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Biological, sociological, and technological network data are often
analyzed by using simple summary statistics, such as the observed
degree distribution, and nonparametric bootstrap procedures to
provide an adequate null distribution for testing hypotheses about
the network. In this article we present a full-likelihood approach
that allows us to estimate parameters for general models of
network growth that can be expressed in terms of recursion
relations. To handle larger networks we have developed an im-
portance sampling scheme that allows us to approximate the
likelihood and draw inference about the network and how it has
been generated, estimate the parameters in the model, and per-
form parametric bootstrap analysis of network data. We illustrate
the power of this approach by estimating growth parameters for
the Caenorhabditis elegans protein interaction network.

biological network | importance sampling | likelihood recursion |
network model | random graph

Complex biological, sociological, and technological networks
vary in size, form, structure, and the mechanisms by which
they grow. They are widely seen as convenient and coherent
descriptions for the whole set of interactions in biological, social,
or technological systems, and their empirical properties have
attracted considerable attention. A range of statistical ensembles
[in the sense of an “ensemble” in statistical physics (1)] of
networks (or probability spaces over graphs) has been studied,
notably Erdds-Renyi and scale-free random graphs (2-4). The
former has been the canonical model in random-graph theory
but does not capture some important aspects of real networks.
These often have a fixed number of nodes (e.g., the number of
proteins in an organism is fixed) and much broader degree
distributions than the Poisson distribution that characterizes the
degree distribution of Erdds-Renyi random graphs; i.e., some
nodes have a very high degree (number of interactions), whereas
most nodes have degree k = 1 and 2. A range of mechanistic
models has been suggested where the network grows through the
addition of nodes and the asymptotic shape of the degree
distribution takes on the form of a power law (2).

Testing hypotheses about a network, its form, and structure
and how it has evolved will be difficult, even if a plausible model
for network growth can be found. Typically, the analysis of
networks has therefore involved either the use of summary
statistics, such as the degree distribution or the clustering
coefficient, or, in the case of hypothesis tests, rewiring the
network while keeping the degree of each node fixed. In the
latter case each node has a number of “stumps” equal to its
degree and the stumps are connected randomly to create a
randomly rewired replicate, e.g., ref. 5. This procedure is well
defined and meaningful, but it means that the replicates are
uncorrelated (degree—degree correlations depend only on the
degree sequence) and any potential coarse structure of the
network (such as community structure) is ignored. Thus, al-
though bootstrap methods can, in principle, be more informative
than simple summary statistics and most structural analyses rely
on them at least to some extent, it is important to keep in mind
that the rewired instances of the network will often be system-
atically and qualitatively different from the true network. The
answer to a hypothesis test might depend crucially on the part of
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the data that is kept fixed and the part that is changed by the
bootstrapping procedure. Quite different answers might be
obtained, e.g., if the skeleton of the network is fixed rather than
just the (observed) degree distribution, although both ap-
proaches might appear reasonable in a given situation.

Alternatively, one might turn to likelihood methods. These
methods require a probabilistic model reflecting the nature of
the data and how the network has evolved. One popular broad
class of mathematical models of networks and network evolution
includes duplication-attachment (DA) models (4, 6, 7), where a
set of parameters specifies the probabilities for including new
nodes and edges. The network is considered the result of an
evolutionary stochastic process such that the number of nodes
has increased from a smaller number through a series of node
adding events. New nodes can be (partial) copies of existing
nodes and their links or completely new ones.” This class of
models includes the Barabasi-Albert model (2) and the dupli-
cation model of Chung et. al (6) as special cases and can
interpolate smoothly between them: both are nested inside the
same DA model. Estimating their parameters (the probability of
a duplication event and the probability of the duplicate node
inheriting an edge from the original node, respectively) allows us,
for example, to test the extent to which the assumptions of the
Barabasi—Albert model are supported by the data.

