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After the completion of the human and other genome projects it
emerged that the number of genes in organisms as diverse as fruit
flies, nematodes, and humans does not reflect our perception of
their relative complexity. Here, we provide reliable evidence that
the size of protein interaction networks in different organisms
appears to correlate much better with their apparent biological
complexity. We develop a stable and powerful, yet simple, statis-
tical procedure to estimate the size of the whole network from
subnet data. This approach is then applied to a range of eukaryotic
organisms for which extensive protein interaction data have been
collected and we estimate the number of interactions in humans to
be �650,000. We find that the human interaction network is one
order of magnitude bigger than the Drosophila melanogaster
interactome and �3 times bigger than in Caenorhabditis elegans.

evolutionary systems biology � network inference �
network sampling theory � network evolution

One of the perhaps most surprising results of the genome-
sequencing projects was that the number of genes is much

lower than had been expected and is, in fact, surprisingly similar
for very different organisms (1, 2). For example, the nematode
Caenorhabditis elegans appears to have a similar number of genes
as humans, whereas rice and maize appear to have even more
genes than humans. It was then quickly suggested that the
biological complexity of organisms is not reflected merely by the
number of genes but by the number of physiologically relevant
interactions (1, 3). In addition to alternative splice variants (4),
posttranslational processes (5), and other (e.g., genetic) factors
influencing gene expression (6, 7), the structure of interactome
is one of the crucial factors underlying the complexity of biological
organisms. Here, we focus on the wealth of available protein
interaction data and demonstrate that it is possible to arrive at a
reliable statistical estimate for the size of these interaction net-
works. This approach is then used to assess the complexity of
protein interaction networks in different organisms from present
incomplete and noisy protein interaction datasets.

There are now fairly extensive protein interaction network
(PIN) datasets in a number of species, including humans (8, 9).
These have been generated by a variety of experimental tech-
niques (as well as some in silico inferences). Although these
techniques and the resulting data are (i) notoriously prone to
false positives and negatives (10, 11), and (ii) result in highly
idealized and averaged network structures (12), such interaction
datasets are increasingly turning into useful tools for the analysis
of the functional (e.g., ref. 13) and evolutionary properties (14)
of biological systems. In particular, in Saccharomyces cerevisiae
we are beginning to have a fairly complete description of the
protein interaction network that is accessible with current ex-
perimental technologies; the recent high-quality literature-
curated dataset of Reguly et al. (15) provides us with a dataset
that should be almost completely free from false positives. For
most other organisms, however, interaction data are still far from
complete and it has recently been shown that subnetworks, in
general, have qualitatively different properties from the true
network (16–18). Although the importance of network-sampling
properties had only been realized relatively recently, this aspect

of most systems biology data are increasingly being recognized
(11, 19) as important.

There are, however, some properties of the true network that
can be inferred even from subnet data, and here we show that the
total network size is one property for which this is the case.
Present protein-interaction datasets enable us to estimate the
size of the interactomes in different species by using graph
theoretical invariants. This is particularly interesting for species
where more than one experimental dataset is available. Below we
first describe a robust and very general estimator of network size
from partial network data that overcomes this problem. We then
apply it to available PIN data in a range of eukaryotic organisms.
In supporting information (SI) Text we demonstrate the power
of this approach by using extensive simulation studies.

Estimating Interactome Size
Here, we develop an approach for estimating the size of a
network from incomplete data. We will show below (and by using
extensive simulations in SI Text) that for a given species estimates
from different independent datasets—generated by different
methods such as yeast-two-hybrid and TAP tagging—yield es-
timates for the interactome size that are in excellent agreement.

We are concerned with a true network, N, which has NN nodes
and MN edges. The sets of nodes and edges are given by VN and
EN, respectively; these define the graph representation of the
true network:

GN � �VN, EN�. [1]

We pick a subset of nodes VS � VN and study properties of the
subgraph GS induced by the nodes in VS

GS � �VS, ES�, [2]

where the set of edges observed in the S is a subset of the total
set of edges, ES � EN. Our aim is to predict the number of
interactions in the true network GN based on the available data
in the subnet, GS.

