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Most studies of networks have only looked at small subsets of the
true network. Here, we discuss the sampling properties of a
network’s degree distribution under the most parsimonious sam-
pling scheme. Only if the degree distributions of the network and
randomly sampled subnets belong to the same family of proba-
bility distributions is it possible to extrapolate from subnet data to
properties of the global network. We show that this condition is
indeed satisfied for some important classes of networks, notably
classical random graphs and exponential random graphs. For
scale-free degree distributions, however, this is not the case. Thus,
inferences about the scale-free nature of a network may have to be
treated with some caution. The work presented here has important
implications for the analysis of molecular networks as well as for
graph theory and the theory of networks in general.

complex networks � protein interaction networks � random graphs �
sampling theory

Over the last few years, it has been suggested that many
technological, social, and biological networks may be char-

acterized as scale-free (1–3): that is, the majority of nodes in such
networks have only a few connections to other nodes, whereas
some nodes are connected to many other nodes in the network
and the degree distribution decays much slower than exponen-
tially. In many cases, it has been found to be well described by
a power-law, and for the case of an infinite network, we can write
for the probability of a node having k connections

P�k� �
k��

����
, [1]

where �(�) is Riemann’s zeta function, which normalizes the
distribution such that ¥k�1

� P(k) � 1. Such models are called
scale-free because the ratio P(� � k)�P(k) depends only on � but
not on k.

One of the particular attractions of such scale-free networks is
that they can be generated by simple and plausible models (1).
Networks that grow by new nodes preferentially forming connec-
tions with nodes that are already highly connected, for example, do
give rise to scale-free networks. For instance, suppose new con-
nections are formed at some constant rate, attached to new nodes
(with probability p) or to existing nodes (with overall probability
1 � p and with relative probability k of attaching to a node having
k links). This assumption asymptotically gives the distribution of Eq.
1, with the exponent � � (2 � p)�(1 � p). This model could offer
an explanation of how some network structures have evolved. But
even if such a mechanistic model is incorrect, a corresponding
statistical ensemble based on such models can still offer meaningful
insights into network properties (4).

It is important to note, however, that in practice, many surveyed
networks to date have been subnets of much larger networks. This
finding is true for protein interaction (5, 6), gene regulation (7), and
metabolic networks (8), where only a subset of the molecular
entities in a cell have been sampled, as well as some social networks
(9), which often include only subsets of interacting individuals.
Sexual partner networks, however, are generally ascertained by
following individual’s histories and mapping the network locally.

Some technological networks, e.g., the graphs of the Internet and
World Wide Web (10), and some food webs (11, 12), may in
principle be fairly accurate and complete images of the real
underlying networks. For some model organisms, however, protein
interaction data covers �20% of the proteins known to exist in that
organism (ignoring multiple isoforms due to alternative splicing,
etc.). This observation poses the interesting and important question
of just how representative a random subnet is for the global network
(see Fig. 1). Although this question is obviously an important one,
it has thus far not been addressed explicitly [with the exception of
a few simulation studies, which seem to have dismissed the problem
fairly quickly (13)].

Here, we show that random subnets sampled from scale-free
networks are not themselves scale-free. This finding is in marked
contrast to other important network models, notably Erdös–
Rényi (14) and exponential random graphs. Below, we will first
outline the notion of random sampling of networks and then
outline the sampling properties of random, exponential, and
scale-free networks.

Random Sampling of Networks
We start with a complete and self-contained network N of size N
(where we will consider the limit N 3 �) with a given degree
distribution P(k). We emphasize that the degree distribution alone
does not suffice to characterize a network: very different networks,
e.g., some with many cross-connections (loops) and others with
‘‘tree-like’’ form (no loops at all), can have the same degree
distribution. The degree distribution, P(k), is, however, the most
commonly studied property of a network (1, 2) (followed by the
clustering coefficient and network diameter), and we therefore
focus on it. Moreover, claims of scale-free-like behavior are gen-
erally based solely on assessing the degree distribution (15).

The sampling process we consider is the most parsimonious
process possible: each node in N is included in the subnet S with
probability p and left out of the subnet with probability (1 � p)
(in the case of protein interaction networks, this process would,
for example, correspond to testing for interactions between a
subset of proteins in an organism). For finite networks, the
expected size of the subnet is thus E[M] � Np with variance
Var[M] � Np(1 � p). From Fig. 1, it is apparent that a network
generated by such a random sampling approach can be substan-
tially different from the overall network N.