Mathematical models of networks have been used among
other things to explain evolutionary aspects of biological net-
works, growth and structure of sociological networks, and how
certain features of networks seem to appear naturally and
globally, such as fat-tailed degree distributions, e.g., ref. 2.
However, to our knowledge, mathematical models have been
used only indirectly in statistical analysis; for example, by
comparing the observed degree distribution to a probability
model for the degree distribution (which can be seen as a
composite likelihood approach), e.g., ref. 9 and references
therein. In principle these models allow for a deeper and fuller
statistical analysis of network data, including estimation of the
set of parameters that provides the best fit to the model and
hypothesis testing, and subsequently interpretation of parame-
ters in relation to the mechanisms underlying the generation of
the data (for example, the underlying biological causes and
processes). Hypothesis testing is here naturally performed by
using the parametric bootstrap: the null distribution is obtained
by simulation of networks under the model with the estimated
parameters.

Here we present a method that in principle allows us to
calculate the likelihood of the full network under a given
mathematical model, thereby using the full network data and all
of the information embedded in the data about the network
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Tin contrast, graphical models like Bayesian networks and chain graphs (8) consider a fixed
graph that determines the probabilistic dependencies in the data; here the graph/
network is the data, i.e. the graph is stochastic.
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Fig. 1. An example of a graph with 10 nodes where most nodes are
removable. A and B can be removed by all other nodes; C can be removed by
D-J; D can be removed by E, H, and |; E can be removed by H; F can be removed
by G-I; G can be removed by H; H cannot be removed; | can be removed by H;
andJ can be removed by E and G-I. The graph can be reduced to asingle node.

structure. It has been argued (10) that the mechanistic process
underlying network evolution is less important than the ability of
an ensemble to qualitatively describe the data. It is, for example,
well known, that protein interaction networks do not grow
according to the simple preferential attachment model that
describes simple scale-free models. For example, ~120 million
years before present, a whole genome duplication occurred in
the lineage ancestral to Saccharomyces cerevisiae and other yeast
species belonging to the sensu stricto clade and such exceedingly
rare events, even though they are of fundamental biological
importance, cannot be easily incorporated into a probability
model of the sort used in other contexts. But even if the model
is (necessarily and indeed desired) oversimplified the likelihood
approach allows us to gain additional insights. For DA models,
for example, we can infer a maximum-likelihood estimate for the
duplication probability. This estimate, in turn, can be interpreted
as an “effective” node duplication probability,| which, in the case
of biological networks, can be compared with estimates of the
extent of historical duplication activity obtained from sequence
analysis.

A General DA Model

By a graph we always mean an undirected graph without multiple
edges (or links) and self-loops. A randomly growing graph is a
Markov chain {G,};L,0 such that G, is a graph of size ¢ and the
edges and nodes of G, are subsets of the edges and nodes of G, + ;.
This implies that one node is added at the time.

We suppose that when G, is created, new edges are added
between the new node vyey and the old nodes that were already
present in G, One kind of stochastic rule that does this is
duplication. An old node v,q is picked, and the nodes linked to
Vnew are chosen among the nodes linked to vqq4. If, in addition,
it is also possible to let vy attach to v, then we speak of DA.
For short, we say that vyey is copied from vyq4. See Fig. 1.

Consider a graph G, and let §(G,, v) denote the graph with v
deleted, i.e., v and all links to it are removed. A node v in G, is
said to be removable if G, can be created by copying a node in

IThis interpretation is similar in spirit to subsuming details of the demographic history of a
population into the effective population size Ne in population genetics, see e.g. ref. 11.
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8(G,,v). If G, contains removable nodes, it is said to be reducible,
otherwise G is irreducible.

A surprising fact, which we prove in Supporting Text, which is
published as supporting information on the PNAS web site, is that
if removable nodes are deleted repeatedly from G; until the graph
is irreducible, we always end up with graphs that are isomorphic to
each other irrespectively of the order the nodes were removed. This
fact will be important when computing the likelihood.

We say that a randomly growing graph is a DA model if

1. G, is irreducible.
2. P(G;+1|G,) > 0, if, and only if, G, can be obtained by copying
one node in G

In the next section we consider for simplicity a specific DA
model, although the theory applies generally to all DA models
(including the Barabasi—Albert model mentioned above).

The Likelihood

Assume the model is described by a possibly vector-valued
parameter 6 and let G, be an observation from the model. We
are interested in finding the maximum-likelihood estimate of 6.
To that end we calculate the likelihood as a function of 6. Let
R(G,) be the set of removable nodes in G,, then

1
L0,G) =~ 2 (6, G, VL0, 8(G,v)), [1]
tUE(Rﬁ(;I)

where
w(67 Gt’ V) = PH(Gt|8(Gt7 V))'

The factor 1/¢ is the probability that v is the last added node.