We assume that the network, GN, is generated according to
some (unknown) model characterized by a parameter (vector) �,
and subsequently the observed network, GS is sampled from it.
Then

P�, p�GS� � �
GN�GS

Pp�GS�GN�P��GN�, [3]
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where it is assumed that the sampling is independent of the
network-generating model. The parameter p refers to a general
sampling process, and not only independent node sampling.
Furthermore, we assume the order NN of the network is known
and allow nodes to be annotated with information not related to
the wiring of the network (e.g., GO terms or protein family
classes). Consequently, the sum is over networks, GN, with NN

(labeled) nodes only. For convenience, we take labeling infor-
mation to be included in NN and NS (the order of GS).

If sampling only depends on the nodes in the network and not
on their connections, then Pp(GS�GN) splits into a product of two
terms,

P�, p�GS� � Qp�NS� �
GN�GS

q�GS, GN�P��GN�, [4]

where Qp(NS) is a term denoting the probability of sampling the
nodes in the observed PIN and q(GS, GN) denotes how many
ways this can be done given the (labeled) nodes in GN—by
assumption, labeling of nodes is the same in all possible GNs. For
example, if the nodes are unlabeled and have degree zero, then
q(GS, GN) � (NS

NN). If all nodes have degree one, a similar factor
can be derived based on the number of degree one (d1) and
degree zero (d0) nodes that are observed in the PIN: q(GS, GN)
is the number of ways one can choose d0 and d1 out of the NN/2
pairs of connected nodes in GN. If all nodes are labeled then
q(GS, GN) � 1, because one can only select the nodes in the PIN
in one way.

It follows that Qp(NN) is sufficient for inference on p (the
remaining part of the likelihood does not depend on p). In the
case of independent node sampling, each node with probability
p, we have Qp(NS) � pNN (1 � p)NN � NS and the maximum
likelihood estimate of p is

p̂ �
NS

NN

[5]

which is unbiased and consistent.
From the likelihood Eq. 4 it follows that

P��G*N�GS� �
q�GS, G*N�P��G*N��GN�GS

q�GS, GN�P��GN�
, [6]

where G*N is a specific network (to distinguish it from the sum
over all networks in the denominator). Note that this conditional
probability does not depend on p and that, in principle, we can
only gain knowledge about the interactome if something is
assumed about the network-generating model. Note also that
this is a general restriction that is not related to independent
node sampling alone.

A reasonable estimate of the edge probability in GN is

�̂ �
2MS

NS�NS � 1�
, [7]

where MS is the number of edges in the PIN. It leads to the
following estimate of the interactome size:

M̂N � MS

NN�NN � 1�

NS�NS � 1�
, [8]

The estimate is unbiased and consistent provided the network-
generating mechanism ensures some form of uniformity, as is the
case for random graphs (Figs. S1 and S2). For example, if GN has
a star topology with one node of degree NN � 1 and the
remaining of degree 1, then MS � 0 with probability 1 � p and
MS � (NN � 1)/p̂ with probability p; hence, M̂N is not consistent.
We will demonstrate below that the assumption of independent

sampling of nodes is not too restrictive and should apply to many,
in particular, high-throughput, experimental studies.

So far we have assumed that the number of ORFs, NN in an
organism is known from genome surveys. Total genome size is,
however, still not precisely known in most organisms. Uncer-
tainty in the NN is, however, easily incorporated. Assume that
the value NN is associated with an error or uncertainty � (i.e., if
the genome contains N0 protein-coding genes of which NN are
known, then � � (N0 � NN)/N0. Then let NN :� N0 (1 � �) and
for � � 0.1 we have

P̃ �
NS

N0
� �1 � ��

NS

NN

� �1 � ��p̂. [9]

Replacing p̂ in Eq. 8 with ˜p yields the error-corrected estimate
for the true network size

M̃N �
MS

p̃2 � �1 � 2��
MS

p̂2 . [10]

Thus, an uncertainty of � in the number of nodes in the true
network results in an uncertainty of 2� for the number of edges
in the true network.

