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Abstract

Background: Structured Logistic Regression (SLR) is a newly developed machine learning tool first proposed in the context
of text categorization. Current availability of extensive protein sequence databases calls for an automated method to
reliably classify sequences and SLR seems well-suited for this task. The classification of P-type ATPases, a large family of ATP-
driven membrane pumps transporting essential cations, was selected as a test-case that would generate important
biological information as well as provide a proof-of-concept for the application of SLR to a large scale bioinformatics
problem.

Results: Using SLR, we have built classifiers to identify and automatically categorize P-type ATPases into one of 11 pre-
defined classes. The SLR-classifiers are compared to a Hidden Markov Model approach and shown to be highly accurate and
scalable. Representing the bulk of currently known sequences, we analysed 9.3 million sequences in the UniProtKB and
attempted to classify a large number of P-type ATPases. To examine the distribution of pumps on organisms, we also
applied SLR to 1,123 complete genomes from the Entrez genome database. Finally, we analysed the predicted membrane
topology of the identified P-type ATPases.

Conclusions: Using the SLR-based classification tool we are able to run a large scale study of P-type ATPases. This study
provides proof-of-concept for the application of SLR to a bioinformatics problem and the analysis of P-type ATPases
pinpoints new and interesting targets for further biochemical characterization and structural analysis.
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Introduction

Systematic sequencing efforts in the last decade have provided

complete sequences of an increasing number of genomes, and a

large amount of sequence information is available from other

organisms. A traditional analysis based on a multiple sequence

alignment (MSA) and tree reconstruction might be computational

feasible for up to ,100k sequences using fast MSA heuristics such

as MAFFT and efficient implementations of the canonical

neighbour-joining (NJ) method such as QuickTree [30] or

RapidNJ [47], or heuristics such as ClearCut [46]. For larger-

scale sequence classification, machine learning based methods

such as (profile) hidden Markov models (HMM) and Support

Vector Machines (SVM) are applicable. These machine learning

methods are trained on a subset of the data and then used to

rapidly classify unknown sequences.

A possible alternative to HMM and SVM is Structured Logistic

Regression (SLR) [23]. SLR is a recently developed machine

learning method that has not been previously applied to large-

scale classification problems in bioinformatics, but have shown

great promise in other types of classification [23]. In this paper we

provide a proof-of-concept application of SLR to a large-scale

classification problem in bioinformatics. We use classification of P-

Type ATPases as our application because we believe it can

generate important biological information. Also the rapidly

increasing number of possible P-type ATPases calls for an

automated procedure to facilitate the quick analysis of their

distribution into different classes to guide biochemical experi-

ments. Since SLR has been shown previously to compare

favourable with SVM [23], we have chosen to compare the

performance of our SLR based classifier to an profile HMM based

classifier, and, for a smaller set of sequences, to a traditional MSA-

PLOS ONE | www.plosone.org 1 January 2014 | Volume 9 | Issue 1 | e85139



NJ analysis. A variant of SLR has been developed recently and it

has been validated experimentally on biological sequence classi-

fication, where it performed favourably [49]. However, it focused

on extending the learning framework, rather than the key

biological insights made accessible by SLR, and the scale of the

performed experiments was much smaller (,150.000 sequences)

as compared to this paper (,10 million sequences).

P-type ATPases are a family of proteins involved in the active

pumping of charged substrates across biological membranes [1].

Their distinguishing feature is the formation of a phosphoaspartate

intermediate formed at a canonical DKTGT sequence motif

(hence P-type) [2,3]. P-type ATPases of various substrate

specificities have several vital cellular functions. For example,

they provide the basis for action potentials in nervous tissues,

secretion and re-absorption of solutes in the kidneys, acidification

of the stomach, Ca2+-dependent signal transduction, and lipid

bilayer asymmetry. X-ray structures of three types of P-type

ATPases exist [4,5,6] leading to a very detailed mechanistic

understanding of their general function [7,8].

Several reports have speculated about the relationship among

the various P-type ATPases [9,10,11,12,13], but the number of

sequences included in these studies has been relatively low. A

breakthrough in the classification was made in 1998 by Axelsen &

Palmgren, leading to a clear conceptualization of the different

classes found in this family. Since then, one new subclass of P-type

ATPases has been suggested [14] as well as a completely revised

classification-scheme [12,13].

Based on sequence homology, the P-type ATPase family is

divided in 5 superclasses (I to V) and further into 11 different

subfamilies or classes [11,14]. Each class appears specific for a

particular type of substrate (Table 1). Class IA is part of a large

protein complex called KdpABCF involved with K+ uptake. Class

IB groups the heavy-metal ATPases, including copper and zinc

exporters. Class IIA includes the Ca2+ and Mn2+ ATPases

[15,16,17]. Class IIB contains primarily calmodulin-binding

Ca2+-ATPases. Class IIC consists of the Na+/K+ and H+/K+

ATPases, while class IID is involved in transport of Na+ and K+

[18,19]. Class IIIA consists of the plasa membrane H+ P-type

ATPases [20] and class IIIB of the Mg2+ importers [21]. Class IV

groups proposed phospolipid translocases [22], while classes VA

and VB contain ATPases with unknown specificity located in the

endoplasmatic reticulum membranes of eukaryotes [14].

We have applied SLR-classifiers to the entire UniProtKB v.

15.8 [24] to identify new P-type ATPases and further classify them

into the 11 known subfamilies. To examine the per-species

distribution of ATPases, we have analyzed 1,123 genomes.

Furthermore, an analysis of the predicted membrane topology of

P-type ATPases found in these genomes shows that the

transmembrane region can be described as a three component

system containing a core region of 6 transmembrane helices and

two elements that reside on the N- and C-terminal part.