Thus, in principle, it is possible to compute the likelihood
recursively. As soon as we arrive at an irreducible graph, it is
isomorphic to the true starting graph and has the same likelihood
as the true starting graph. If we could end up with nonisomor-
phic graphs (potentially with different number of nodes), then a
nontrivial distribution must have been required for the initial
graph.

In the remainder of the section, we consider the following DA
model. Let

6= (mp,q,r).
The model is defined by the following two rules.

1. Choose voiq in G, uniformly. Create a link between vye, and
any node that links to vog with probability p. Link veig tO Vipew
with probability g.

2. Choose veig in G, uniformly. Create a link between vq1q and
Vnew With probability r.

In every step, we follow rule 1 with probability m, and rule 2
with probability 1 — 7. We call this model duplication with
random attachment.

To compute the likelihood, we make a list of all nodes in
R(G),). To every node v in the list there is a nonempty set (G,
v) of nodes w in G, such that v could have been copied from w.
Let e(w, v) = 1if there is an edge between w and v and let e(w,
v) = 0 otherwise. Further, let d(v) be the degree of node v. Then

1
(1)(0, Gn V) = ﬁ E w(e’ Gt’ v, W),
wel(G,y)
where

w((—), Gn v, W) — T‘,pd(v)—e(w,v)(l _p)d(w)—d(v)qe(w,v)(l _ q)l—e(w,v)

+ (1 = M awy=op(1 = 1) + Ligpy=1ie(w, v)rl,
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Fig. 2. Complexity of likelihood recursion. (Upper) The logarithm of the

number of recursive calls made when calculating the likelihood of a graph
with Eq. 1and a library for storing already computed likelihoods of subgraphs
for different parameter values. Index 1: 6 = (m, p, q, r) = (0,0,0,0.25); index 2:
(0,0,0,0.5); index 3: (0,0,0,0.75); index 4: (0.5,0.25,0.5,0.5); index 5:
(0.5,0.5,0.5,0.5); index 6: (0.5,0.75,0.5,0.5); index 7: (1,0.25,0.5,0); index 8:
(1,0.5,0.5,0); and index 9: (1,0.75,0.5,0). Index 10 shows the log of the number
of calls for a complete graph or a graph with no links at all. This number is
loge(t2t" — t + 1), where t is number of nodes. t = 5 nodes (blue), 10 nodes
(green), 15 nodes (red), and 20 nodes (purple). The average over 30 random
graphs was computed for each value of tand 6, and all graphs were generated
from a single node. (Lower) Shown is the log of the library size when calcu-
lating the same likelihood as in Upper. The number for index 10 is loge(2! — 1).

and [ is the indicator function. Even though this, in principle,
provides the means to compute the likelihood, the method is
computationally too intensive even for moderately sized networks;
the number of recursive calls that has to be made becomes
astronomical in a short time. For a fully connected graph (or a graph
with no connections at all) the number of recursive calls is easily
seen to be [{e — 1)t!Jwhere e is Euler’s number, e ~ 2.71, and 30
denotes the largest integer smaller than or equal to x. Keeping a list
of already calculated likelihood values reduces the number of calls
tor 271 — ¢ + 1, (see Supporting Text), but this number is still
extremely large even for small values of ¢. In terms of computational
time it is worth mentioning that each look-up in the list can be done
in at most logx(2 — 1) ~ ¢ operations, because there are at most 2/
— 1 entries (the number of nonempty subsets of ¢ objects) in the list.
Fig. 2 provides some examples. For the investigated parameter
values the number of calls appears to increase subexponentially,
whereas the number for a complete graph is superexponential. Still
the numbers become very large; e.g., for = 20 the number of calls
are of the order of 10° compared with 107 for a complete graph.