To assess the variability of the estimator we can construct
approximate bootstrap confidence intervals (CI) (20). The num-
ber of edges is given by

MS �
1
2 �

i��S

di, [11]

in terms of the degree sequence. Now let d � {d1, d2, . . . , dNS
}

be the set of degrees of all of the nodes in the graph GS describing
the subnet. Then we generate bootstrap replicates, d*, by
sampling the degrees of the nodes in the sample with replace-
ment NS. For each bootstrap replicate, d*, we obtain an estimate
M*S (which may be a noninteger because of the factor 1/2 in Eq.
11; this does not affect the estimator). Creating a sufficiently
large number of bootstrap replicates, d*, thus allows us to
calculate the bootstrap CIs; these have very good coverage
properties, as shown in Figs. S3 and S4.

The derivation of Eq. 8 does not depend on any restrictive
assumptions (see SI Text) but is a generic property of random
graphs and their subnets. Crucially Eq. 8 is valid irrespective of
the degree sequence or other summary statistics of the net-
works††; confidence intervals (CI) and their coverage properties
(20) may, however, depend on the degree sequence or network
structure. Because there is no sufficient statistic for general
networks (17) [i.e., a summary statistic that would include all
information about the likelihood (21) of a network] it is also not
possible to improve on these estimators by, for example., includ-
ing the numbers of observed triangles or the clustering coeffi-
cient. The only limitation is the assumption of independent
sampling. This is, however, also implicit in all previous attempts
at estimating interactome sizes (22–24). Below we show how
nonrandom sampling schemes can be described and how false-
positive and false-negative rates of PIN data affect our estimate.

Other Node-Sampling Schemes
The above approach can be generalized for datasets that are
ascertained in certain ways and can thus also deal with experi-
mental bias.

††Eq. 8 is a general result for general (random) graphs; it is equally true for all ensembles
of random graphs such as Erdös–Rényi and scale-free random graphs. In SI Text we further
illustrate the simple quadratic relationship by using simulations.
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Independent but Nonuniform Sampling. We assume independent
sampling of nodes. Let node i have a probability pi for being
included in the subnet. We allow pi � pj and only assume that the
pi values are drawn independently from the same probability
distribution,

pi � F�	�, [12]

where 	 is a parameter (potentially vector valued). The prop-
erties of F are not of importance. It follows that p̂ is unbiased

E� p̂� �
E�MS�

MN

� E� pi� � � p	, [13]

and also consistent, because

Var� p̂� �
Var� pi�

MN

�
p�1 � p�

MN

3 0, [14]

for large networks. Now consider an edge eij (i � j); then the
probability of observing this edge in the subnet is

�ij � pi pj, [15]

and

E
�ij� � �p	2. [16]

Likewise p̂2 is consistent (25), hence also unbiased for large
networks.

Dependent Sampling. Here, we assume as above that pi is drawn
from some probability distribution, pi � Fi(	) that might,
however, depend on information related to node i, for example,
the degree or functional classification of i; that is, Fi(	) � F(	;
Di), where Di denotes this information. Although measures for
expression abundance may be such a factor, this appears not to
be the case for the datasets considered here (Fig. S5). Hence, we
might take Di as an additional parameter in the function F.

