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The assessment of the degree of genetic variation in a natural population, and the
nature of that variation, is of central importance in both theoretical and applied
population studies. Two ‘‘variance’’ results in population genetics theory are
presented. For the first, expressions are found for the expected difference in the
estimates of genetic variation in a population obtained by two investigators
sampling from the same population in the same generation. The second result con-
cerns the question of whether the degree of genetic variation in a population is best
estimated by using the number of alleles observed in a sample of genes or by the
number of polymorphic sites observed in the sample. For some combinations of
the actual degree of variation and the sample size the former is preferred while
for other combinations the latter is preferred. The reason for this is discussed.
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INTRODUCTION

Knowledge of the degree of genetic variability in a population is impor-
tant for several reasons. This variability can only be estimated, in
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practice, by a sample taken from the population, with the sample size
usually being far less than the population size. We assume that this
estimation is based on a sample consists of n aligned DNA segments,
each of course of the same length. These segments possibly correspond
to some gene, and for convenience we shall refer throughout to these
segments as genes, although the theory is unchanged for segments
of any form. The genetic variability exhibited by this sample can be
estimated using either ‘‘alleles’’ data or ‘‘sites’’ data. An allele is a
particular DNA sequence for this segment, and the sample of n
sequences will reveal some number k of different sequences, or alleles,
where 1� k�n, together with their sample frequencies. The same
sample will exhibit some number s of polymorphic sites, at each of
which, in the model that we consider, two different bases are observed
in the sample. Large values of k and s suggest substantial genetic
variability in the population.

We focus on that component of genetic variation caused by base sub-
stitutions. The total mutation rate for the segment under consider-
ation is denoted by u, this being the mean number of base changes
in any meiotic event. In the simple infinitely many alleles neutral
Wright-Fisher model (Ewens, 2004: 111–117), which we assume governs
the population evolution, genetic variation is normally measured by
the composite parameter h, defined as 4Nu, where N is the (diploid)
population size. More general definitions of h apply for more complex
models, in which case the effective population size Ne is used, and
h ¼ 4 Ne u. In these models the stationary probability that two seg-
ments in the sample have different DNA sequences (equivalently,
determine two different alleles) is h=(1þ h). This and other formulae
given in this section are diffusion, or equivalently coalescent theory,
approximations, and are calculated under the assumption that the
sample is small compared to the population size. The case where
the sample size is not small relative to the population size is dis-
cussed in the ‘‘finite populations’’ section.

In the infinitely many sites model, the mean number of sites at
which the two segments differ is h. Thus in both the infinitely many
alleles and the infinitely many sites models, estimation of population
genetic variation is in effect estimation either of h or of h=ð1þ hÞ,
and we adopt this viewpoint.

Our results are limited to the case where the population remains
constant over time, and assume that theory derived for the Kingman
coalescent process (Kingman, 1982a,b,c) is sufficiently accurate for
the evolutionary model assumed. Some aspects of the accuracy of
the approximations involved are discussed. Generalizations of the
results to cases beyond those considered would be interesting, for

94 W. J. Ewens et al.
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example to the case where there are several investigators whose
sample sizes are not necessary equal, but these generalizations appear
to be difficult to obtain.

The two questions we address are

1. What can be said about the difference in the estimates of h made by
two different investigators, each taking a sample of n (aligned)
segments from the same population in the same generation?

2. Is h best estimated by using the number k of different alleles
observed in the data or by using the number s of segregating sites
observed in the data?

The first question arises from the possibility, given the volume of
genetic data now available, that several investigators will estimate
the value of h for the same population at the same time, and the differ-
ence between their estimates is related to the consistency with which
we expect h to be estimated. It was claimed by Ewens (2004: 313) that
the answer to the second question is that h is better estimated from s
rather than k, but it was noted by one of us (AR) that if the standard
approximate formula (15) for the mean square error of the alleles-
based estimator is used, this is not always the case. We discuss the
circumstances in which k or s provides the better estimate of h.

THE NARROW VARIANCE OF ESTIMATES OF h, USING
ALLELES DATA

We assume a sample of n genes taken at stationarity from a diploid
population of size N evolving according to the neutral Wright-Fisher
model. In the infinitely many alleles model, appropriate for describing
alleles variation, the joint distribution of the number of allelic types
seen in this sample, together with their frequencies, is well known
(Ewens, 2004: 114). The form of this distribution implies that the
number K of alleles seen in the sample is a sufficient statistic for h,
so that from standard statistical theory, optimal estimation of h using
alleles data is carried out by using the observed value k of K only. It is
therefore necessary, in discussing the extent to which the estimate of h
found by one investigator can be expected to differ from that of another
investigator, to discuss first the extent to which the number of alleles
observed by the two investigators can be expected to differ.