Importance Sampling (IS)

IS is an efficient simulation (variance reduction) technique that
in many cases provides ways to approach quantities for which
exact or numerical results are otherwise difficult to obtain, e.g.,
refs. 12 and 13 for a comprehensive treatment. The IS scheme

7568 | www.pnas.org/cgi/doi/10.1073/pnas.0600061103

to be implemented here for computing the likelihood is inspired
by the recursion relation (1) that allows the likelihood to be
written as an expectation over a Markov chain (see below). Our
approach makes direct use of the recursive form of the likelihood
function. Similar schemes has been proposed in different con-
texts; see, for example, refs. 14-16 for proposed schemes for
inference on the so-called coalescent (17). We apply IS to
random graph models, but the flexibility of IS [or sequential IS
(13)] schemes makes them powerful tools for the statistical
analysis of (biological) network models.
We rewrite Eq. 1 in the form:

(D(eo, Gt? V)

L(6; G)) % > S(00, 0. Gy, VIL(6; 8(G, v),

VER(GY) (6o, G)
[2]
where for t > ¢,
o0y, G) = 2 w8y, Gyv),
VER(G))
and
1 w(6y, G,

S(BO’ 07 Gn V) = w(v, Gt7 V)'

; (0(00, Gn V)

Using lemma 1 in ref. 14 (the lemma relates generally to Markov
chains with a stopping rule), the likelihood in Eq. 2 can be
written as an expectation

t
L(O, GZ) = EOO HS(OOa 0? Gs7 V) s [3]

s=10
where
S(OO) 65 th, V) = L(Ga Gto) =1

The usability of Eq. 3 rests on the fact that all irreducible graphs
derived from G, are isomorphic and thus have the same likeli-
hood. In Eq. 3, the expectation is with respect to the probabilities

w(BOa Gs> V)
w(e()a Gs) ’

s =1ty + 1,...,t that define a Markov chain on graphs. This
Markov chain is not the same as the one defined by the DA
model. However, it motivates the following simulation scheme:

1. Let GY = G,.

2. Fors =t — 1, ..., ty + 1, choose v; with probability
proportional to (6, GY), v,?. and let G, = S(Gﬁ‘), V).

3. Let 19(0) = ., S(60, 6, GO, v)).

4. Repeat steps 1-3 N times and approximate L(6, G,) by

N

. 1 .
L6, G) = 2 1(0). [4]

i=1

Each of the N draws is called a path. The value 6y is the so-called
driving value (12), which can be chosen either arbitrarily or in
some other conditioned way, e.g., by using summary statistics.
Fig. 3 provides an example for + = 10. There are at least two
things that are worth pointing out. First, the overall form of the
simulated likelihood curve is similar to the true likelihood curve
even for small N and thus the relative likelihood L(6; G,)/L(6y;
G,) (for fixed 6;) might be estimated accurately even for small N
(depending on ¢); this observation is also made by other authors

Wiuf et al.
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Fig. 3. Likelihood curve for the graph in Fig. 1 for variable p, but with all
other parameters fixed to the true values. The graph is generated with
parameter 0 = (1,0.66,0.33,0). (Upper) The likelihood curve is calculated by
using IS with driving value 6 = 6, i.e., po = 0.66. The average over several paths
is computed. n = 10 paths (light blue), 100 paths (blue), 1,000 paths (green),
and 10,000 paths (red). For 100,000 the curve is almost impossible to distin-
guish from the true likelihood curve that is shown in black. (Lower) Here the
driving value is 6 = (1,0.33,0.33,0), i.e., po = 0.33. The average over several
paths is computed. n = 10 paths (light blue), 100 paths (blue), 1,000 (green),
and 10,000 (red). For 100,000 the curve is almost impossible to distinguish from
the true likelihood curve that is shown in black.

(14, 18). Second, the driving value influences the accuracy of the
simulated likelihood curve. A driving value close to the true
value is likely to provide faster convergence to the true likeli-
hood curve than a driving value far from the true value.
However, for all 6, and 6 the convergence is of order VN,
because Eq. 4 is an unbiased estimator of the likelihood. Hence,
the rate of convergence depends solely on the standard deviation
of the terms IS,’U)((-)) in Eq. 4.