Methods

Description of Structured Logistic Regression
Structured Logistic Regression (SLR) is a machine learning tool

first proposed in the context of text categorization [23]. SLR takes

as input a training set of n samples, {xi, yi}, i = 1,..., n, where xi is a

sequence, and yi M {+1,21} are labels indicating the class. The

SLR output is a set of discriminating subsequences of unrestricted

length (also known as k-mers or n-grams, with k or n unrestricted in

this case; in this work we refer to them simply as predictors)

together with their weights wj indicative of their discriminative

power. The SLR decision function is linear:

f xið Þ~
Xk

j~1

wjI predictorj [xi

� �

where k is the total number of selected predictors and I(.) is the

indicator function. To predict class membership of xi, the score

f (xi) is related to the probability that xi belongs to class +1:

p yi~z1jxi,wð Þ~ 1

1ze{f xið Þ

The learning algorithm is based on a coordinate-wise gradient

ascent optimization technique for iteratively maximizing the

likelihood of the training set [23]. Upon optimizing the likelihood,

the algorithm outputs a compact set of discriminative predictors to

be used for classification. The output can thus be analysed in order

to understand what lead to a certain classification decision, i.e., the

user can simply go over the list of positive and negative predictors

Table 1. Overview of the canonical P-type ATPase classes.

Class Substrate out Substrate in Expected TMs (a,b) Taxonomic coverage (b)

IA unknown (c) K+ 7 Prokaryotic

IB HM (d) unknown 6–8 All kingdoms

IIA Ca2+ or Mn2+ H+ 10 All kingdoms

IIB Ca2+ H+ 10 All kingdoms

IIC Na+ or H+ K+ 10 Metazoa

IID Na+ or K+ unknown 10 Fungi

IIIA H+ none (e) 10 All excl. Metazoa

IIIB unknown Mg2+ (f) 10 Prokaryotic

IV unknown PL (g) 10 Eukaryotic

VA unknown unknown 12 Eukaryotic

VB unknown unknown 12 Eukaryotic

a) TM: transmembrane helices. b) Expected from the literature. See main text for references. c) Substrate have not been identified. d) HM: heavy metals. Primarily Cu and
Zn, but also Co, Cd, Ag and Pb. e) Possibly no countertransport. f) Transported with the electrochemical gradient. g) PL: Phospholipids.
doi:10.1371/journal.pone.0085139.t001
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to study the characteristic subsequences for each of the predefined

subfamilies. SLR lets the data drive the predictor selection process,

without assumptions on the underlying data distribution or

constraining the predictors according to manually built regular

expression rules. Further details on this method can be found

in [25].

Datasets
Positive dataset. For positive training examples, we built a

P-type ATPase dataset consisting of 397 sequences from PAT-base

(http://www.traplabs.dk/patbase) and 93 sequences from the

dataset of Møller et al., resulting in 490 ATPases [11,14].

Negative dataset. For negative training examples, we

selected all sequences from the Homo sapiens genome (eukaryota),

the Escherichia coli genome (bacteria) and the Thermoplasma

acidophilum genome (archaea). About 30 of these sequences

contained the motif DKTGT considered to be characteristic of

P-type ATPases. We manually inspected this small set of sequences

and confirmed that they had all previously been reported as P-

Type ATPases in these genomes (cf. PAT-base). We removed

these sequences, giving us a total of 43.315 sequences in the

negative dataset. The use of complete genomes from different life

domains ensured that all types of protein sequences were

represented in the negative training set.

UniProtKB dataset. To identify new ATPases we used the

UniProtKB v15.8 (downloaded Oct. 2009) containing the bulk of

known protein sequences (a total of 9,325,547 sequences).

Genome dataset. To analyse the organismal distribution of

P-type ATPases, we used translated protein sequences from 1,123

eukaryotic, bacterial and archaeal genomes publicly available from

Entrez (downloaded Feb. 2010 from http://www.ncbi.nlm.nih.

gov/sites/genome), a total of 4,131,203 protein sequences. These

include different isoforms from alternative splicing of eukaryotic

genes. Genomes from different strains of the same species were

included, but analysed separately (e.g., E. coli is represented in the

dataset with 29 different strains). Furthermore the data was

merged on organism level with only one copy of each unique

chromosome. As an example, the array of human sequences in our

dataset consists of translated protein sequences from 25 chromo-

somes (22 autosomes, 2 gonosomes and 1 mitochondrial

chromosome).

Checking the quality of the positive dataset
The quality of any machine learning tool depends heavily on

the quality of the positive dataset used for training, thus we initially

checked how well the 11 classes separated in the positive dataset.

The original procedure for classifying the sequences relied on

manually selecting a conserved sequence kernel with 8 elements

from each sequence, aligning them and generating a neighbour-

joining tree [11,14]. This is a highly successful approach, but

ultimately subjective and non-scalable to larger datasets. Using full

sequences, we generated an iterative multiple sequence alignment

and a bootstrapped minimum evolution tree to check if the 11

subfamilies are indeed distinguishable. This is a very powerful

method of grouping sequences, but only feasible for small datasets

due to prohibitive computational costs. We observe the same

results as Axelsen & Palmgren with some possible sub-branching of

class IIA (Figure S1 in File S1), emphasising that the initial

classification observed by them is consistent with newer classifi-

cation methods and that the quality of the positive dataset is good.

Classification tasks
Task 1: Identifying P-type ATPases. This task focuses on

predicting whether a sequence is a P-type ATPase or not using

SLR. As training data we used the positive and the negative

datasets described in Section 2.2, a total of 43,805 sequences (490

positive and 43,315 negative). Training SLR on this dataset took

under 1 minute. This classifier was then applied to the UniProtKB

and Genome datasets to identify new P-Type ATPases.