More precisely, let the degree distribution of the net N be P(k)
and of the subnet S be P*(k). A compact and conventional
presentation is obtained by defining P(k) in terms of its prob-
ability-generating function (PGF), G(s), as follows:

G�s� � �
i�0

�

P�i�si. [2]

Abbreviation: PGF, probability-generating function.
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P(k) is then derived from G(s) as k!P(k) � (dkG(s)�dsk)s�0. Note
that in scale-free networks, there are no unconnected or ‘‘or-
phan’’ nodes; P(0) � 0.

If the nodes in the subnet are selected at random, then the
probability that a node of degree i in the full net will be
connected to k other nodes (k � i) in the subnet is given by the
usual binomial formula, (k

i )pk(1 � p)i�k. Hence, we have

P*�k� � �
i�k

�

P�i�� i
k�pk�1 � p�i�k. [3]

It follows that the PGF for the subnet, G*(s), has the simple form

G*�s� � �
k�0

�

P�k��1 � p�1 � s�	k � G�1 � p�1 � s��. [4]

For networks where orphaned nodes are not allowed, e.g.,
scale-free networks explicitly forbid the existence of k � 0, we
have to renormalize the distribution of the subnet after discard-
ing orphaned nodes that were created by the sampling process,
and we obtain�

G*�s� � C�
k�1

�

P�k��1 � p�1 � s�	k

�
G�1 � p�1 � s�� � G�1 � p�

1 � G�1 � p�
[5]

(see also Supporting Text, which is published as supporting
information on the PNAS web site).

It is apparent that the original PGF, Eq. 2 and that of the
subnet, Eq. 4 or 5, will not in general describe similar degree
distributions for the degree distribution of the sampled subnet
to belong to the same family of distributions, it is required that

G*�s, 
� � G�s, 
��, [6]

where 
 and 
� are parameters describing the distributions. For
Eq. 6 to be the case, a necessary and sufficient condition follows
from Eq. 4 (or Eq. 5) with Eq. 6, i.e.

G*�s, 
� � G�1 � �1 � p�s, 
� � G�s, 
��. [7]

The proof for this equation is given in Supporting Text.
However, P(k) and P*(k) do have the same degree distribution

(although, of course, with average connectivity reduced by the
sampling probability p) for positive and negative binomial degree
distributions. These distributions represent a wide class of
distributions, which importantly include the Erdös–Rényi (14)
(alternatively called classical random or Poisson) and exponen-
tial networks.††

For scale-free distributions, Fig. 2 makes it plain that
subnets do not have the same degree distribution as the full
network. This finding can be seen more explicitly from Eq. 4
with P(k) having the power-law form of Eq. 1.

Specifically, for � � 2, we can obtain exact analytic expres-
sions for the degree distribution P*(k), whence it can be seen
that for small values of p most of the subnet nodes are orphans
[P*(0) � 1 � pln(e�p)]. Discarding these, we have many nodes
with a single link {P*(1) � ln(1�p)�[1 � ln(e�p)]}, whereas for
k 
 1 the degree distribution is P*(k 
 1) � [constant]�[k(k �
1)], which is initially less steep than, but asymptotically iden-
tical with, the original network’s k�2 distribution.‡‡ For � � 3,
analytic results show a proportion of orphans that is even
larger than for � � 2 when p �� 1, and, once orphans are
removed, a greater proportion of nodes with one or two links,

�For the subnet, we have the PGF

G*�s� � �
k�0

�

P*�k; p�sk � �
k�0

� �
i�k

P�i�� ps�k�1 � p�i�k� i
k� .

Summing first over k (0 � k � i), and remembering P(0) � 0 (for scale-free networks), we get

G*�s� � �
i�1

�

P�i���1 � p� � ps	i.

Note that G*(1) � ¥P(i) � 1, as it should.
The subsequent sample will, however, contain orphan nodes, given by P*(0) � G*(0) �

¥i�1
� P(i)(1 � p)i. If we redefine P*(0) � 0 by discarding such orphans, we have the subnet

defined by Eq. 5, where the renormalization constant C is required to compensate for the
deletion of the orphan nodes: C[1 � P*(0)] � 1 or

C�1 � �
i�1

�

P�i��1 � �1 � p�i	 � 1 � G�1 � p�.

††The negative binomial distribution has the PGF G(s) � [1 � (m�k)(1 � s)]�k, where m
represents the distribution‘s mean value and k characterizes the distribution’s
‘‘clumpiness’’ (the variance is given by 	2�m2 � 1�m � 1�k). This widely studied
distribution includes the Poisson distribution (the degree distribution of classical
random graphs) as the special case k3 � and the exponential or geometric as k � 1.
The subnet PGF is obtained, via Eq. 4, by substituting 1 � p(1 � s) for s in G(s), to get
G*(s) � [1 � (mp�k)(1 � s)]�k. Thus, the subnet has an identical PGF to the full
distribution, excepting only that the mean is reduced to mp (the clumping parameter
k is unaltered). The proof for the binomial distribution is even more trivial.