We calculated the average run time for one path for different
network sizes. Graphs with different numbers of nodes were
generated with parameter 6; = (1,0.66,0.33,0) or 6, =
(1,0.33,0.33,0) and a path was drawn 15 times for each parameter
value by using driving value, 6y = 6;,i = 1, 2. The observed run time
was approximately polynomial with an estimated degree of 2.34 and
2.84, respectively; see Supporting Text for a description of the
algorithm and Fig. 6, which is published as supporting information
on the PNAS web site, for a plot of run times. For 6, the average
number of links per node increases with network size, whereas for
0 it stabilizes and is lower than the average for 6;. Apparently, in
these cases it has the opposite effect on the run times.

Application

We applied the IS method to protein interaction data from
Caenorhabditis elegans (19). The largest connected component
was selected (2,368 nodes; as described in ref. 20), and the data
were analyzed by fixing three of four parameters for the sake of
demonstration: m = 1, ¢ = 0.33, and r = 0; 6y = (1,0.66,0.33,0)
was used as driving value; and p was varied between 0 and 1. Fig.
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Fig.4. Shown is the likelihood curve (in units of thousands) of the C. elegans
data set of 2,368 nodes. After removing all removable nodes the graph
comprises 735 nodes. The likelihood curve was generated by using 1,000 paths
and driving value 6 = (1,0.66,0.33,0). All parameters but p were fixed: 7 = 1,
g = 0.33, and r = 0. Average of 10 paths (blue), 100 paths (green), and 1,000

paths (red). Each path took ~400 central processing unit sec on our machine.

4 shows simulated likelihood curves. The maximum-likelihood
estimate of p is =0.28. In other words, when assuming the model
and the other parameters are correct only 28% of all links survive
when a node is copied.

Two things transpire from the likelihood curves: The first is
that the variance of the contribution from one path lf,’“)(G) (see
Eq. 4) is small compared with the log-likelihood L(6, G) itself.
We take this observation as evidence that even with a small

Log Frequency
2 3 4 5 6 7

0

Log Frequency

Log Degree

Fig.5. Shownisthe degreedistribution of the full C. elegans data set (Upper)
and the reduced data set (Lower). Both data sets look like the degree distri-
bution can be described by a power law with coefficient ~2. In the full data
set there are no nodes of degree 0 because the network is connected, and in
the reduced data set there are no nodes of degrees 0 and 1, because they can
always be removed.
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number of paths the importance sampled likelihood is a good
approximation to the true likelihood. Possibly it is a large sample
(or network) size effect. The second thing is that the confidence
intervals (CI) of the maximum-likelihood estimator of p appear
to be wide. The Cls are likely to be even wider if all four
parameters are estimated. After removing all removable nodes
there are still 735 nodes left, which is a considerable amount.
Both degree sequences could well be explained by a power law
with degree ~2 (see Fig. 5).

Discussion

While the inference of e.g., coexpression networks and the
statistical inference and analysis of graphical models and Bayes-
ian networks have received great attention from the statistics
community (see e.g., refs. 21-23), the analysis of experimentally
derived molecular networks has largely relied on ad hoc descrip-
tions and summary statistics. This situation contrasts with the
social sciences, where networks are much smaller and inferential
procedures have been used with some considerable success (24).
Thus there is a rich amount of literature on the statistical
inference of networks and, perhaps to a lesser extent, also on the
analysis of smaller (social) network structures.

In this article we have attempted to calculate the full likelihood
of a network, G,, assuming a mathematical model of network
growth that was inspired by basic evolutionary processes.** For
the class of DA models we consider here, we can show that it is
possible to calculate the likelihood without specifying a distri-
bution on the initial graph, simply because it turns out that the
any two paths consistent with G, initiate with isomorphic graphs.
One can also choose to think of the likelihood of G, as condi-
tional on the initial graph isomorphism.

We further showed that the likelihood, in principle, could be
calculated by using a recursion, but also that this approach is
computationally too demanding to be practical for even mod-
erate networks. As an alternative, we suggested adopting an IS
approach that samples paths consistent with G, and that the
likelihood can be computed from such paths. In our implemen-
tation this approach also runs into time constraints but only for
graphs exceeding at least 2,500 nodes.

