcards by setting the maximum number of consecutive
wildcards d = 0.

In Table 4 we show classification quality, training time and
memory resources required by SEQL-LR and SEQL-SVM. We

Method AUC | AUC50 | BER Time | Memory

SEQL-LR 0.9992 | 0.9745 | 0.0095 | 30 min | 2GByte

SEQL-SVM | 0.9986 | 0.9744 | 0.0118 | 25 min | 2GByte
Table 4: Ribosomal RNA domain-prediction on

Silva-LSUParc102.

note that both SEQL-based techniques have high classifica-
tion quality. Additionally, they only take about half-an-hour
running-time and a reasonable 2GByte memory instead of
90GByte required by a kernel matrix computation. Instead
of building sequence classifiers by costly multiple sequence
alignment as currently done for sequence retrieval in this
database, we could directly learn domain SEQL-classifiers
from the original input sequences in the respective domains.

6.

CONCLUSION

In this paper we present a new learning algorithm for
sequence classification in high dimensional predictor space.

Our framework has at its core a gradient-bounded coordinate

descent strategy to quickly retrieve high quality features.

The generic learning algorithm works with a wide range of

loss functions, including that of logistic regression and sup-
port vector machines. When applied to protein remote ho-
mology detection and fold recognition, as well as large-scale
domain-prediction for ribosomal RNA, our techniques are
comparable to the state-of-the-art in terms of classification
quality. In addition, the techniques presented are highly
scalable and the resulting classification models can easily
be interpreted and connected to biologically relevant facts.
Furthermore, the same gradient-bounding strategy can be
used for tackling sequence regression [13]. Finally, our al-
gorithm can be applied to more complex structured data
such as trees and graphs which follow the anti-monotonicity
property required by our theoretical framework. We plan to
investigate these research directions in our future work.

7.

ACKNOWLEDGMENTS

This work was supported by the Danish Cancer Society
and Science Foundation Ireland Grant 10/IN.1/1303.

8.
[1]

2]

3]

[4]

[5]

(10]

(11]

12]

(13]

(14]

(15]

REFERENCES

K.-W. Chang, C.-J. Hsieh, and C.-J. Lin. Coordinate
descent method for large-scale 12-loss linear support vector
machines. J. Mach. Learn. Res., 9:1369-1398, 2008.

J. Cheng and P. Baldi. A machine learning information
retrieval approach to protein fold recognition.
Bioinformatics, 22(12):1456-1463, 2006.

C. H. Ding and I. Dubchak. Multi-class protein fold
recognition using support vector machines and neural
networks . Bioinformatics, 17(4):349-358, 2001.

S. R. Eddy. Profile hidden markov models. Bioinformatics,
14(9):755-763, 1998.

T. Fawcett. Roc graphs: Notes and practical considerations
for researchers, 2004.

J. H. Friedman, T. Hastie, and R. Tibshirani.
Regularization paths for generalized linear models via
coordinate descent. Journal of Stat. Soft., 33(1):1-22, 2010.
A. Genkin, D. Lewis, , and D. Madigan. Large-scale
bayesian logistic regression for text categorization.
Technometrics, 49(3):291-304, 2007.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements
of Statistical Learning. Springer Series in Statistics, 2003.
C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and

S. Sundararajan. A dual coordinate descent method for
large-scale linear SVM. In ICML, 2008.

7. Hui and T. Hastie. Regularization and variable selection
via the elastic net. Journal of the Royal Stat. Soc. Series,
67(2):301-320, 2005.

N. Hulo, A. Bairoch, V. Bulliard, L. Cerutti, E. De Castro,
P. S. Langendijk-Genevaux, M. Pagni, and C. J. A. Sigrist.
The prosite database. Nucl. Acids Res., 34(1):227-230,
2006.

G. Ifrim. Statistical Learning Techniques for Text
Categorization with Sparse Labeled Data. PhD thesis,
Universitit des Saarlandes, 2009.

G. Ifrim. Gradient-bounded coordinate-descent for
sequence regression. www.4c.ucc.ie/ ifrim/seql/data, 2010.
G. Ifrim, G. Bakir, and G. Weikum. Fast logistic regression
for text categorization with variable-length n-grams. In
KDD, pages 354-362, USA, 2008.