Suppose that two investigators take a sample, each of n sequences,
from the same population in the same generation. The first will see
some (random) number K1 alleles and the second some (random)
number K2. The ‘‘narrow’’ or ‘‘sampling’’ variance of K is defined as the

Two Variance Results in Population Genetics Theory 95
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mean value of (1=2)ðK1 �K2Þ2. This is identical to the broad variance
of K minus the covariance between K1 and K2, where the broad vari-
ance is the mean of ðK � EðKÞÞ2. A somewhat different definition of
the narrow variance is given in Hein et al. (2005: 65). Our first aim
is to find an expression for this narrow variance.

To illustrate one approach to the required calculation we consider
the case n ¼ 3. We think of the three genes drawn by each investi-
gator as a single sample of six genes. There are 11 allelic
configurations of these six genes, which we write as f6g; f5;1g;
f4;2g; f4;1;1g;f3;3g;f3;2;1g;f3;1;1;1g;f2;2;2g;f2;2;1;1g;f2;1;1;1;1g and
f1;1;1;1;1;1g. As an example, the configuration f3;1;1;1g implies that
four different alleles were observed among the six genes, with one
allele seen three times and the remaining three alleles once each.

We denote the observed numbers of alleles seen by the two investi-
gators as k1 and k2, respectively. For the configuration f6g, for which
only one allele is seen in the six genes, necessarily k1 ¼ k2 ¼ 1, so that
jk1 � k2j ¼ 0. Further, jk1 � k2j must be 0 for other configurations, for
example f2;2;2g and f1;1;1;1;1;1g. On the other hand, jk1 � k2j must
be 1 for the configuration f5; 1g, for which one of the investigators
must see one allele in the three genes sampled and the other must
see one allele arising twice and another once.

For some configurations jk1 � k2j can be 0 or 1, for others 1 or 2
and for others again 0 or 2. Thus for the configuration f4;1;1g (three
alleles, one (A) seen four times, two (B and C) seen once each) we find
jk1 � k2j ¼ 0 if the first investigator’s sample is AAB and second’s is
AAC, while jk1 � k2j ¼ 2 if the first investigator’s sample is AAA and
second’s is ABC. Similar calculations arise for all other configurations.

The probabilities of all the above possibilities are known (Ewens,
2004: 114), and from these and the arguments in the previous
paragraph it is found that

EðK1 � K2Þ2

2
¼ hð90þ 114hþ 35h2 þ 3h3Þ

SðhÞ ; ð1Þ

where

SðhÞ ¼ ðhþ 1Þðhþ 2Þðhþ 3Þðhþ 4Þðhþ 5Þ: ð2Þ

It is interesting to compare this with the ‘‘broad’’ variance of K, which
for the case n ¼ 3 is hð6þ 8hþ 3h2Þ=½ðhþ 1Þ2ðhþ 2Þ2�. The ratio of the
narrow to the broad variance is

ðhþ 1Þðhþ 2Þ½30þ 38hþ ð35=3Þh2 þ h3�
ðhþ 3Þðhþ 4Þðhþ 5Þ½2þ ð8=3Þhþ h2�

: ð3Þ

96 W. J. Ewens et al.
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This always lies between 1=2 and 1, approaching 1=2 as h approaches 0
and approaching 1 as h increases without limit. Thus the narrow vari-
ance is never less than half the broad variance for samples of size 3.

Although it is in principle possible to find the narrow variance for
any arbitrary value of n by the above method, in practice this approach
leads to extremely complicated and extensive calculations even for n
as small as 7 or 8, and another approach is needed. This approach is
based on the (random) population frequencies p1, p2, . . ., of the alleles
in the population in any generation. These frequencies have a compli-
cated stationary distribution (Watterson, 1976). However, despite this
complexity, much is known about the mean of sums of functions of
these frequencies. For example, if /ðpÞ is a function of order p or less
near p ¼ 0, then

E
X

m

/ðpmÞ ¼ h
Z 1

0

/ðpÞp�1ð1� pÞh�1 dp: ð4Þ

The function hp�1ð1� pÞh�1 involved in the right-hand side is called
the (univariate) frequency spectrum of the population allelic frequen-
cies, and has the interpretation that if terms of order ðdpÞ2 and smaller
are ignored, the probability that there exists an allele in the
population with frequency between p and pþ dp is hp�1ð1� pÞh�1dp.

