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Abstract

The space of possible protein structures appears vast and continuous, and the relationship between primary, secondary and
tertiary structure levels is complex. Protein structure comparison and classification is therefore a difficult but important task
since structure is a determinant for molecular interaction and function. We introduce a novel mathematical abstraction
based on geometric topology to describe protein domain structure. Using the locations of the backbone atoms and the
hydrogen bonds, we build a combinatorial object – a so-called fatgraph. The description is discrete yet gives rise to a 2-
dimensional mathematical surface. Thus, each protein domain corresponds to a particular mathematical surface with
characteristic topological invariants, such as the genus (number of holes) and the number of boundary components. Both
invariants are global fatgraph features reflecting the interconnectivity of the domain by hydrogen bonds. We introduce the
notion of robust variables, that is variables that are robust towards minor changes in the structure/fatgraph, and show that
the genus and the number of boundary components are robust. Further, we invesigate the distribution of different fatgraph
variables and show how only four variables are capable of distinguishing different folds. We use local (secondary) and global
(tertiary) fatgraph features to describe domain structures and illustrate that they are useful for classification of domains in
CATH. In addition, we combine our method with two other methods thereby using primary, secondary, and tertiary
structure information, and show that we can identify a large percentage of new and unclassified structures in CATH.
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Introduction

Protein domains are protein subsequences that may fold and

function independently of the rest of the protein [1,2]. Experi-

mentally determined protein structures deposited in PDB [3] have

been classified according to their fold and function in hierarchical

databases of which CATH [4] and SCOP [5] are the most widely

used. These databases involve manual steps, assisted by compu-

tational methods, for fold characterization and classification [4–6].

The database DALI [7,8], on the other hand, uses a fully

automated procedure to classify domains non-hierarchically based

on structural similarities only. Other methods have been proposed

to reduce the description of a domain fold to a vector of numerical

attributes that are characteristic for the fold [9,10]; recent methods

are, for instance, based on geometric characteristics [11–14],

secondary structure information [15–18], sequence information

[19], and physical properties derived from the primary sequence

[20]. These methods might be useful, not only for classification,

but also for annotation and understanding features of protein

folding.

Using techniques from geometric topology, we propose a novel

mathematical abstraction for studying protein domain structures

[21]. In particular, we conceive the structure as a fatgraph [21,22],

which is a graph in the ordinary sense extended in a particular way

to be explained below. Fatgraphs have been used for studying

various problems in mathematical physics; here we investigate

their use for studying complex molecular structures.

The construction of a fatgraph corresponding to a protein

domain is illustrated in Fig. 1. The peptide unit is the basic unit of

description in our model disregarding the amino acid residue. In

Fig. 1a, the i-th and (iz1)-st peptide units of a protein domain are

shown. Each peptide unit is a planar region [23] and is

represented as a building block with two stubs corresponding to

the oxygen and hydrogen atoms (Fig. 1b). The domain backbone is

thus depicted as a series of concatenated building blocks. Fig. 1c

shows four such building blocks with one hydrogen bond between

two peptide units indicated by an edge connecting the H-stub of

the first building block with the O-stub of the last. Subsequently,

each edge (hydrogen bond and link between building blocks,

termed alpha carbon linkage) is considered as twisted or not twisted

(untwisted) depending on the relative orientations of the peptide

units in physical space (Fig. 1d; Materials and Methods, section 1).

Finally, each edge is widened to become a strip (Fig. 1e), hence the

term fatgraph. The strip is twisted whenever a twisted bond is

encountered, similar to how a piece of paper is twisted when

forming a Möbius band. In Fig. 1f, the surface is shown without
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the underlying fatgraph. The two twists in Fig. 1f cancel each

other, and the resulting strip is equivalent, homeomorphic in the

parlance of topology, to a sphere with the regions around the

North and South poles removed (Fig. 1g and Materials and Methods,

section 2). The concept of a homeomorphism is exemplified in

Fig. 2, where a cube is continuously transformed into a sphere.

This also illustrates why geometric topology is often referred to as

rubber-sheet geometry.

In general, the surface corresponding to a fatgraph is

homeomorphic to a particular 2-dimensional surface, implying

that a fatgraph can be studied by algebraic topological methods

and categorized using concepts going back to the work of

Leonhard Euler in the 18th century [21,22,24]. For example,

when allowing self-intersections during deformation as well as

insertions and deletions of full twists, the resulting class of surfaces

is uniquely determined by its genus g�, number of boundary

components r, and whether it is orientable or not [24]. A surface is

called orientable if it is possible to define a consistent orientation

(e.g. defined by the right-hand rule) on the entire surface. The strip

in Fig. 1 is orientable, whereas the Möbius band is not: One may

start a walk from any point and come back again upside-down.

The variables g� and r are examples of topological invariants which

are quantities that do not change when the surface is bent or

stretched (i.e. changed under homeomorphic transformations).

The Euler characteristic, defined for any surface as x~2{2g�{r,

is another invariant summarizing the overall shape of a surface in

a single number. In the special case of surfaces arising from

fatgraphs of proteins, the Euler characteristic can be computed

directly from the fatgraph. In fact, one may show that x~1{b,

where b is the number of hydrogen bonds [21]. As demonstrated

in Fig. 1e, the number of boundary components is easily counted,

whereas the modified genus is less transparent. However, by using

the two alternative descriptions of the Euler characteristic, we may

express g� in terms of simpler quantities, g�~(b{rz1)=2. Thus,

x has direct biologial interpretation (in terms of number of

hydrogen bonds) whereas g� and r are quantities derived through

the fatgraph abstraction.

The surface in Fig. 1 is a sphere (g�~0) with two boundary

components (r~2), one for each of the removed discs (that is the

North and South poles), and the structure has only one hydrogen

bond. In particular, the alternative expression x~1{b~0 agrees

with x~2{2g�{r~0. The fatgraph abstraction thus opens an

entirely new perspective on protein structure by replacing complex

structures by much simpler constructs.