In addition, we assume the network is uncorrelated with
respect to this information, that is, P(Di, Dj) � P(Di)P(Dj); and,

given the probabilities pi, we assume nodes are drawn indepen-
dently of each other. This assumption is justified for all networks
in which the degree–degree correlation of interacting nodes is
determined by the degree distribution. This is approximately the
case for the networks considered here‡‡. It follows that

E�p̂� �
E�MS�

MN

� E� pi� � � p	, [17]

that is, p̂ is unbiased. Note that

E�pi pj� � �
Di, Dj

E�pi pj�Di, Dj�dP�Di, Dj�

� �
Di

E �pi�Di�dP�Di��
Dj

E�pj�Dj�dP�Dj�

� E� pi�E� pj� � � p	2, [18]

which in turn leads to

Var� p̂� �
p�1 � p�

MN

3 0, [19]

and consequently consistency. Likewise, it follows that E(�ij) �
E(pipj) � �p	2, and that the edge sampling probability consis-
tently is estimated by p̂2.

Effects of Uncertain Data on Estimated Interactome Sizes
So far we have assumed that the interaction data are correct.
This is not the case for protein interaction data (10–12, 26–28).
Here, we show that it is possible to include noisy data and that
the estimates given in Table 1 (see also Fig. 2) are not likely to
change severely (e.g., by an order of magnitude) for realistic rates

‡‡The degree–degree distribution is not significantly different from the product degree
distribution (by using the Kolmogorov–Smirnov test); that is, P(k, l) � P(k)P(l) for the
datasets considered here.

Table 1. Dataset properties and predicted interactome sizes

Species Dataset Nodes Edges M̂N 95% CI

S. cerevisiae Uetz et al. (29)
Ito et al. (30)
Ho et al. (31)
Gavin et al. (32)
DIP

1,328
3,245

871
726

4,959

1,389
4,367

694
367

17,226

28,472
14,940
33,234
25,391
25,229

26,650–30,460
13,500–16,650
31,750–34,810
23,280–27,710
24,100–26,440

D. melanogaster Giot et al. (34)
Stanyon et al. (35)
Fromstecher et al. (36)
DIP

6,991
362

1,200
7,451

20,240
1,611
1,657

22,636

75,506
2,505,545

211,877
74,336

72,700–78,400
2,192,900–2,843,800

180,419–248,640
71,700–77,100

C. elegans Li et al. (33)
DIP

2,622
2,638

3,955
3,970

242,578
240,544

221,850–265,700
220,030–263,270

H. sapiens Stelzl et al. (8)
Rual et al. (9)
DIP

1,665
1,527
1,085

3,083
2,529
1,346

646,557
631,646
672,918

588,990–706,640
564,460–703,830
625,170–722,670

The datasets by Stanyon et al. (35) and Formstecher et al. (36) were detailed and highly focused studies of cell
regulation and cancer/signaling-related proteins in D. melanogaster, respectively; because only interactions
among restricted sets of proteins were studied, these findings have resulted in very detailed but highly localized
maps that result in overestimates for the size of the global PIN. Some of the different estimates are not truly
independent; for example, DIP contains supersets of various published datasets for the different organisms (this
is true, in particular, for C. elegans). As such, we would expect it to yield similar results to some of the individual
datasets. The exceptions to this are the human datasets where very little overlap was found. Datasets of the
individual publications (8, 9, 29–36) were downloaded from the IntAct database resource at European Bioinfor-
matics Institute (EBI) (see SI Text; numbers in the IntAct database differ slightly from those in the original
publications and, furthermore, we have removed all self-interactions).

Stumpf et al. PNAS � May 13, 2008 � vol. 105 � no. 19 � 6961

EV
O

LU
TI

O
N

A
PP

LI
ED

M
A

TH
EM

A
TI

CS
SE

E
CO

M
M

EN
TA

RY

http://www.pnas.org/cgi/data/0708078105/DCSupplemental/Supplemental_PDF#nameddest=SF5
http://www.pnas.org/cgi/data/0708078105/DCSupplemental/Supplemental_PDF#nameddest=STXT


of false positives and false negatives. We note that the sampling
theory developed in the previous sections needs modification to
take false positives and false negatives into account; for example,
the sum in Eq. 4 should be over all possible networks and not just
those containing the observed PIN data.