Task 2: Fine-grained classification of P-type ATPases. The

second task focuses on organizing the P-type ATPases identified in

Task 1 into the 11 known classes. Using the positive dataset for

training (490 P-type ATPases classified into 11 classes) we applied a

one-versus-all approach for building binary training sets for each

class. In this framework, each sequence gets a classification score for

each of the classes tested. SLR outputs the probability of a target

sequence to belong to the positive class. For each sequence, we rank

the 11 scores and classify the sequence to the maximum probability

class. Sequences with a probability less than 0.5 for all 11 classes are

collected into a group called class 0 with assigned score of 0.5. We

store all 11 scores for each sequence in the database to preserve

information on how far a sequence was from inclusion in any of the

11 classes. We base our initial training of the Task 2 classifiers on

the 490 sequences in the positive dataset for which the distribution

into subclasses are known. Since this set is fairly small (only 490

sequences split into positives and negatives) compared to the

number of P-Type ATPases identified by our Task 1 classifier, we

investigated several retraining techniques to improve the initial Task 2

classifiers in an iterative process with the goal of improving the final

classification. We observed that the retraining procedure presented

in [26] worked best for our classification problem. Namely, we

retrained the classifiers until no more test sequences had their labels

re-assigned. For example, for the UniProtKB dataset, we started

with the training set of 490 ATPases and classified the 9,694

UniProtKB test sequences identified in Task 1. Next, we iteratively

used the newly labeled test sequences to re-train the classifiers and

re-label the full UniProtKB test set. Since the start classifiers are

already quite accurate, this process stops with a stable labeling of

the test set and the final classifiers are highly accurate. The

classification process and the overall approach are sketched in

Figure 1 using the UniProtKB dataset as an example. The final

predictors for each class can be seen in Table S3 in File S1. The

final classifiers are available as an online tool (http://www.

pumpkin.au.dk/pump-classifier/) for the classification of new

unknown sequences.

Task 3: Curation. The P-Type ATPases identified in Task 1

were manually inspected for obvious false positives, e.g., extremely

short or long sequences. P-type ATPases are typically between 600

and 2000 amino acids long. We did not use any sequence length

filter prior to applying the SLR classifiers to allow SLR to also

identify P-type ATPases sequence fragments. SLR actually

classifies most sequence fragments correctly, as validated by

alignment to full-length sequences of the similar proteins found by

BLAST [44]. False positives obvious to a human, mostly virus

envelope sequences with ,50 amino acids, as well as sequences

from DNA gyrases and dystonins (which contain DKTGT as part

of their sequence), were removed. The envelope sequences most

likely appear because the negative training dataset did not contain

virus sequence data.

Tools and parameters
Comparing SLR to HMM. In order to estimate the

classification quality of SLR vs. HMM for Task 1 we have done

10-fold cross validation on the training data (positive and negative

dataset). We split the training data (490+43315 sequences) into 10

groups, generated a single HMM or SLR using the sequences from

the 9 groups and tested on sequences in the 10th group. This was

done 10 times. We used the same test folds for SLR and HMM.

Protein Sequence Categorization Using SLR
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The only difference is that HMM uses only positive examples for

training, while SLR uses both positive examples and negative

examples for training.

For the HMM approach we used HMMER v. 3.0 with default

settings [43] and for the SLR approach we used SLR v. 1.0.1 with

default settings. Cut-off thresholds were determined by the

algorithms, and not manually optimized in either case.

Parameters for checking the positive dataset. For the

multiple sequence analysis (MSA) we used MUSCLE [27] with

default settings and max 32 iterations. We computed a Minimal

Evolution Tree using MEGA4, and calculated bootstrap values

with 500 trials [28]. Our reason for using MUSCLE and ME is

that the size of the positive dataset (490 sequences) makes it

computational feasible to use these more precise methods rather

than the computationally faster, but potentially less precise, tools

MAFFT [29] and QuickTree [30] that we use for the analysis of

the much larger UniProtKB dataset (9,694 sequences).

SLR Training parameters. We used SLR version 1.0.1. We

trained the SLR classifiers using slr_learn and slr_mkmodel with

default parameters [25]. We tested the classifiers using the

slr_classify software.

MSA-NJ analysis on UniProtKB. For multiple sequence

analysis of the ATPases identified in the UniProtKB dataset we

applied MAFFT [29] with default settings. The large number of

sequences (9,694) makes it computational infeasible to use a

potential more precise iterative alignment method such as

MUSCLE as we did in the validation of the positive dataset. For

tree construction we used the neighbour-joining (NJ) algorithm as

implemented in Quicktree with default settings [30]. Building an

NJ-tree of the 9,694 sequences in the UniProtKB dataset took

about 3 hours using QuickTree on a standard Linux machine.

Again, the large number of sequences (9,694) in the dataset makes

it computational infeasible to use a potential more precise method

such as Minimal Evolution as we did in the validation of the

positive dataset. To visualize the tree, we used Dendroscope [31].

Membrane topology analysis. For the membrane topology

analysis we employed Phobius [32]. We found the location of the

N- and C-terminal elements by matching the topology-result with

the position of the DKTGT motif that is always located after

transmembrane helix 4 (M4) of the core [2,3,6,45].