T. Jaakkola, M. Diekhans, and D. Haussler. Using the

[16]

(17]

(18]

19]

20]

(21]

(22]

(23]

[24]

[25]

[26]

27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37)

(38]

fisher kernel method to detect remote protein homologies.
In ICISMB, pages 149-158. AAAI Press, 1999.

T. Joachims. Training linear SVMs in linear time. In KDD,
pages 217-226, USA, 2006. ACM Press.

R. Kuang, E. Te, K. Wang, K. Wang, M. Siddiqi,

Y. Freund, and C. Leslie. Profile-based string kernels for
remote homology detection and motif extraction. In CSBC,
pages 152—-160, USA, 2004. IEEE Computer Society.

T. Kudo, E. Maeda and Y. Matsumoto. An Application of
Boosting to Graph Classification. In NIPS, 2004.

P. Kuksa, P. H. Huang, and V. Pavlovic. A fast,
semi-supervised learning method for protein sequence
classification. In International Workshop on Data Mining
in Bioinformatics, pages 29-37, 2008.

P. Kuksa, P. H. Huang, and V. Pavlovic. Scalable
algorithms for string kernels with inexact matching. In
NIPS, 2008.

C. Leslie, E. Eskin, A. Cohen, J. Weston, and W. S. Noble.
Mismatch string kernels for discriminative protein
classification. Bioinformatics, 20(4):467-476, 2004.

C. Leslie, E. Eskin, and W. Noble. Mismatch string kernels
for svm protein classification. In NIPS, 2002.

C. Leslie, E. Eskin, and W. Noble. The spectrum kernel: a
string kernel for svm protein classification. In Pacific
Biocomputing Symposium, pages 564-575, 2002.

C. Leslie and R. Kuang. Fast string kernels using inexact
matching for protein sequences. J. Mach. Learn. Res.,
5:1435-1455, 2004.

I. Levner, V. Bulitko, and G. Lin. Feature extraction for
classification of proteomic mass spectra: A comparative
study. Studies in Fuzziness and Soft Computing,
207:607-624, 2006.

L. Liao and W. S. Noble. Combining pairwise sequence
similarity and support vector machines for remote protein
homology detection. In ICCB, pages 225-232, USA, 2002.
C.-J. Lin, R. C. Weng, and S. S. Keerthi. Trust region
Newton method for large-scale logistic regression. J. Mach.
Learn. Res., 9:627—650, 2008.

J. Liu, J. Chen, and J. Ye. Large-scale sparse logistic
regression. In KDD, pages 547-556, USA, 2009.

H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini,
and C. Watkins. Text classification using string kernels. J.
Mach. Learn. Res., 2:419-444, 2002.

D. Luenberger. Linear and Nonlinear Programming.
Addison-Wesley Publishing Co.: Reading Mass, 1984.

E. Pruesse, C. Quast, K. Knittel, B. M. Fuchs, W. Ludwig,
J. Peplies, and F. O. Glockner. SILVA: a comprehensive
online resource for quality checked and aligned ribosomal
RNA sequence data compatible with ARB. Nucl. Acids
Res., 35(21):7188-7196, 2007.

S. Rosset, J. Zhu, and T. Hastie. Boosting as a regularized
path to a maximum margin classifier. J. Mach. Learn.
Res., 5:941-973, 2004.

Q. Shi, J. Petterson, G. Dror, J. Langford, A. Smola, and
S. Vishwanathan. Hash kernels for structured data. J.
Mach. Learn. Res., 10:2615-2637, 2009.

P. Sonego, A. Kocsor, and S. Pongor. ROC analysis:
applications to the classification of biological sequences and
3D structures. Brief. in Bioinf., 9(3):198-209, 2008.

S. Sonnenburg and V. Franc. Coffin : A computational
framework for linear svms. In ICML, 2010.

S. Sonnenburg, G. Rétsch, S. Henschel, C. Widmer,

J. Behr, A. Zien, F. de Bona, A. Binder, C. Gehl, and

V. Franc. The SHOGUN machine learning toolbox. J.
Mach. Learn. Res., 11:1799-1802, 2010.

P. Tseng and S. Yun. A coordinate gradient descent
method for nonsmooth separable minimization.
Mathematical Programming, 117:387-423, 2009.

J. Weston, C. Leslie, E. Ie, D. Zhou, A. Elisseeff, and W. S.
Noble. Semi-supervised protein classification using cluster
kernels. Bioinformatics, 21(15):3241-3247, 2005.