We write the number Kj of alleles seen by investigator
jð j ¼ 1; 2Þ as Kj ¼ Ij1 þ Ij2 þ . . . . . ., where the indicator function Ijm

takes the value 1 if investigator j sees allele m in his sample and 0
otherwise. From this, the narrow variance ð1=2ÞEðK1 � K2Þ2 of K is

1

2
E
X

m

ðI1m � I2mÞ2 þ
1

2
E
X
m 6¼r

X
r

ðI1m � I2mÞðI1r � I2rÞ: ð5Þ

Now ðI1m � I2mÞ2 ¼ 1 if and only if allele m is seen in the sample of
one observer and not in that of the other. Given sample sizes n for each
observer, and given a population frequency pm of allele m, the con-
ditional probability of this event, which is the conditional expected value
of ðI1m � I2mÞ2, is 2ð1� pmÞnf1� ð1� pmÞng. Using (4), the uncon-
ditional expected value of the first term on the right-hand side of (5) isZ 1

0

ð1� pÞnf1� ð1� pÞnghp�1ð1� pÞh�1dp; ð6Þ

which reduces to

Sðn; hÞ ¼ h
hþ n

þ h
hþ n� 1

þ � � � þ h
hþ 2n� 1

: ð7Þ

when n is large, to a close approximation Sðn; hÞ � h ln 2.

Two Variance Results in Population Genetics Theory 97
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Eq. (7) can be checked by using another argument. The first term in
the expression (5) is the mean number of alleles seen in a combined
sample of 2n genes minus the mean number of alleles seen in a single
sample of n genes. The well-known formula for the mean number of
alleles seen in a sample of j genes, namely

Pj�1
i¼1 h=ðhþ j� 1Þ, leads

directly to Eq. (7).
The second term on the right-hand side of the expression (5) can

be evaluated by using the bivariate frequency spectrum h2ðxyÞ�1

ð1� x� yÞ, having the interpretation that if small-order terms are
ignored, the probability that there exists one allele in the population
with population frequency in ðx; xþ dxÞ and another with population
frequency in ðy; yþ dyÞ is h2ðxyÞ�1ð1� x� yÞdx dy. This function has
the property that for any function /ðpr; pmÞ that is of order prpm or less
when pr and pm are close to zero,

E
XX

r 6¼m

/ðpr; pmÞ
" #

¼ h2

Z 1

0

Z 1�x

0

ðxyÞ�1ð1� x� yÞh�1/ðx; yÞ dy dx:

ð8Þ
This equation allows the calculation of the second term on the

right-hand side of the expression (5) in a manner analogous to that
leading to Eq. (6). The details are not given here, and the final
conclusion is that the expression (5) becomes

Sðn; hÞ � h2
Xn

j¼1

n!½ð j� 1Þ!�2ðn� jþ h� 1Þ!
j!ðn� jÞ!ðnþ jþ h� 1Þ! ; ð9Þ

where x! is defined in the standard way for non-integer x through the
gamma function.

The expression (9) agrees with that given in Eq. (1) for the case
n ¼ 3, confirming both modes of calculation. For large n the first term
Sðn; hÞ in (9) dominates the second term, so that for large n the narrow
variance of the number of alleles seen is approximately h ln 2. It is
interesting that this value does not depend on the sample size n.

Numerical computations show that the narrow variance (9) behaves
in a complex way as a function of n and h when n is small. This vari-
ance appears to increase monotonically to the asymptotic limit h ln 2
as n increases when h > 0:1663 . . . , whereas when h < 0:1663 . . . it
appears to increase as a function of n, reach a maximum, and then
decrease to h ln 2 as n increases. We see no particular significance
in the numerical value 0.1663. . . .

A second approach to finding the narrow variance of K depends on
the following theoretical result. Let X1, X2, Z1 and Z2 be random
variables such that the vector (X1, Z1) has the same distribution as

98 W. J. Ewens et al.
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the vector (X2, Z2). Write the expected value of Xi given Zi as Ei

(i ¼ 1, 2) and assume that given (Z1, Z2), the distribution of Xi depends
only on Zi (i ¼ 1, 2). It follows that

1=2 E ½ðX1 � X2Þ2� ¼ E ½Var ðX1jZ1Þ� þ 1=2 E ½ðE1 � E2Þ2�; ð10Þ

where both outer expected values on the right-hand side are with
respect to the distribution of Z1 and Z2. Eq. (10) is related to writing the
variance of X1 as the sum of the expectation of the conditional variance
E ½Var ðX1jZ1Þ� and the variance of the conditional expectation Var ðE1Þ.