Results and Discussion

Structured Logistic Regression for identification of P-type
ATPases

The objectives of the present work was to identify all sequences

of the P-type ATPase super family currently present in protein

databases (Task 1) and subsequently to categorize the identified

sequences into subfamilies (Task 2). For this purpose we used

Structured Logistic Regression (SLR), which is a machine learning

tool first proposed in text categorization. From a training set

containing examples sequences from two classes, SLR learns a set

Figure 1. Flowchart of the SLR classification approach. Classification is based on 12 SLR-classifiers (orange). The numbers noted in parenthesis
are the classification-result using the UniProtKB dataset as an example. HM: heavy metals. PL: Phospholipids.
doi:10.1371/journal.pone.0085139.g001
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of discriminating motifs and associated weights, such that deciding

whether a novel sequence belongs to one class or the other can be

done by determining the presence of the motifs in the sequence.

The total weight of all motifs present (i.e. all motifs that occur in

the novel sequence at some position) determines which class the

novel sequence belongs to.

Simple methods for extracting P-type ATPase sequences from

large datasets are already available [11], which are based on a

PROSITE motif covering DKTGTLT (PS00154) and a PFAM

profile (PF0122) that is a little less specific, i.e. it includes some

false positives. Therefore, by comparing the results of these simple

but reliable methods with that of the more sophisticated SLR

approach it was possible to evaluate the results of the latter.

As explained in further details below, we have applied our Task

1 SLR-classifier to the ,9.3 million sequences in the UniProtKB

dataset. It identified 9,634 sequences as P-type ATPases of which

22 sequences (Table S4 in File S1) do not contain an intact

DKTGT site but a further analysis revealed that they are indeed

P-type ATPases. These 22 sequences would not have been

identified by PROSITE although they are identified by PFAM.

For unequivocal identification of P-type sequences, the results of

the SLR method could favorably be filtered to include only those

sequences with the slightly longer PROSITE motif (PS00154)

covering DKTGTLT (with a few variations), which seems to

eliminate all false positives.

Performance of Structured Logistic Regression vs. Hidden
Markov Models for identifying P-type ATPases

We compared the SLR-classifiers generalization ability to that

of an HMM approach for Task 1 (identifying P-type ATPases) by

10-fold cross validation. We generated the Receiver Operating

Characteristic curve (ROC curve) and calculated the area under

the ROC curve (AUC). Here both methods excel (Table 2). As

expected HMM works well, and we are encouraged to observe

that SLR gives comparable results. Calculating the true positive

(TP) and false positive (FP) rate, we observe that both SLR and

HMM mainly retrieve true positives, with SLR being slightly more

conservative than HMM. However SLR is superior at reducing

the false positives with a FP-rate of virtually zero (Table 2). As the

number of true positives in the dataset is very small compared to

the total number of true negatives, the calculated ratios should be

considered with caution. Still, the difference in FP-rate is

significant due to the large number of sequences we ultimately

want to test. HMM requires some manual work in terms of

optimizing thresholds to reduce the FP-rate to an acceptable level.

As a further argument for SLR vs. HMM, its running time

compared to HMM for the complete classification of the ,9.3

million sequences (Table 2) is about 8 times faster than that of

HMM.

Performance of the SLR-classifiers in Task 2
To assess the SLR-classifiers ability to classify ATPases into the

11 classes in Task 2, we ran 1000 experiments per class with

random splits into 90% training and 10% test using the positive

dataset. SLR is highly accurate at identifying ATPase subfamilies

(Table S1 and Table S2 in File S1). The IA, IID and IIIB

classifiers are slightly worse than the others. This might be due to a

lower number of positive training sequences for these classes

compared to other classes, but might also be due to the intrinsic

qualities of these classes. Overall, we find that the validated

accuracy is very high for this difficult task.

Running the SLR-classifiers on the UniProtKB dataset
Being satisfied that SLR is appropriate for the classification task,

we applied the SLR-classifiers to the ,9.3 million sequences in the

UniProtKB dataset. The Task 1 classifier identified 9,634

sequences as P-type ATPases. The classification in Task 2

(Figure 1) resulted in categorization of 9,477 of these 9,694

sequences into the 11 known classes (Table 3). The remaining 217

sequences (approximately 2.2%) were rejected by all 11 Task 2

classifiers and were placed in class 0. A list of these sequences is

given in Table S9 in File S1. More information about the

sequences is available online in our database (available via http://

www.pumpkin.au.dk/pump-classifier/) that stores the results of

the SLR-classifiers.

Of the 9,694 sequences, 3,375 are eukaryotic, 6,091 bacterial,

226 archaeal and two come from virus. P-type ATPases are clearly

highly represented in all domains of life. Somewhat surprising, two

putative calcium P-type ATPases are found in a virus genome

(Paramecium bursaria chlorella). These sequences (A7UR5 and

A7CN8) could represent bacterial contaminations. However, they

are quite identical (64%) but only 36% identical to ACA8 from

Arabidopsis, which strongly suggests that they are not bacterial

contaminations. Class IIC is not exclusive to animals in

eukaryotes, but is widely represented in fungi, aveolata, protists

and primitive plants (Table 3 and as reported recently by using

other methods [33,48]). Furthermore, class IIC ATPases were

identified in prokaryotes where we observe 14 archaeal and 72

bacterial class IIC ATPases. Also, we observe seven eukaryotic

sequences in class IA and also seven in class IIIB, two classes

normally restricted to prokaryotes. Three of these sequences are

fragments and might represent false positives, but most are worth

further study. One bacterial sequence is classified as type VB but

manual inspection indicate that the sequence rightfully belongs

to IIA.