An example of a surface corresponding to a domain fatgraph is

shown in Fig. 3. The CATH protein domain 1ptoF00 is a mixed

alpha-beta domain classified as OB fold and has g�~3 and r~48.

The corresponding surface is non-orientable and thus has only one

side (up and down are the same), just like a Möbius band.

Furthermore, the surface has 48 discs cut out, each giving rise to a

boundary component.

We demonstrate that the global variables g� and r capture

structural differences in domains. We show this by example and

Figure 1. The fatgraph construction. (a) Two neighbouring peptide units of a protein domain labelled as the i-th and (iz1)-st unit and the
vector triple (ui,vi ,wi) defining the associated coordinate system of unit i. The vector ui follows the direction of the bond Ci–Niz1 , vi is perpindicular
to ui and points towards the same side as Hiz1 , and wi is constructed to form a right-handed coordinate system (b) Concatenated building blocks
(one block shown in red), representing a backbone of four peptide units. Vertical stubs correspond to Oi and Hiz1 . (c) Same as (b) but with one
hydrogen bond attached. (d) Hydrogen bonds and alpha carbon linkages are labelled according to the relative orientations of the coordinate frames
in (a) such that little change in the orientation results in an untwisted edge (Materials and Methods, section 1); .= untwisted and x = twisted. (e) The
fattening of the graph is illustrated by colored lines depicting the margins (boundaries) of the strip. The strip is twisted whenever a twisted bond is
encountered. (f) The band in (e) with the underlying graph removed. (g) The two adjacent twists cancel out, resulting in band similar to a sphere with
two discs removed. It has two boundary components (blue and red). In (c) the hydrogen bond may also be drawn around the right end of the
backbone or even cross over or under. The fatgraph is not sensitive to how the hydrogen bonds are drawn and all possibilities yield the same surface.
doi:10.1371/journal.pone.0019670.g001

Figure 2. Inflation of a cube with one boundary component
constitutes an example of a homeomorphism. The inflation
happens without breaking the surface, and only bending and stretching
are used.
doi:10.1371/journal.pone.0019670.g002
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also by analysis of the distributions of g� and r values over

domains. Further, we illustrate how g�, r and other fatgraph

variables can be utilized for classification. In addition to the global

variables, the fatgraph abstraction allows us to introduce a simple

local or secondary structure annotation, namely the backbone as a

sequence of twisted and untwisted edges. Using machine learning

techniques, the usefulness of the fatgraph abstraction is illustrated

by classification of domains in the CATH database. We compare

to an alternative geometric approach [11] and to an approach

based on sequence information only. We show that combining

information from all three makes a very strong classifier. Further,

we investigate the causes of false predictions and show that our

methods are able to detect domains in v3.3.0 with classifications

that are non-existing in the previous version, v3.2.0. The

classification scheme devises a method for flagging domains as

possible new or problematic folds.

Results

Robust variables
For each domain we compute the corresponding fatgraph and

calculate four robust variables derived from it (Materials and

Methods, section 3 and Fig. 4). Robust variables are defined such

that they are relatively insensitive to noisy and imprecise

experimental data; that is, noise in data that may result in errors

in the fatgraph.

We represent a domain by four robust variables, among these

the genus g� and the number of boundary components r of the

corresponding surface. These variables are global in the sense that

they cannot be related to any particular region of the domain.

Furthermore, we consider the domain length L, measured as the

number of amino acid residues, and the number of twisted alpha

carbon linkages F that measures how often the backbone twists in

the orientation of the planar peptide units (Fig. 1d). Recall that

insertions and deletions of full twists are not captured in g� and r,

but this is compensated for in F (Fig. 1f).

The CATH database classifies domains in a hierarchical scheme

with four main levels (listed from the top and down) called class

(C), architecture (A), topology (T), and homologous superfamily

(H), hence the name CATH [4,25]. At the C-level domains are

grouped according to their secondary structure content into four

categories with the three main ones being mainly alpha, mainly beta,

and mixed alpha-beta. The last category contains domains with only

very few secondary structures. The A-level groups domains

according to the general orientations of their secondary structures,

and at the T-level the connectivity (the order) of the secondary

structures is taken into account. The grouping of domains at the

H-level is based on a combination of both sequence similarity and

a measure of structural similarity. Below the four main lavels,

CATH has an additional five layers called S, O, L, I, and D. The

first four group domains according to increasing sequence overlap

and similarity, and the D-level assigns a unique identifier to every

domain thus ensuring that no two domains have the exact same

CATHSOLID classification.

Fig. 5 shows an example of how g� and r separate domains at

different CATHSOLID levels. It transpires that the best

separation is obtained at T-, H-, and S-levels. The grouping at

the A-level is often very broad, and an architecture may comprise

domains of very different sizes. Furthermore, since the order of the

secondary structure elements is not taken into account at the A-

level, a single architecture may contain domains with very

different connectivities [4,25]. This is likely the explanation for

the lack of separation of A-levels observed in Fig. 5. On the other

hand, because the fatgraph approach is based on structural

Figure 3. The protein domain 1ptoF00 is an alpha-beta domain classified as OB fold (Dihydrolipoamide Acetyltransferase, E2P;
2.40.50). The corresponding surface is not orientable and has genus 3 and 48 boundary components. The surface is homeomorphic to two tori
connected to a Klein bottle with 48 discs removed. The surface is difficult to visualize in 3D; in the figure the handle crosses through the bottle with
no physical contact.
doi:10.1371/journal.pone.0019670.g003

Figure 4. The four basic modifications of fatgraphs. Variables defined on a fatgraph that change at most linearly with the number of basic
modifications are called robust. i) Change the color of a bond between peptide units, ii) Change the color of a hydrogen bond, iii) Add or remove an
untwisted hydrogen bond, and iv) Replace a fatgraph building block by two building blocks connected by an untwisted alpha carbon linkage, where
any edges corresponding to hydrogen bonds incident on the original building block are connected to the replacement building block that occurs
first along the backbone from N to C termini, and the reverse of this operation. Any fatgraph can be created from an arbitrary starting fatgraph by
repeated application of i)–iv).
doi:10.1371/journal.pone.0019670.g004
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features, we do not expect to see a clear separation at the SOLID

levels, since these are defined in terms of sequence overlap and

similarity. Fig. 6 shows that g� and r separate the H-level families

in the CATH topology Pectate Lyase C-like (CATH classification

2.160.20) with one family (red in Fig. 6) being larger than the

others. To test the empirical robustness of the variables, we

generated 25 modified structures for each domain using the

CONCOORD algorithm [26] and calculated g� and r from the

resulting structures (Fig. 6 and Materials and Methods, section 4). The

figure indicates that even after modifications, the variables are able

to separate domains at the H-level. Furthermore, for individual

domains, the variables did not in general deviate significantly from

the original values (illustrated in Fig. S2).