‡‡For Eq. 1 with � � 2, the PGF of the subnet is G*(s) � C¥k�1
� k�2[1 � p � ps]k, with C

given by C¥k�1
� k�2[1 � (1 � p)k] � 1. Defining u � 1 � p � ps, whence dG*(s)�ds �

pdG*�du, we have the degree distribution given by k!P*(k) � pk(dkG*(u)�duk)u�1� p.
For small p �� 1, consider first pdG*�du � Cp¥k�1

� uk�1�k � �(Cp�u)ln(1 � u). This exact
result gives P*(1) � �[Cpln(p)]�(1 � p). Further differentiation gives exact, but
increasingly complicated, expressions for P*(k 
 1). Thus, P*(2) � [Cp�(1 � p)][1 �

pln(p)�(1 � p)]. For larger k, P*(k 
 2) � [Cp�k(k � 1)][1 � O(p)]. Finally, we can
calculate C�1 � p�0

�{xexdx�[(ex � 1)(ex � 1 � p)]} � p[1 � ln(p) � (1�2)pln(p) �

(1�4)p. . . ].

Fig. 1. Sampling process on networks: each node is picked randomly with
probability p to be included in the subnet. Only the links�interactions be-
tween nodes that are both in the subnet (red) can be studied in the subnet.
Only for very special cases will the sampled subnet (red) be of the same type
as the overall network.
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falling off for k 
 2 as const.�[k(k � 1)(k � 2)], which
eventually asymptotes to the original k�3 power law.§§

In short, and as indicated in Fig. 2, subnets randomly sampled
from a scale-free network will not themselves be strictly scale free,
in contrast with random and exponential nets, where sampled
subnets have the same degree distribution as their parents, although
with suitably rescaled parameters. The deviation from scale-free
behavior is more pronounced as the power law exponent, �,
increases. The general rule is for the subnets to have more
(sometimes many more) nodes with relatively few connections, but
to asymptote to the full network’s power law behavior at large
connectivity, k 

 1. It is perhaps worth noting that these properties
are observed in many real networks that have been presented as
scale-free. Interestingly, the curvature of the subnets degree dis-
tribution is concave rather than the convex shape frequently
observed for real networks; this observation could suggest that true
networks may deviate quite substantially from the ideal set by
simple scale-free models.

Discussion
In practice, most networks analyzed today offer only partial insights
into the true networks. For example for protein interaction data,
depending on the organism, 10–80% of proteins in the proteome
have been surveyed (see http:��dip.doe-mbi.ucla.edu). The process
by which nodes are chosen to be analyzed may of course not
conform to our assumption of independent random sampling
(without replacement). If this assumption is not met, then things can
be even worse; for nonrandom sampling strategies, it can be shown
that even for classical random graphs the degree distribution will no
longer be conserved (data not shown). Moreover, the nonconser-
vation of the power-law degree distribution of scale-free networks
under sampling also can be shown from the master equation that
described the evolution of scale-free networks. The degree distri-
bution is a function of time (and network size, which is often a proxy
for time, in particular in the Barabási–Albert construction). Unless
sampling reverses the sequence of events by which networks were
generated, the subnet will not have a scale-free distribution.

We have seen that the deviation from a power-law-like behavior
is only slight for p sufficiently close to 1 (e.g., 1 � p 
 0.8 for � 

3). Conversely, for small p the sampled network can deviate
significantly from a power law with nearly all of the nodes having
low connectivity in extreme cases (p �� 1). Interestingly (and rather
worryingly) this pattern is seen (and often dismissed) in some
putative examples of power laws. In short, for some systems the
properties observed in subnets could be sufficiently similar to the
same properties in the overall network. If p is known (e.g., from the
ratio of network sizes in the subnet and full network), then it is
possible to estimate the power-law exponent � from the data. The
size of the class of orphaned nodes, of course, also contains
information about properties of the global network, N.

The theory underlying much of the literature on scale-free
networks is both powerful and intuitive (1, 2). However there

seems to have been a recent trend to apply the name ‘‘scale-free’’
to any kind of network with a fat-tailed degree distribution,
without a detailed statistical assessment (16). To understand the
role of networks in biology or elsewhere, it is, however, impor-
tant to focus on the entire network and not just the tail; as we
have seen, it is the nodes with low to medium connectivities that
are most severely affected by sampling.
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1

4��2�	� . . . ,
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1
2

p � . . . ,
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1
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3
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