We also found 23 out of 840 sequences proposed to be class IV

that in a phylogenetic tree of the 840 proposed class IV ATPases

grouped in a cluster together with outgroups of other P-type

ATPase subfamilies (Figure S5 in File S1). Several but not all of

these sequences were bacterial. A manual inspection revealed that

two bacterial sequences showed highest blast score to class IB

ATPases, two eukaryotic sequences to class V ATPases, six

sequences to secretory pathway Ca2+-ATPases (a subgroup of class

2A ATPases) and the remaining sequences grouped with other

class 2A ATPases. In all cases, the scores for class IIA and class IV

were similar as the sequences contain elements matching

predictors from both these classes. In addition, these sequences

cluster in the MSA-NJ in the subbranch belonging to class IIA

(Figure S2 in File S1). We therefore speculate that they are

specialized class IIA and other pumps with some elements that

resemble class IV. The power of the SLR method is highlighted
here, since individual classifier-results following phylogenetic
tree building can be rapidly compared and understood on the
basis of the predictors.

Table 2. Comparison of running time of SLR to HMM for
task 1.

Classifier AUC % TP % FP CPU Running time (a)

SLR 99.61% 99.1901% 0.0000% 19 min

HMM 99.99% 100.0000% 0.3396% 20 min+150 min (b)

a) CPU running time for complete training and classification of UniProtKB.
b) HMM running time is split into time for constructing a MSA and time for
actual training/classification.
doi:10.1371/journal.pone.0085139.t002
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SLR results compared to MSA-NJ
To further justify the SLR method and validate the SLR-

classifiers’ output on the UniProtKB dataset, the Task 2

classification of the 9,694 sequences was compared to a

neighbour-joining (NJ) tree of the 9,694 sequences constructed

from a multiple sequence alignment (MSA). The constructed NJ-

tree shows a fairly nice distribution of the 11 classes (Figure S2 in

File S1). The SLR classification and the NJ-tree grouping have

excellent agreement, with 91.4% of the sequences classified by

SLR clustered class-wise together within distinct subbranches of

the NJ-tree. Excluding superclass II (i.e. class IIA and class IIB),

the agreement increases to 96.7%, emphasizing that the overlap

between SLR and MSA-NJ in general is very high, and that

superclass II has some problems in the MSA-NJ analysis (discussed

further below).

Despite a low number of positive training sequences for class IA

and IIIB, the result appears robust. The IA classifier agrees almost

perfectly with the MSA-NJ. The SLR-classifier finds 503 type IA

and of these, 495 are located in one branch of the NJ tree. The

agreement in class IIIB is less, but still quite good, with 343 of 369

hits located in the same sub-branch of the NJ-tree. Classes VA and

VB are not clearly distinguishable in the NJ-tree, nor in the

learning dataset (Figure S1 in File S1). These two classes probably

should be merged to a single class when using full length sequences

as the class differences are likely masked as opposed to the manual

analysis of only core-fragments as in [14].

Superclass II is ill-defined in the MSA-NJ analysis
Superclass II is not clearly divided in the MSA-NJ analysis. This

is seen in Figure S2 in File S1, where the sub-tree grouping IIA,

IIC and IID are not clearly separated. Using MSA-NJ, the only

well defined class in superclass II appears to be the IIB class

containing calmodulin-binding Ca2+ ATPases. Thus we cannot

evaluate the SLR classification to a proper extent within this

superclass. However, there is clearly a high disagreement between

MSA-NJ and SLR for classes IIA (15.1% of sequences in the IIA

group are classified as other classes by SLR), IIC (19.9%) and

especially IID (56.3%), indicating that SLR at least disagrees with

the faulty MSA-NJ classification. Class IID however also had a low

number of positive training sequences (see Methods Section) and

SLR might struggle if the initial training groups are not well-

defined. For class IIB, the only clearly separated class in the MSA-

NJ tree within superclass II, the disagreement between SLR and

MSA-NJ is very low (0.7%) as it is for the other superclasses as

stated in the previous section.

Analysis of unclassified P-type ATPases
A small number of identified P-type ATPase sequences (217 of

9,694 (2.2%)) were rejected by all 11 SLR-classifiers. All cluster

within subtrees with clear grouping in the NJ-tree (Figure S2 in

File S1) indicating that these sequences could belong to that

particular group. Thus we do not observe any new classes of P-

type ATPases in this study. The fact that SLR only fails to classify

2.2% of all sequences in a highly divergent protein family

demonstrates the power of the algorithm for this bioinformatics

application. Why sequences could not be classified is not obvious.

After building a NJ-tree of sequences in Class 0 and subsequent

manual inspection (Figure S4 in File S1), we noticed that some

subfamilies more often than others were misclassified. Thus,

among the 217 unclassifiable P-type ATPase sequences, about 40

sequences grouped as class IIC ATPases (Na+/K+ pumps), 62

sequences grouped as class IIB ATPases (autoinhibited calmodu-

lin-stimulated Ca2+-ATPases) and 46 grouped as class IIIA

ATPases (putative Mg2+ pumps). Individual blast searches for all

sequences confirmed this classification. Apparently, specific

sequence features for these subfamilies need to be defined more

stringently for the SLR algorithm to work optimal. Misclassifica-

tion of sequences might be due to the use of small sequence motifs

(1- 3 residues; Table S3 in File S1) as predictors. This is an inborn

problem with analysis of highly variant protein families as

conserved ‘‘motifs’’ often are single residues only placed in a

conserved distance from other more easily identifiable sequences.

(We note that SLR’s predictors can be restricted by the user to be

of or above a given length, an option potentially useful for some

classification problems, but not employed here.)

Variations on the canonical DKTGT motif
Since SLR does not rely on pre-defined motifs per se to identify

potential P-type ATPases, it was possible to search the SLR-

identified sequences for ATPases lacking the DKTGT defining

motif [3]. Five eukaryotic and 17 bacterial sequences were found

containing single point mutations in the DKTGT motif, which are

clearly P-type ATPases based on BLAST search [44] (Table S3 in

File S1). Some of these might derive from trivial sequencing-errors,

or represent non-functional or highly specialized P-type ATPases,

99.77% of identified P-type ATPases contain the DKTGT motif

Table 3. Breakdown of P-type ATPase classes found in the UniProtKB dataset.