Distribution of fatgraph variables
Fig. 7 shows a scatter plot of g�, r, and F for the three main

classes (C-level) in v.3.3.0. Generally, the mainly alpha domains

have lower g� and higher r than the mainly beta domains with the

mixed alpha-beta domains falling in between. For example, mainly

alphas have many domains with g�~0 corresponding to a sphere

with r discs cut out. For small values of g� and r, almost all

combinations are found, but for higher values, only a small

fraction of all possible combinations are observed. More details are

shown in Figs. S3–S4, with pairwise scatterplots of the variables

g�, r, F , L, and the Euler characteristic x~2{2g�{r.

Empirically, fairly sharp boundaries appear for possible values,

and longer domains tend to have higher values of both g�, r, and F
than shorter domains. A total of 127,491 domains are non-

orientable, and only 1,141 domains are orientable. We expect this

because a single twisted hydrogen bond may introduce a Möbius

band and potentially alter the orientability of the corresponding

surface: For example, in Fig. 1 the two adjacent twists cancel out,

and the surface becomes orientable, but removing one of the

existing twist or adding an extra twist along the backbone results in

a Möbius band. Similarly, moving the right-most end of the

hydrogen bond one stub to the left, thus separating the two twists,

yields two Möbius bands which do not cancel out.

Structural divergence may be caused by only modest modifi-

cations at the amino acid sequence level, and we compared how

differences in sequences are reflected in the topological invariants.

Fig. 8 shows scatter plots of normalized alignment scores (Materials

and Methods, section 7) versus normalized differences in g� and r,

respectively, for all pairs of S95-domains in the topology Pectate

Lyase C-like (2.60.120). In general, low sequence similarity implies

relatively large differences in g� and r with only a few outliers. For

example, three domains have sequences very similar to that of

2iq7A00 (alignment score w0:6), but still the normalized

differences in g� (resp. r) are almost 0:5 (resp. 0:3). This may be

explained by a lower number of hydrogen bonds in 2iq7A00

compared with the three other domains – a feature captured by

the topological invariants but not by sequences alone.

To further assess the ability of the four fatgraph variables to

distinguish different folds, we performed pairwise Wilcoxon tests

comparing the distributions of each variable using the 1,161 H-

level families in v3.3.0 containing ten or more domains (in total

124,372 domains or 96:7% of all domains). The results are

summarized in Fig. S5, and the plot indicates that in general the

four variables are sufficient to distinguish most H-levels. In fact, at

significance level a~10{3, almost all pairs of H-levels (91:4%) are

distinguishable by at least three of the four variables.

Secondary structure elements
The secondary structure is a particularly rigid part of a protein

structure, and this is reflected in the corresponding fatgraph. Fig. 9

depicts idealized fatgraphs arising from the three most common

secondary structure motifs: (a) alpha helices, (b) parallel beta

Figure 5. The domain 1o88A00 is classified as Pectate Lyase C-like (2.160.20) with complete CATHSOLID classification
2.160.20.10.11.2.1.1.1. The Class plot shows (g�,r) for all domains with C~2 (colored according to A-level), and the Architecture plot shows
(g�,r) for all domains with (C,A)~(2:160) (colored according to the three T-levels). This continues all the ways down to the last plot where (g�,r) are
shown for for (C,A,T,H,S,O,L,I)~(2:160:20:10:11:2:1:1).
doi:10.1371/journal.pone.0019670.g005
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Figure 6. Robustness of topological invariants to noise. Left: Scatter plots of g� and r for domains in CATH topology Pectate Lyase C-like
(2.160.20). The five H-levels are indicated by different colors (3 to 102 domains in size), and a clear separation of H-levels is observed. Right: g� and r
calculated from CONCOORD modified structures. Even with noise, separation at H-levels is still clearly visible. Note that in the bottom right corner in
the left figure there are eight red dots without counterparts in the right figure. The number of hydrogen bonds typically increases when a domain is
modified using CONCOORD, but the eight domains corresponding to the missing dots each showed a decrease in the number of hydrogen bonds
(Fig S1).
doi:10.1371/journal.pone.0019670.g006

Figure 7. Scatter plot of (g�,r,F) for all domains in the three main classes mainly alpha (red), mainly beta (blue), and mixed alpha-
beta (green). Visually, the mainly alpha and mainly beta domains are separated with the mixed alpha-beta domains residing in between.
doi:10.1371/journal.pone.0019670.g007
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sheets, and (c) anti-parallel beta sheets with typical boundary

components indicated by dashed red lines. All boundary

components pass through exactly four different peptide units,

and the backbone of an alpha helix consists of untwisted edges,

whereas the backbone of a beta sheet consists of twisted edges.

A domain consisting of one long alpha helix has genus zero, and

the number of boundary components is proportional to the length

of the domain. Likewise, a beta sheet contributes to the number of

boundary components proportionally to the sheet size and only

marginally to the genus. The apparently abstract topological

quantities thus exhibit direct relationships to the secondary

structures of the domains (Fig. S6). This observation agrees with

the empirical result above that the main CATH classes show

differences in the distribution of g� and r.