Let the number of true interactions in a network with N nodes
be denoted by M; if the data collection process is not perfect,
then (assuming independence) the number of reported interac-
tions, M̃ will generally be different from M. Now let MTP, MFN,
MFP, and MTN denote the true-positive, false-negative, false-
positive, and true-negative results, respectively. We trivially have

M � MTP 
 MFN [20]

and

M̃ � MTP 
 MFP. [21]

The rates for true positives and false negatives are defined by

� :�
MTP

M̃
[22]

� :�
MFN

M
. [23]

Thus, for a given number of reported edges/interactions and
estimates of the true-positive and false-negative rates, �̂ and �̂,
we obtain an estimate for the true number of interactions
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Fig. 1. Performance of the estimator, Eq. 8, for the yeast network. Here, the DIP dataset was taken as a gold-standard ‘‘true’’ interaction network. (A) True
network size (red bars) and histograms of predicted sizes for subnets that were created by sampling 20%, 40%, 60%, and 80% of nodes with equal probability.
(B) Fraction of estimates obtained from 1,000 independent subnets (covering 20%, 40%. 60%, and 80% of the nodes in the true network) where the empirical
95% bootstrap confidence interval (based on 1,000 replicates) contains the true value (green).
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M̂ �
�

1 � �
M̃. [24]

Thus, for a fixed network (or subnet) the false-positive and
false-negative rates affect the estimates of the true number of
interactions in a simple linear manner (see Fig. S6).

Results
We use Eq. 8 to estimate interactome sizes in humans and three
other eukaryotic organisms: S. cerevisiae (29–32), C. elegans (33),
and D. melanogaster (34–36). But we begin with an illustration
of the power of this simple estimator by applying it to S. cerevisiae
PIN data; here, we have treated the presently available PIN data
as a proxy for a complete ‘‘interaction network’’ whose size we
are trying to predict. In Fig. 1A we show the distributions of
estimates obtained from 1,000 randomly chosen subnets cover-
ing 20%, 40%, 60%, and 80% of the available PIN data [taken
from the Database of Interacting Proteins (DIP) (37)]. In Fig. 1B
we show the coverage properties of the bootstrap 95% CIs for
sampling the same sampling fractions. Together with the simu-
lation studies discussed in SI Text, the results in Fig. 1 suggest
that the estimator M̂N provides an accurate and reliable way of
estimating interactome sizes from present data. Interactome size
estimates and their CIs for experimental PIN datasets are shown
in Table 1 and Fig. 2 for the organisms considered here. The DIP
datasets (always shown in green) are mainly based on high-
throughput studies, supplemented by interactions collected from
the literature; as such, they generally cannot be treated as
independent from the other datasets. For humans, however,
there is negligible overlap between the DIP databases and the
two recent high-throughput surveys and we can treat the three
estimators as approximately independent.

Based on the results in Table 1 and Fig. 2, we would therefore
expect—given present experimental methods and ignoring mul-
tiple splice variants—the human interactome to contain
�650,000 protein interactions. Thus, it is approximately an order
of magnitude larger than the estimated D. melanogaster inter-

actome, and a factor of 3 more complex than the estimated C.
elegans interactome; this contrasts with relative genome sizes of
�1.8 and �1.2, respectively. The results for the S. cerevisiae PIN
suggest that it will ultimately contain �25,000–35,000 interac-
tions (see also Table 1); this agrees well with previous estimates
(22, 23). It also agrees well with estimates obtained from the
recent data generated by Reguly et al. (15): for the pure
literature-curated set we obtained 37,000 interactions; for the
complete network data we obtained an estimate of �35,000
interactions in the yeast PIN. These two datasets were, however,
collected from the literature and the sampling process is thus
much harder, perhaps even impossible, to model accurately.