Domain/Kingdom 0 IA IB IIA IIB IIC IID IIIA IIIB IV VA VB Total

Animal 49 1 68 165 102 248 2 0 0 251 35 63 984

Plant 9 2 156 66 134 4 0 179 1 108 14 2 675

Fungi 22 3 166 204 94 18 62 124 5 255 58 63 1074

One-celled Eukaryotes 48 1 57 77 81 22 12 32 1 199 33 79 642

– –

Eukaryota 128 7 447 512 411 292 76 335 7 813 140 207 3375

Bacteria 79 489 3914 1042 38 72 29 38 362 27 0 1 6091

Archaea 8 7 133 35 0 14 0 29 0 0 0 0 226

Virus 2 0 0 0 0 0 0 0 0 0 0 0 2

Total 217 503 4494 1589 449 378 105 402 369 840 140 208 9694

doi:10.1371/journal.pone.0085139.t003
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which supports the known result that P-type ATPases are strongly

characterized by this motif [1].

Analysis of the Genome dataset
Sequence fragments as well as lack of full genomic data for most

species in the UniProtKB dataset complicate the analysis of

organismal P-type ATPase distribution. For this, we turned to the

Genome dataset containing 70 eukaryotic, 975 bacterial and 78

archaeal genomes downloaded from Entrez. Here 5,821 ATPases

were identified. Table S5 in File S1 shows the overall class-

distribution that is similar to the distribution in the UniProtKB

dataset. The Genome dataset was downloaded at a later time than

the UniProtKB dataset, and it thus contains more sequences in a

few classes. Examples of the organismal distribution of some

selected species can be seen in Table S6 in File S1.

Eukaryotic P-type ATPases. Eukaryotic organisms have

considerably more P-type ATPases than bacteria and archaea

(Figure 2), and numbers are higher than reported previously (PAT-

base; [12]), caused by the inclusion of isoforms, giving a detailed

view of the diversity and density of P-type ATPases in eukaryotes.

A problem with automated searching tools like HMM, SVM or

SLR is that their performance depends on the level of redundancy

in the databases. Especially highly similar eukaryotic sequences

from the same locus may have been entered on several occasions.

Manual inspection is often required to distinguish true gene

duplications from true gene redundancy. An extreme example is

Canis lupus familiaris that as a result of an SLR analysis of the

dataset has 166 P-type ATPases (Table S6 in File S1), a number

which following manual inspection of the sequences could be

reduced to 37 (compared to 36 in humans) (Table S7 in File S1).

Even though application of the SLR method without subse-

quent sorting for redundancy overestimates the true number of

pumps, a large variety of P-type ATPases, especially of type IV,

are clearly important for multicellular organisms (plants and

animals) (Table S5 in File S1). Furthermore, plants have a high

number of class IIIA H+ P-type ATPases and animals a high

number of class IIC Na+/K+ ATPases as expected as these pumps

have an analogous function in energizing the plasma membrane.

Interestingly, some fungi contain both Na+/K+ ATPases and

plasma membrane H+-ATPases.

Bacterial P-type ATPases. Bacterial taxonomy is quite

diverse and overall the number of P-type ATPases ranges from

1 to 12 per genome (Figure 2). Most are class IA, IB, IIA and IIIB

(Table S6 in File S1). The large number of IIIB sequences in

bacteria (Table 3 and Table S6 in File S1) is remarkable and

suggests a more central role of this class than previously

appreciated. Also remarkable 52 class IIC ATPases are found.

11 class IV ATPases are observed, but like for the UniProtKB

dataset they are found to be false positives upon manual

inspection, rather belonging to class IIA. Similarly, a single VA

ATPase is found which seems to belong to class IIA.

Archaeal P-type ATPases. Most archaea have a low number

of P-type ATPases, in the range of 1 to 3 (Figure 2), and these are

mostly class IB as well as some class IIIA (Table S6 in File S1). 17

class IIC ATPases are found here.

Genomes without P-type ATPases
The Genome dataset consists of 1,123 genomes of which 1,043

(92.9%) contain P-type ATPases, including all eukaryotic species.

80 genomes representing 60 different species are lacking P-type

ATPases altogether (8 archaeal and 72 bacterial, Table S8 in File

S1). Some genomes are the only ones sequenced within their

genus, and it therefore remains to been seen if the lack of P-type

ATPases is a general feature of those particular evolutionary

branches.

Some genera clearly survive without P-type ATPases. These

primarily include the order Rickettsiales with the following genera:

Anaplasma, Ehrlichia, Neorickettsia, Orientia, Rickettsia and Wolbachia (29

genomes). Also the genera Bartonella, Borrelia, Buchnera and Xylella

do not have P-type ATPases (23 genomes). All of the above-

mentioned genera are obligate endosymbionts, which may explain

why they can survive without these vital pumps. A number of

genera contain a mix of genomes with and without P-type

ATPases. These include Campylobacter, Coxiella, Francisella, Hae-

mophilus, Helicobacter and Mycoplasma as well as several unchar-

acterized species (Candidatus)

Membrane topology analysis
We analyzed the transmembrane topology of the P-type

ATPases found in both the UniProtKB and Genome datasets

(full data available online). A pattern emerged which became

much clearer if simplified to three transmembrane elements

instead of the exact number of transmembrane helices (Figure 3).