Non-additivity of fatgraph variables
The topological quantities corresponding to an entire domain

cannot be obtained directly by adding quantities from individual

secondary structure components alone; most domains have

stabilizing hydrogen bonds between secondary structure elements,

and these contribute in a non-linear fashion to the fatgraph. This

non-additivity is e.g. reflected in the mainly alpha class (Fig. S6),

where the genus increases with increasing number of alpha helices

(despite each has g�~0) because the helices are stabilized by

bonds between them.

The lack of additivity is perhaps even clearer when considering

entire proteins comprising multiple domains. As a concrete example,

consider the protein 1DAR (Fig. 10) with five CATH domains.

Considered as one contiguous structure, 1DAR has g�~90:5 and

r~181, but the genera and boundary components corresponding to

the individual domains add up to 52 and 247, respectively. Examples

where the genus (resp. the number of boundary components) of the

entire protein is smaller (resp. larger) than the sum of those

corresponding to the individual domains also exist.

Despite the relatively high deviation of g� and r from the sums

obtained from the individual constituents of a structure, the Euler

characteristic x~2{2g�{r~1{b is generally more consistent.

In the example 1DAR, the sum of the Euler characteristics is

{349 compared to {360 for the entire protein. If there are k
domains, then

Xk

i~1

xi~k{
Xk

i~1

bi,

where index i refers to the ith domain, i~1, . . . ,k. That is, the

difference between x of the entire protein and the sum is

(k{1)zBk, where Bk denotes the number of bonds between

domains. Since, in general there are fewer hydrogen bonds

between domains than within, the sum is close to x of the whole

protein.

Classification using robust variables
We attempted to reproduce the CATH classification using only

the four robust variables, g�, r, F , and L. We applied different

classification techniques to the data and found that the method

Random Forests [27] generally performed well.

In v3.2.0 (SAll, see Materials and Methods, sections 5), we selected

the 500 largest H-levels (86% of all domains) and randomly sampled

2=3 of the domains for training, while keeping 1=3 for testing

(Materials and Methods, sections 5 and 6). In addition, we tested the

classifier on the new domains in v3.3.0 that are not already in

v3.2.0. Fig. 11 shows the results. We assigned 74:9% of the domains

in v3.2.0 into their correct H-level, whereas 78:4%, 84:6% and

96:1% are correctly assigned at the T-, A-, and C-level, respectively.

For the new domains in v3.3.0, the percentages are smaller: 55:3%
(H), 63:0% (T), 74:1% (A), and 92:8% (C). When the classifier

makes a correct prediction, it does so with high confidence whereas

Figure 8. Alignment scores versus differences in g� and r for all pairs of S95-domains in the Pectate Lyase C-like topology
(2.160.20). We use the normalized difference j(g�i {g�j )=(g�i zg�j )j between modified genera (and similarly for boundary components) to take
discrepancies in domain length into account. A high alignment score indicates high sequence similarity and the plot illustrates that similarity is at the
primary and tertiary levels are correlated.
doi:10.1371/journal.pone.0019670.g008
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it is less certain when making a false prediction, and a similar lack of

confidence is observed when the classifier is applied to domains

which have not been assigned a classification by CATH or domains

with H-levels that are new in v3.3.0 (Fig. 12).

Performances for other selections of variables at the H-level are

shown in Fig. S7. We found that the domain length is an

important variable for correct prediction (an observation also

made in [11]). We also varied the energy cut-off used to infer

hydrogen bonds (Materials and Methods, section 1). The resulting

values of the robust variables are strongly correlated with those

calculated using the default cut-off, and the classification results

did not change significantly (Fig. S7).

Some of the largest families show a remarkable homogeneity in

g�- and r-values across domains (Fig. S8), which to some extent

stands in contrast to reports indicating structural diversity within H-

levels based on RMSD measures [28]. Our approach may therefore

provide an important complement to existing classification schemes.

The performance is generally lower on the new domains in

v3.3.0 than on the domains in v3.2.0. The lower performance

could in principle be due to skewness in family sizes in the two data

sets, but this is not observed (Fig. S9). To further explore this

discrepancy, we used the S-level immediately below the H-level as

a proxy for the complexity of the H-levels. Fig. 11 shows that the

classifier performs much better on domains with known S-level

(i.e., S-levels that are associated with domains in the H-level

training set) than on domains with unknown S-level (i.e., S-levels

not found for any domain in the training set). Furthermore, 21:8%
of the new domains have unknown S-levels while this was only the

case for 1:8% of the domains in the v3.2.0 testing set. In the

training set, this must be due to sampling whereas in the new set,

the difference is mainly caused by genuinely new S-levels

introduced in v3.3.0. This finding indicates that the known S-

levels and the S-levels new in v3.3.0, despite being defined based

on sequence similarity, also differ in their fatgraph characteristics.

Classification using flip sequences
The domain example in Fig. 1d comprises three alpha carbon

linkages, one untwisted and two twisted. Reading from left to

right, the conformations may be represented as a string UTT

with U (T) meaning untwisted (twisted). In this way, each CATH

Figure 9. Fatgraphs corresponding to the common secondary structures. (a) alpha helix, (b) parallel beta sheet, and (c) anti-parallel beta
sheet. Each boundary component (dashed red line) passes through four peptide units; the alpha helix is local in that it connects only closely situated
peptide units whereas the beta sheet also connects peptide units potentially far away from each other. The number of components depends on the
length of the structure. The less frequently occurring 310-helices and p-helices give rise to similar pictures as (a), the only difference is that hydrogen
bonds connect stubs three and five peptide units apart instead of four. The backbone of an a-helix is a string of untwisted alpha carbon linkages,
whereas for the b-sheets these are twisted.
doi:10.1371/journal.pone.0019670.g009

An Algebro-Topological Model of Protein Structure
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domain has an associated sequence of these letters of length one

less than the number of peptide units, and we refer to this

sequence as the flip sequence. Alpha helices and beta sheets have

particularly simple flip sequences, namely, UUU… and TTT…,

respectively (Fig. 9).