Our work leaves room for improvements and also raises some
questions. The application raises the question of whether the DA
models are adequate models for describing the C. elegans
network. In previous work (9) we have shown that power laws
describe the degree distribution of the C. elegans data statistically

**Duplication is a straightforward biological process. For the attachment process there is,
apart from horizontal gene transfer in bacteria, no easy biological equivalent; rather it
is convenient to subsume all nonduplication processes into this mechanism.
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better than other types of distributions (derived from normal,
exponential, and other standard distributions) (see also Fig. 5).
However, the initial (irreducible) graph comprises almost one-
third of the nodes in the entire network (735/2,368 = 31%),
implying that there are loops and cycles in the network that are
not consistent with how DA models build up graphs (see also
Lemma 6 in Supporting Text).

This observation leads us to our second point: development of
more realistic models. We have stuck with the class of DA
models because they are widely used and discussed in the
literature. Generalization to directed DA models should be
straightforward, but also models that evolve by other mecha-
nisms than duplication and attachment should be possible to
handle in a similar way to that described here. Very general
models allowing for insertion and deletion of edges at any time
are straightforwardly handled by the theory because the graph
eventually is reduced to a single node. However, this simplicity
is at the cost of computational complexity because the number
of paths from G, to G;, (containing a single node) is now even
larger and may quickly become unmanageable. More impor-
tantly, such a model is biologically implausible. Nature is not
likely to remove functions and interactions without having
reasonable substitutes for them. Models that allow for moderate
deletions of nodes and/or edges are biologically much more
realistic. For example, one could allow a link between two nodes,
v and w, to be removed if a copy v’ of v exists that also has a link
to w. Such features are biologically tractable but potentially
require more bookkeeping for calculating the likelihood.

Finally, it would be natural to engage in Markov chain
Monte Carlo and Gibbs sampling methods to improve the
speed and perhaps accuracy of the computations, but also to
try other IS schemes. As discussed in ref. 18, a recursion like
ref. 1 opens more possibilities than the one presented here.
These, including the one presented here, fall under the general
principle of sequential IS in which one builds up the sampling
distribution sequentially, see e.g., ref. 13 for general discussion
and examples. Sequential IS might be particularly useful for
random graphs because one can envisage the graph as being
built up step by step. However, the shapes of the simulated
likelihood curves in Fig. 4 also raise the question of whether,
in large networks, individual paths provide a good estimate of
the likelihood.

We thank Sylvia Richardson for helpful discussions. C.W. and M.P.H.S.
are supported by the Carlsberg Foundation and the Royal Society. C.W.
is supported by the Danish Cancer Society. M.P.H.S. is supported by a
Wellcome Trust Fellowship and a European Molecular Biology Orga-
nization Young Investigator Award.

11. Ewens, W. J. (2005) Mathematical Population Genetics (Springer, New York),
2nd Ed.

12. Ripley, B. (1987) Stochastic Simulation (Wiley, Sussex, U.K.).

13. Liu, J. S. (2001) Monte Carlo Strategies in Scientific Computing (Springer, New
York).

14. Griffiths, R. C. & Tavaré, S. (1994) Theor. Popul. Biol. 46, 131-159.

15. Griffiths, R. C. & Tavaré, S. (1994) Stat. Sci. 9, 307-319.

16. Griffiths, R. C. & Marjoram, P. (1996) J. Comp. Biol. 3, 479-502.

17. Kingman, J. F. C. (1982) Stoch. Proc. Appl. 13, 235-248.

18. Stephens, M. & Donnelly, P. (2000) J. R. Stat. Soc. B 62, 605-655.

19. Li, S., Armstrong, C. M., Bertin, N., Ge, H., Milstein, S., Boxem, M.,
Vidalain, P.-O., Han, J.-D. J., Chesneau, A., Hao, T., et al. (2004) Science
303, 540-543.

20. Agrafioti, I., Swire, J., Abbott, J., Huntley, D., Butcher, S. & Stumpf, M. P. H.
(2005) BMC Evol. Biol. 5, 23.

21. Lauritzen, S. L. & Richardson, T. S. (2002) J. R. Stat. Soc. B 64, 321-348.

22. Schafer, J. & Strimmer, K. (2005) Bioinformatics 21, 754-764.

23. Pournara, I. & Wernisch, L. (2004) Bioinformatics 20, 2934-2942.

24. Snijders, T. A. B. (2002) J. Soc. Struct. 3, 2.

Wiuf et al.