The three elements in P-type ATPases are: A core-element of 6

transmembrane helices [10,45], and an N- and C-terminal

element. The observed topology in the Genome dataset is

summarized in Table 4. On the C-terminal side of the core an

extension of 4 transmembrane helices is often found (e.g., Ca2+-

ATPase, Na+, K+-ATPase, H+-ATPase). This element can be

expanded further (e.g, SERCA2B has 11 transmembrane helices

[34]), and some sequences are predicted to have up to 17

transmembrane helices in the C-terminal element for at total of 23

transmembrane helices. These long sequences are ATPases fused

C-terminally to mononucleotidyl cyclases [35]. On the N-terminal

side an extension of 2 transmembrane helices is often found. Like

the C-element, this element can have additional number of helices

reaching a total of 22 transmembrane helices. These longer ones

appear to be ATPases fused N-terminally to Kef-type K+ transport

systems [36]. Some ATPases (particularly superclass V) have both

the N- and C-terminal element, whereas most have only one. As a

generalization, class IA has a 7 TM topology, class IB contains the

N-terminal element, class VA and VB have the N- and C-terminal

elements, and all other classes contain only the C-terminal

element. A subclass of IB ATPases (predicted Co-ATPases [37])

are reduced to the 6 TM core.

Pump functionality is contained within the core-element, while

the N- and C-terminal elements function as stabilizing elements,

being heavily involved in regulation and interaction with other

subunits [45]. A few sequences with missing transmembrane

helices in the core-element are presumably broken gene products.

The observation that some ATPases, especially in superclass V,

have both the C- and N-terminal element emphasizes that these

extensions do not occupy the same position in the membrane

space (Figure S3 in File S1). This is consistent with the short linkers

observed from core to the N-terminal extension in IB ATPases

[38,39].

Conclusions

In this paper we applied a new machine learning tool,

Structured Logistic Regression, to the problem of large scale

identification and categorization of P-type ATPases. We show that

SLR is efficient and useful for this task.

A number of factors speak to SLR’s advantage compared to

HMM for the initial identification of P-type ATPases (Task 1):

Profile HMM’s need sequence alignment for time efficient

training. SLR requires no alignments, and focuses directly on
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separating the given classes, making SLR independent of other

methods. Furthermore the testing time on UniProtKB Dataset for

HMM is 150 minutes compared to 19 minutes for SLR. Given the

fast-paced increase of the UniProtKB this may become a

considerable gap in the future. Finally HMM seem to lead to a

surprisingly high number of false positives when filtering out

a particular type of proteins. Arguably this can be improved by

redefining the HMM thresholds, but it is preferable to not

manually optimise parameters when doing large scale analysis (e.g.

Pfam [43]). SLR is more conservative, and thus may lose some

sequences, but the retrieved set has very few false positives, even

without manual optimization. Minimising the FP-rate is signifi-

Figure 2. Distribution of the total number of P-type ATPases inc. isoforms found in individual genomes in the Genome dataset.
Eukaryota (n = 70), Bacteria (n = 975) and Archaea (n = 78).
doi:10.1371/journal.pone.0085139.g002
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cant, since even a small fraction of false positives will lead to a

large influence on the final classification result as positive hits are

normally on a much smaller scale that the negatives for a given

class in bioinformatics (needle-in-a-haystack problem). Presumably

the use of both positive and negative datasets in the training of

SLR gives it an advantage over HMM that are trained using only

positive sequences. We have chosen not to compare SLR to SVM,

since this comparison has already been performed in [23] for

string classification using a smaller dataset (thousands, not millions

of test-cases). This comparison showed that SLR and SVM are

equally accurate, but SLR is order of magnitudes more scalable.

Additionally SVM typically restricts the maximum size of k-mers

(i.e., the predictors are restricted to sub-sequences up to length k,

for small k = 3 or k = 10) due to these computational consider-

ations, while SLR works with arbitrary long predictors.

The MSA-NJ analysis of the P-type ATPases identified in Task

1 shows that the classes observed 12 years ago are surprisingly

robust when exposed to the large number of new P-type ATPase

sequences found. The agreement between the MSA-NJ analysis

and SLR classification into subclasses in Task 2 validates the SLR

based classification. It is important to emphasize that we do not

suggest MSA-NJ analysis as an alternative to SLR for classifica-

tion. We use MSA-NJ only to validate the classification performed

by SLR when the number of sequences to classify are sufficiently

small for this to be computational feasible. Constructing NJ-trees is

an established technique in the bioinformatics community for

hierarchical clustering of a set of items (fx represented by

sequences) where pairwise distances are known (or can be

inferred). Given the pairwise distances, a NJ-tree of set items can

be computed in time cubic in the number of items. Using a faster

implementation of the canonical method, fx RapidNJ [47], or

heuristics that do not guarantee to construct a true NJ-tree, fx

ClearCut [46], can speed up the computation such that it in

practice becomes (close to) quadratic in the number of items.

However, before constructing the NJ-tree, we must infer the

pairwise distances between the items. For sequence data, where

each item corresponds to a sequence, this often involves

constructing a multiple sequence alignment from which the

pairwise distances are inferred. By using heuristics, fx MUSCLE

[27] or MAFTT [29], this is reasonable fast in practice but still

significantly slower than the subsequent construction of a NJ-tree.

The process of constructing a multiple sequence alignment and a

NJ-tree can be compared to training the SLR and it takes

comparable time. However, training a SLR, results in a high

scalable classifier that can be used for classification of new

sequences (or sequence fragments) based on the knowledge

obtained during training.

The SLR-based classification of P-type ATPases provides a

footing for further biochemical analysis of this interesting protein-

family. We have provided the methodology and online tool to

categorize new sequences as well as identified more than 10,000

sequences as P-type ATPases all available online for further data-

mining. Several protein sequences emerged during this analysis

that seem promising as targets for further functional character-

ization and crystallization trials. Non-metazoan homologues of

Na+/K+ and H+/K+ ATPases are obvious examples. Identifying

fungal and prokaryotic members of this essential class could aid

understanding of functionality by allowing for cloning, over-

expression and mutational research strategies with greater ease

than associated with the mammalian orthologues. Also fungal

organisms containing both IIC and IIIA ATPases were found (e.g.