The alignment score computed from an alignment of two flip

sequences gives a measure of similarity between the correspond-

ing domains, and we applied this score to build an alternative

CATH classifier using flip sequences (secondary level) rather than

robust variables (tertiary level). To do so, we randomly selected

2/3 of all domains in v3.2.0 (S95 or SAll; Materials and Methods,

section 5) for training, keeping 1/3 for testing. In addition, the

domains that are new in v3.3.0 or unclassified in v3.3.0 were also

kept for testing.

For all domain pairs (d,~dd) in the training set, we calculated

the pairwise, normalized alignment score S(d,~dd) (Materials and

Methods, section 7). Subsequently, we defined the similarity

between a domain d and an H-level h (similarly for C-, A-, and

T-levels) as

Sd (h)~ maxfS(d,~dd)j~dd 6¼ d,~dd has H{level hg: ð1Þ

For each d, we identified the two H-levels with the highest

scores (Fig. 13). In the figure a green (red) dot indicates that the H-

level with the highest score is the same (not the same) as that of d.

The relationship between the scores is clearly indicative of the H-

level of d. The scores for the two nearest H-levels were combined

into one variable (z-score) and a test was designed to facilitate

comparison between methods (Materials and Methods, section 7).

The same procedure was adapted to amino acid sequences

(primary structure). Additionally, we compared to a geometric

method for classification that uses tertiary structure information

[11] in the following way: A domain is represented as a 30-

component vector comprising the number of residues and 29
quantities derived from a geometric description of the backbone

curve. The domain backbone is viewed as a piecewise linear curve

in three dimensions with each piece corresponding to a bond, and

the average number of crossings when the curve is viewed from all

possible angles is computed. This average crossing number is one of the

30 variables used in the classification, and except the number of

residues, the remaining 28 variables are all generalizations (known

as Gauss integrals) of the average crossing number.

Overall the results are comparable (Table 1 for S95); further

results for S95 and SAll are shown in Table S1 with amino acid

sequences generally performing better than Gauss integrals and

flip sequences. All methods show a decrease in sensitivity and

specificity for the domains that are new in v3.3.0 (Table S1), which

is similar to that observed for the robust variables though less

pronounced and attributed to differences between the old and new

domains, such as S-levels, indicating that the new domains are

evolutionary more diverse than the old ones.

We combined all three tests into one to achieve higher

performance (Materials and Methods, section 7, and Fig. 14). For

S95, the AUC (area under curve) increases to 96% for the

combined test from 86% (flips), 90% (Gauss), and 91% (amino

acids) for the individual methods. In particular, for a sensitivity of

Figure 10. The protein 1DAR comprises five CATH domains
with individual genera 5,8,4:5,9, and 25:5, and 43,54,5,39, and 106
boundary components. The entire protein considered as one
contiguous structure has g�~90:5 and r~181, but the sums of the
individual g� and r are 52 and 181. The robust variables g� and r are
thus not additive. The figure is made using PyMOL (www.pymol.org).
doi:10.1371/journal.pone.0019670.g010

Figure 11. Classification at H-level using g�, r, F, and L. Left: Distributions of success rates for the 500 largest H-levels in the CATH 3.2.0 test set
(black) and the new domains in CATH 3.3.0 (red). Middle: Success rates for the CATH 3.2.0 training set plotted against H-level sizes. Average success
rates are indicated by lines. Right: In the CATH 3.2.0 test set, 182 H-levels contain domains with S-levels not present in the training set. In all but 13
cases (green), the classifier performs better on the domains with known S-level.
doi:10.1371/journal.pone.0019670.g011
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95%, the specificity is at least 50% higher for the combined test

than on any of the individual tests individually. Likewise, the

combined test is able to identify 78.4% of all domains with

unknown H-level in v3.2.0, and 46.6% of all domains that are

unclassified in v3.3.0. For SAll, the latter percentages raise to

100% and 92.8%, respectively, making the classifier very capable

of detecting domains with structures potentially not in CATH

v3.3.0.

Figure 12. The classifier consists of a collection (forest) of classification trees. For each domain in the test set, each classification tree votes,
and a consensus is reached. We used 500 trees, and for each domain we calculated the percentages, v1 and v2 , of the most frequent and the second
most frequent votes occuring. The top plots show the distributions of x~1{v2 =v1 and y~v1zv2 for the correctly and wrongly classified domains at
the H-level in v3.2.0. If y is large, the majority of votes are cast for the top two candidates, and if furthermore x is large, many more votes have been
cast for the winner compared to the runner-up. Therefore, if both x and y are large, this indicates that the classifier makes a confident prediction. The
distributions of x and y for correctly predicted domains show that the confidence in correct predictions is generally high. On the other hand,
confidence in wrong predictions is much more uniform. The bottom plots show the distributions corresponding to the 908 newly added domains in
v3.3.0 with non-existent classification in v3.2.0 and the 17,918 domains for which CATH has not yet provided a classification. Both show the same kind
of uncertainty as observed for the wrongly classified domains.
doi:10.1371/journal.pone.0019670.g012
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Discussion

We discuss a new representation of protein structure and show

how local and global variables vary across domains and structural

classification. The description makes use of concepts from

geometric topology and represents a domain structure by a

fatgraph that in turn can be interpreted as a 2-dimensional surface.

The structure of the fatgraph relies on atomic coordinates of the

protein and its hydrogen bonds but not on primary sequence

information.

The representation provides a complementary and alternative

view to structures as purely 3D geometric objects [7,8,11–14] and

shows several strengths. The domain structure is conceptualized in

terms of entities that are amenable to further manipulation and

characterization; for example, we compute the genus and the

number of boundary components that are both topological

invariants. Even though several unrelated domains may share

the same invariants, we are able to classify the majority of the

domains correctly. Further, we have introduced the idea of a

robust variable, namely, a variable defined on the fatgraph that is

robust towards noise and errors in the experimental determination

of the structure, and we have formulated robustness in terms of

operations on the fatgraph and investigated the robustness

empirically.