By using Eq. 24 the impacts of false-positive and false-negative
rates are easily assessed (see also ref. 38). We find that the linear
effect of the error rates on the estimated number of true
interactions results in a comparatively modest effect. The esti-
mates of the true-positive rates in PIN datasets range from 35%
(33) to 84% (34); there are fewer estimates for the false-negative
rate that are on the order of 20–40% (10) obtained for different
S. cerevisiae datasets. It appears that, for realistic rates of true
positive and false positive, the estimate of the human interac-
tome size remains very similar compared to the simple estimate
obtained in this article of �650,000 protein–protein interactions.
Similar curves can be drawn for the other species, too, and in
each case we obtain comparable values for most combinations of
realistic error rates. Thus, we believe that error rates exert a
comparatively moderate effect on the estimator (Eq. 8).

Overall, it therefore appears that estimates obtained from Eq.
8 should be accurate to within less than an order of magnitude
even under the very worst circumstances. A much more realistic
estimate, however, can be obtained from comparing the different
and essentially independent estimates for S. cerevisiae. These
findings suggest that an accuracy of approximately a factor of 2
is more realistic. Reassuringly, these results are confirmed when
applying a recent multimodel inference procedure (39) that deals
with incomplete network data.

Discussion
We have shown that it is possible to estimate the size of
interactomes reliably from present partial interaction data. Our
estimator is powerful and robust, relying on assumptions that
appear to be met by typical systematic high-throughput studies.
Unlike the previous approach of Hart et al. (24), who implicitly
assume that interactions do not occur between surveyed proteins
and those not yet surveyed, our estimate deals with missing data
in a coherent and statistically meaningful manner; the route
taken by Grigoriev (23) can be understood as a special case of
the present approach when two or more datasets are available.
Moreover, noise and different sampling/ascertainment strategies
are straightforwardly included in the analysis (38, 40). We have
illustrated the power of this approach by using simulated sam-
pling processes in S. cerevisiae and have found that the estimator,
Eq. 8, and the bootstrap confidence intervals have very good
coverage properties. We have then applied this inferential
framework to published datasets in four eukaryotic organisms.
We found that the predicted interactome sizes differ quite
considerably between these species. For example, the human
interactome appears to be an order of magnitude larger than the
D. melanogaster interactome. Unfortunately, for maize and rice,
which have comparable or even larger number of genes to
humans, only tiny PIN datasets are available and we cannot
obtain useful estimates for their respective interactome sizes. If
conventional assumptions about the different complexity of
organisms are indeed correct, and if interactome size does
reflect organismic complexity (1–3, 41), then we would expect
these organisms to have smaller interactomes than humans. The
increase of interactome size with number of proteins/ORFs
should thus not be uniform or even monotonic. We note that the
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estimate of � 650,000 interactions means that the human PIN
will still be relatively sparse: this corresponds to only �0.2% of
all possible pairwise interactions being present; for most other
species, however, the network is even sparser.

There are a number of other factors that may contribute to an
explanation of the increase in phenotypic bauplan complexity
between species: the diversity of the transcriptome (42) and
protein-domain architecture (43) have all been implicated in the
literature. Here, we have demonstrated that interactome sizes
are consistent with biological intuition about the complexity of
eukaryotic organisms. We note that our estimator is very flexible
and reflects the quality of present data: we predict the number
of interactions that are detectable given present experimental
technology. For example, we have not considered (physiologi-
cally probably very important) transient or condition-specific
interactions. Should more sensitive and reliable experimental
methodologies or better estimates of experimental error rates

become available in the future, then Eq. 8 can, of course, be used
to predict an updated number of protein–protein interactions for
an organism. Our formalism is also readily extended to directed
network data (such as gene-regulation networks).

As a final note, we want to stress that the estimates necessarily
reflect experimental technology. Thus, the estimates in Table 1
refer only to the types of interactions that are detectable given
present experimental methods and protocols. The estimator for
the size of the true network, however, will remain universally
correct for suitable datasets and for all types of networks. We
will thus be able to use it in the future and apply it to other
network datasets as well.
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