Aspergillus fumigatus), which is unexpected as these two classes

usually have an analogous function in the cell membrane in

maintaining the transmembrane potential [33,45].

Class IIIB of Mg-importers is much larger than previously

reported, highlighting its important, but largely uncharacterized,

contribution to magnesium homeostasis in bacteria. Further

biochemical characterization of this group seems necessary. While

SLR proposed a small number of class IV and V pumps in

bacteria, we analysed these manually and derive that they are false

positives, caused by poor division of superclass II. We conclude

that no P-type ATPases of the class IV and V are found in

bacteria, and these classes thus represent more recent evolutionary

achievements. The lack of type IV P-type ATPases (putative lipid

flippases proposed to be involved in formation of secretory vesicles)

in prokaryotes most likely reflects the fact that these cells lack

internal membrane systems and a secretory pathway to maintain

them.

Only a small number of sequences could not be assigned to the

existing 11 classes, and no new class of P-type ATPases is observed

in our investigation. This work also highlights that superclass II

might benefit from a detailed analysis to better identify and

separate classes. Our database provides the foundation to perform

such future dissection.

The analysis of membrane topology based solely on sequences is

difficult [40]. However, with the problem simplified to TM-

elements, a clear pattern emerges for P-type ATPases, highlighting

Figure 3. Membrane Topology in P-type ATPases. Top: Overview
of the membrane topology found in P-type ATPases. Gray helices
denote the 6 TM core-element found in all pumps (here numbered 1–6).
P shows the cytosolic phosphorylation site containing the DKTGT motif.
doi:10.1371/journal.pone.0085139.g003

Table 4. Membrane Topology in P-type ATPases.

Class
core
only N-core core-C N-core-C

core-
1TM

Broken
core Total

0 3 1 40 7 - 16 67

IA 63 3 4 22 312 10 414

IB 128 2121 105 12 - 476 2842

IIA 3 0 879 8 - 46 936

IIB 5 0 302 10 - 14 331

IIC 3 0 157 1 - 10 171

IID 0 0 49 1 - 4 54

IIIA 0 0 123 3 0 29 155

IIIB 3 3 230 7 - 22 265

IV 1 0 357 21 - 57 436

VA 0 0 10 35 - 6 51

VB 0 0 18 69 - 12 99

Total 209 2128 2274 196 312 702 5821

‘N’ and ‘C’ denote the N- and C-terminal element respectively. ‘Core-1TM’
denotes proteins with exactly one TM after the core (only class IA). ‘Broken core’
counts sequences with less than 6 TM in the core, regardless of total number of
TMs.
doi:10.1371/journal.pone.0085139.t004
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the importance of the central 6 transmembrane helices found in all

pumps. Analysing the topology of more than 10,000 P-type

ATPases, we note that all contain a core-element of 6 transmem-

brane helices flanked by optional N- and C-terminal elements that

contribute to stability, regulation and that may confer new

functionalities to the protein. The opening and release of the

exported cations require exactly M1-2, M3-4 and M5-6 of the core

to separate as observed in the Ca2+-ATPase [8] highlighting that

the actual transport function is retained within the core [45].

Furthermore, the cation binding site is defined mainly by M4, M5,

and M6 in all structures solved, and this also appears to be the case

in heavy metal ATPases [4,6,37,41,42].

Finally, we emphasize that SLR can be used on an even larger

scale than in the P-type ATPase application shown here. For

instance, one could envision using SLR to classify large databases

according to protein families as implemented in Pfam using HMM

[43]. The availability of the SLR predictors, as well as scores for

the individual SLR classifiers means that it is easy to comprehend,

compare and evaluate a proposed prediction. We encourage the

use of SLR in large-scale analysis of other protein-families by the

methodology presented here.
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22. Poulsen LR, López-Marqués RL, Palmgren MG (2008) Flippases: still more
questions than answers. Cell Mol Life Sci 65: 3119–3125.

23. Ifrim G, Bakir G, Weikum G (2008) Fast logistic regression for text

categorization with variable-length n-grams. In Proc 14th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining. pp. 354–

362.

24. UniProt Consortium (2010) The Universal Protein Resource (UniProt) in 2010.

Nucleic Acids Res 38: D142–148.

25. Ifrim G (2009) Statistical Learning Techniques for Text Categorization with

Sparse Labeled Data. PhD Thesis, Saarland University, Germany.

26. Li Y, Guan C, Li H, Chin Z (2008) A self-training semi-supervised SVM

algorithm and its application in an EEG-based brain computer interface speller

system. Pattern Recognition Letters 29: 1285–1294.

27. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy

and high throughput. Nucleic Acids Res 32: 1792–7.

28. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary

Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24: 1596–1599.

29. Katoh K, Toh H (2008) Recent developments in the MAFFT multiple sequence

alignment program. Brief Bioinformatics 9: 286–298.

30. Howe K, Bateman A, Durbin R (2002) QuickTree: building huge Neighbour-

Joining trees of protein sequences. Bioinformatics 18: 1546–1547.

31. Huson DH, Richter DC, Rausch C, Dezulian T, Franz M, et al. (2007)

Dendroscope: An interactive viewer for large phylogenetic trees. BMC

Bioinformatics 8: 460.

32. Käll L, Krogh A, Sonnhammer ELL (2004) A combined transmembrane

topology and signal peptide prediction method. J Mol Biol 338: 1027–1036.
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