The invariants g� and r of a domain cannot in general be

computed from the secondary structures alone. Due to stabilizing

bonds connecting secondary structure elements, g� and r may

differ significantly from what is obtained by summing the genera

and the number of boundary components of individual secondary

structure elements. The invariants thus capture tertiary structure

information.

We showed that using secondary structure information we could

classify a large percentage of domains in S95 (and SAll) correctly.

However, correct (and better) classification could also be achieved

using other methods using primary or tertiary structure informa-

tion. We combined all three methods and achieved a method with

higher performance as well as sensitivity and specificity. The

combined method is also able to identify the majority of unknown

or unclassified domains.

We used the CATH database as a gold standard, but using

appropriate clustering algorithms it would be possible to make a de

novo classification and compare this to existing classification. Given

the observation that classification based on primary structures is

best at reproducing the CATH database, it is conceivable that a de

novo classification based on structural properties alone would lead

to a different hierarchy. However, a de novo classification would

require further investigations to e.g. determine the number of

classes needed, and this is beyond the scope of this paper. The lack

of agreement between the two most widely used databases, CATH

and SCOP, certainly indicates that more analyses are needed in

order to fully comprehend the universe of domain structures [29].

Figure 13. The plot shows the z-score l for each domain in the CATH 3.2.0 training set (S95) for H-level, based on flip sequences. The
vertical dashed black line indicates the 95% sensitivity decision threshold; if the z-score of a domain is above the line it is assigned the classification of
the nearest H-level, otherwise it is left unassigned. H-levels with only one domain in the test set cannot be classified in this way. Green = Closest H-
level is correct, Red = Closest H-level is wrong, Blue = Unclassifiable.
doi:10.1371/journal.pone.0019670.g013

Table 1. Comparison of methods.

Method C A T H

Gauss Integrals 95.3/95.3/42.0/NA 89.0/95.5/36.1/NA 85.2/95.0/43.5/47.1 80.8/95.7/30.9/34.3

Flip Sequences 94.0/95.3/33.0/NA 82.4/95.1/15.7/NA 75.4/94.6/21.0/22.6 73.0/94.9/19.0/24.3

Amino Acid Sequences 86.2/95.4/17.4/NA 79.8/94.9/22.1/NA 79.2/95.3/28.9/31.3 80.6/95.1/38.8/35.0

Combined 95.8/95.2/69.6/NA 90.3/95.3/62.7/NA 87.9/95.4/69.6/67.8 87.2/95.4/70.4/70.7

Each cell contains performance, sensitivity, specificity, and the number of unknown domains flagged correctly (in percent) in that order on the CATH v3.2.0 test set at
each CATH level for all three methods. Decision thresholds were calibrated on the CATH 3.2.0 training set to achieve 95% sensitivity. Levels comprising only a single
domain in CATH 3.2.0 are never included in the training set and thus account for the numbers in the unknown column; for C- and A-levels, there are none of these.
doi:10.1371/journal.pone.0019670.t001
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Automated approaches, including ours, benefit from not relying

on human judgment. However, a key difficulty is that structural

and evolutionary homology does not always go hand in hand, and

different protein families show a wide spectrum in sequence,

structural and functional similarities [3,7,30]. Currently, the level

of classification achieved by manually assisted methods, such as

CATH or SCOP, might not be realizable by automated means

only, but we believe that advances in mathematical modeling of

protein structure will change this in the future and that our model

should be a step in this direction. For example, it would be

interesting to put our method into a probabilistic setting. In recent

papers, it has been shown that probabilistic models might have

large potential [31,32].

Various extension of the fatgraph model are conceivable. For

example, one approach could be to include bifurcating hydrogen

bonds in the model, as CO and NH groups of the protein

backbone engage in two or more hydrogen bonds [23]. However,

this phenomenon poses a mathematical question that must be

addressed in a biologically meaningful way: The fatgraph model

depends on an ordering of the edges around a vertex, and with

bifurcating bonds there is no a priori way of choosing such

orientations. Other extensions could be the inclusion of sulphur

bridges, or extending the two types of edges (backbone and

hydrogen bonds) to multiple types reflecting more accurately the

twisting of the backbone.

Materials and Methods

1. Fatgraph construction
The fatgraph is constructed as explained in the main text, Fig. 1.

To each peptide unit we associate a coordinate system (a frame). If

the frames of two linked peptide units are similar, the edge

connecting them are untwisted and otherwise they are twisted.

‘Similar’ is here measured via a metric on frames, see [21] for

details. The procedure is identical to twisting if the sum of scalar

products sij~vi
:vjzwi

:wj is negative [21], a sum combining the

change in the normal vector w with the change in the orientation

of the peptide plane. For example, if the two frames are identical

sij~2 and the edge is not twisted; whereas if frame j is frame i up-

side-down, sij~{2 and the edge is twisted.

We infer hydrogen bonds using the DSSP algorithm [33]. The

algorithm depends on an energy cut-off, and by default a hydrogen

bond is inferred if the electrostatic interaction energy E is lower

than {0:5 kcal/mol.

2. Classification of surfaces and fatgraphs
For integers g,r§0, the following families of surfaces are

particularly interesting: 1) a sphere with r discs cut out, 2) the

sum of g tori with r discs cut out, and 3) the sum of g real

projective planes with r discs cut out. The first two types can be

visualized in 3D, whereas the last cannot; 1) is straightforward,

and 2) is a series of g doughnuts glued together with r discs

removed. Two surfaces are called homeomorphic if one can be

transformed into the other by stretching and bending but no

tearing. A classical result in algebraic topology [24] states that

any closed connected surface is homeomorphic to exactly one of

the surfaces above. For example any deformation of a ballon is

homeomorphic to a sphere and thus has g~0. The number g is

called the genus, and r is the number of discs or boundary

components of the surface. The surfaces in 1) and 2) are

orientable, whereas the surfaces in 3) are not. It follows that a

surface is uniquely determined by its g, r, and whether it is

orientable. We define the modified genus g� as g if the surface is

orientable and as g=2 if it is non-orientable [21]. With this

definition, the Euler characteristic (a term combining g and r) is

x~2{2g�{r in either case. The number of hydrogen bonds b

relates to x through x~1{b.

The invariants, including whether the fatgraph is orientable,

can be calculated computationally efficiently and quickly [21]. For

example, b can readily be found from the fatgraph, whereas r

requires more work. For small fatgraphs as the one in Fig. 1, r is

easily counted, but a more systematic approach must be applied

when dealing with larger fatgraphs. This may be accomplished by

a purely algebraic approach which is easily implemented in a

computer program [21]. Even using a naive and straight-forward

implementation, parsing a domain and calculating the correspond-

ing topological invariants takes less than a second on a standard

laptop computer. Finally, g� follows from x~2{2g�{r~1{b.

Note that by construction (Fig. 1e), a fatgraph corresponding to a

Figure 14. Analysis of sensitivity and specificity. Left: ROC curves for S95 for the three tests individually and the combined test. Combining
information from all three clearly improves sensitivity and specificity considerably. Right: The columns show how often agreeing methods (S = amino
acids, F = flips, G = Gauss) are correct (green), and how often the non-agreeing method is correct; S (purple), G (blue), F (orange). Red indicates the
number of times none of them are correct. The numbers in each column are 6057 (F+G+S), 476 (F+G), 348 (F+S), 697 (G+S), and 2084 (None).
doi:10.1371/journal.pone.0019670.g014
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protein always has a least one boundary component, that is r§1. A

general surface has r§0 and g�§0.

3. Robust variables
A function n(G) defined on fatgraphs is called k-robust for an

integer k, if jn(G){n(Gq)jƒqk whenever G~G0?G1? � � �?Gq

is a sequence of q§0 fatgraphs, and Giz1 is obtained from Gi by

one of four basic modifications: i) change the label of a bond

between peptide units (i.e., remove a twist or introduce a twist); ii)

change the label of a hydrogen bond; iii) add or remove an

untwisted hydrogen bond; and iv) insert a fatgraph building block

B1 next to an existing building block B0 (in the direction from N to

C termini), such that the alpha carbon linkage between the two

blocks is untwisted, the alpha carbon linkage to the right of B1 is

(un)twisted according to whether the linkage to the right of B0 in the

original fatgraph is (un)twisted, and B1 has no hydrogen bonds

attached. Or the reverse operation, i.e. removing a block with no

hydrogen bonds which has an untwisted linkage to its left neighbour

(illustrated in Fig. 4). It can be shown [21] that the functions g�, r, F ,

and L all are 1-robust. This implies that if G is changed by a

sequence of at most q basic modifications, the functions g�, r, F and

L change at most q.

4. CONCOORD modified structures
All modified structures were generated using the CONCOORD

algorithm [26] which generates conformations from a known

structure based on restrictions on interatomic distances. We used

default parameter values.

5. CATH domain data
The newest version of CATH (3.3.0) contains 128,688 domains

whereas the previous version (3.2.0) only comprises 114,215
domains. We obtained the classifications of domains in both

versions as well as the raw data consisting of chopped PDB-files

and corresponding DSSP-files from the CATH homepage (www.

cathdb.info). CATH is hierarchical; we focus on the class (C),

architecture (A), topology (T) and homologous superfamily (H),

and sequence (S) level.

We operate with the following basic data sets: A) CATH 3.2.0,

B) the domains in v3.3.0, but not in v3.2.0 (called new in v3.3.0),

and C) CATH 3.3.0. In addition, CATH lists 17,918 domains that

have not yet received CATH classification, either because the

domain annotation is questionable or because there is uncertainty

about the structural similarity to other domains. We denote this set

unclassified in v3.3.0. Among the new in v3.3.0, there are 908
domains with novel H-level, that is, levels that are not already in

v3.2.0, but added to v3.3.0. Using CATH terminology, the full

data sets are denoted by SAll, whereas data sets only including

sequences with less than 95% similarity are denoted by S95 (this

does not apply to the unclassified set).

There are 2,386 H-level families in v3.3.0, and 322 of these are

singletons. Almost half of the families contain less than ten

domains whereas a handful of families contain more than 1,000
domains (the largest contains 7,674 domains). Moreover, the

distributions of family sizes are highly skewed and resemble power-

laws (Fig. S10).

6. Classification using robust variables
The algorithm Random Forests [27] is used for classification. It

is a probabilistic approach, that is, rerunning the algorithm might

produce a (slightly) different result. A random forest builds

NTREE~500 (user specified) classification trees based on a

training set (where we always take the training set to be 2=3 of the

full data set) and uses majority voting for predicting the classes of

the testing set.

Classification by random guessing is done by assigning family

levels to domains according to family sizes, that is, the average

success rate is the sum over (fi)
2, where fi is the frequency of

family i.

7. Classification using flip sequences, amino acid
sequences and Gauss integrals

For flip sequences, alignments were made using the Smith-

Waterman algorithm with mismatch and gap penalties set to {1
and match score to 2. For amino acid sequences, BLOSUM40 was

used. Let S0(s1,s2) denote the score of the alignment of sequences

s1 and s2. To facilitate a pairwise comparison of all sequences in

CATH, regardless of lengths, we use the normalized score given

by S(s1,s2)~S0(s1,s2)=max (S0(s1,s2),S0(s2,s2)), such that all

scores are between 0 and 1.

For a given a domain, denote by z1 and z2 the normalized

alignment scores of the domain to the nearest and second nearest

H-levels in the v3.3.0 training set. A univariate measure was used

to compare methods, z~(d{mean(d))=sd(d), where d~z1{z2

and the mean and sd are over all domains in the training set.

For Gauss integrals, we used z~(r{mean(r))=sd(r) with

r~ log (d2 =d1), and d1 (d2) the distance to the (second) nearest

H-levels [11]. Fig. S11 shows the distributions of the z-values for

the three methods. Domains were classified according to their

nearest H-level. A decision threshold was calibrated to achieve

95% sensitivity; all domains with z above the threshold are flagged

as correctly identified if the nearest H-level corresponds to the true

level. All domains with z below the threshold are likewise correctly

identifed as problematic if the nearest H-level is not the true level.

Same procedure for C, A, and T-levels.

The three methods were combined into one method. Domains

were classified according to the majority rule. If none of the

methods agree, the method with the highest z-score decides the

classification. A combined z-score was calculated as the maximum

z-score of the agreeing methods. If all disagree, then the maximum

z-score is used. Fig. S10 shows the distribution of the combined z-

score.

Supporting Information

Figure S1 Each domain in the Pectate Lyase C-like
topology was subjected to 25 independent modifications
using the CONCOORD algorithm. In the figure each column

is a domain and the distribution of the normalized number of

hydrogen in the modified structures is shown. The number is

normalized relatively to the number observed in the original

(unmodified) domain. The values corresponding to the eight outliers

in Fig. 6 are highlighted in red, and all show a conspicuous decrease

in the number of hydrogen bonds in the modified structures

compared to the general trend of the remaining domains.

(TIF)

Figure S2 The deviation of g� and r from the observed
values for eight randomly selected domains subjected to
1,000 modifications using the CONCOORD algorithm. In

general the modified values are centered around the observed

values, though in some cases the distribution is biased to the left or

right.

(TIF)

Figure S3 Distributions of the three quantities genus
(g�), number of boundary components (r), and number
of twisted alpha carbon linkages (F ) for all domains in
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v3.3.0. Mainly beta and mixed alpha-beta have very similar

distributions of g� whereas mainly beta and mixed alpha-beta have

very similar distributions of r.

(TIF)

Figure S4 Pairwise scatter plots of the five variables:
the genus g�, the number of boundary components r, the
number of twisted alpha carbon linkages F , the number
of residues L and the Euler characteristic x for all
domains in v3.3.0. The variables g� and F are positive or zero,

r and L are strictly positive, and the Euler characteristic is at most

1. Further, the relationship x~2{2g�{r provides bounds, e.g.

xƒ2{r. The plots indicate that the variables are capable of

distinguishing CATH at the Class (C) level. For example, the

(g�,r), (g�,F ), and (r,F ) plots all show separation of the mainly

alpha and the mainly beta classes with the mixed alpha-beta class

falling somewhere between.

(TIF)

Figure S5 Wilcoxon plot corresponding to pairwise
comparisons of the 1,161 H-levels comprising 10 or
more domains with significance level 10{3 (above
diagonal) and 10{6 (below diagonal). Each row and column

correspond to a H-level, and these are ordered by size in

decreasing order. Colors indicate the number of variables (g�, r, L,

F ) separating a pair of families at the given significance level: 0

(black), 1 (red), 2 (yellow), 3 (green), and 4 (white). Only every fifth

H-level is used in the plot.

(TIF)

Figure S6 Plots of the variables g�, r, and F , versus the
number of alpha helices and beta sheets, respectively,
for all domains in v3.3.0. Separation of the mainly alpha and

mainly beta classes with the mixed alpha-beta class falling

somewhere between is observed. The higher genera observed in

the mainly beta and mixed alpha-beta classes are mainly caused by

beta sheets. Separation between classes is harder to spot on the

plots with beta sheet counts.

(TIF)

Figure S7 Boxplots summarizing the success rates
obtained on v3.3.0 using different subsets of variables
for classification. For all plots, an energy cut-off at

E~{0:5kcal =mol is used to determine hydrogen bonds. The

last plot in the middle row is identical to Fig. 5. The last row shows

success rates for (g�,r,L,F ) with alternative energy cut-offs used for

determining hydrogen bonds.

(TIF)

Figure S8 Standard deviations of the genus and the
number of boundary components for each H-level in
v3.3.0 (SAll). The standard deviations are generally not

increasing with increasing H-level size, indicating that even large

families are homogeneous. There is, however, more variation in

the number of boundary components than in the genus.

(TIF)

Figure S9 Correlation plots illustrating the difference
between v3.2.0 (SAll) and the newly added domains in
v3.3.0. The left plot shows the sizes of the families in v3.2.0 test

set versus the family sizes among the newly added domains and the

right plot shows the corresponding performance rates. The new

domains in v3.3.0 evidently have lower performance while family

sizes roughly are proportional to those in v3.2.0.

(TIF)

Figure S10 The distribution of H-level sizes in CATH
3.3.0 exhibits power-law behavior with many small
levels and a few very large levels.

(TIF)

Figure S11 The distributions of normalized votes for all
methods on the S95 training set.

(TIF)

Table S1 Comparison of all three classifiers on the non-
redundant S95 subset of CATH (first three tables) as well
as the entire CATH (SAll, last three tables). At each level

(C, A, T, and H) we split CATH v3.2.0 into two sets: For a level

with N members, we used 2=3:N domains for training and the

remaining N ı̈¿K 2=3:N domains for testing. Note that for N~1
and N~2, no domains are used for training. Therefore, in the

CATH v3.2.0 test set as well as in the set of new domains in

CATH v3.3.0, some domains do not have a classification present

in the training set (despite the fact that the classification does exist

in CATH v3.2.0). We call such domains unknown. All classifiers

were trained to provide a 95% sensitivity on the training sets. For

each set (S95 and SAll), the three tables show the following: Top:

Performance, sensitivity, specificity, and unknown domains flagged

as novel/problematic (in percent and in that order) on the CATH

v3.2.0 training set. Middle: Similarly on the set of new domains

in CATH v3.3.0 with classifications existing in CATH v3.2.0.

Bottom: Some domains in CATH v3.3.0 have novel classifica-

tions not existing in CATH v3.2.0. This table summarized how

many of these are flagged as novel/problematic by the three

classifiers. Finally, the percentage of unclassified domains flagged

by each method is shown. Note that there is only one set of

unclassified domains, and this is used in both the S95 and the SAll

case.

(TIF)
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