Suppose now that Xi is Ki (i ¼ 1, 2) and that Zi is the (random) allele
frequency vector ( p1, p2, . . ..) in the population. In this case E1 ¼ E2, so
that Eq. (10) reduces to

1=2 E ½ðK1 � K2Þ2� ¼ E ½Var ðK1jZÞ�: ð11Þ

This equation leads to an expression for the narrow variance of K as

Sðn; hÞ � 1�
Xn�1

i¼1

ih2

ðiþ hÞ2
þ h2

Xn�1

i¼0

1

iþ h

 !2

� h2
X2n

i¼2

ð�1Þi ðn!Þ2Qi�1

j¼0

ð jþ hÞ

Xminðn;i�1Þ

k¼maxð1;i�nÞ

1

kði� kÞðn� kÞ!ðn� iþ kÞ! : ð12Þ

Here Sðn; hÞ is defined in Eq. (7), so that the first term in the above
expression agrees with that in the expression (9). While it is not
immediately obvious that the entire expression is identical to that in
(9), the two agree in the small number of cases we have checked by
hand and in the extensive number of cases that we have checked
numerically.

Finite Populations

The calculations leading to the expressions (9) and (12) for the narrow
variance of K assume a large population size and a comparatively
small sample size. In effect they assume that conclusions from the
Kingman coalescent process, which approximates the ancestry of
genes whose evolution obeys the Wright-Fisher model, are sufficiently
accurate, or equivalently that diffusion approximations for the
Wright-Fisher model are sufficiently accurate. When the population
size is not large, and in particular when the sample size is a non-neg-
ligible fraction of the total population size, this assumption does not
hold and these expressions are no longer necessarily accurate.

Two Variance Results in Population Genetics Theory 99



D
ow

nl
oa

de
d 

By
: [

St
at

e 
Li

br
ar

y 
of

 th
e 

U
ni

ve
rs

ity
 o

f A
ar

hu
s]

 A
t: 

16
:2

1 
14

 M
ay

 2
00

7 

The extent to which coalescent theory approximations are accurate
in a finite population has been examined by Fu (2006). In broad terms,
Fu found that coalescent approximations tend to break down when the
sample size is of the order of the square root of the population size. On
the other hand, he concluded that because the approximation has both
positive and negative effects that largely cancel out, ‘‘in many situa-
tions beyond [those justified] by Kingman’s analysis . . . the Kingman
coalescent remains close to the exact coalescent for the [Wright-
Fisher] model.’’

This broad statement does not give a specific numerical indication
of the accuracy of the expression (9) for small populations. To investi-
gate this matter we conducted simulations for various values of h, n
and the total population size N. It is necessary to sample from a simu-
lated stationary population, and this was carried out by starting the
population with one allele only, and then not sampling until this allele
had left the population. Mutational events in the simulation followed a
Poisson process.

The results of these simulations are given in Table 1. The empirical
narrow variances are those found from simulations, and are subject to
statistical errors. The ‘‘theoretical’’ narrow variances listed in the
table are those given by the expression (9). When the sample size is
small compared to the population size the empirical and theoretical
values agree, as expected. As the sample size increases relative to
the population size, however, the empirical variances increasing differ
from the theoretical variances. However, the departure is not as large
as might be expected, in line with the observations made by Fu (2006).
Thus even if n ¼ 50 and N ¼ 2,500, so that the sample size is exactly
equal to the square root of the population size, they differ only by
2.5% (h ¼ 0.2), by 2.1% (h ¼ 1.0), and by 7.6% (h ¼ 2.0).

Estimation of h

We now turn from the narrow variance of the number of alleles seen
by two observers to the narrow variance of their respective estimators
of h. The maximum likelihood estimator ĥhk of h, given the number K of
alleles seen by an investigator, is defined implicitly by the equation

K ¼
Xn

j¼1

ĥhk

ðĥhk þ j� 1Þ
; ð13Þ

This estimator is biased, and there is no unbiased estimator of h
available from alleles data.

100 W. J. Ewens et al.
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Equation (13) shows that, to a close approximation, ĥhk ¼ K= ln n.
Thus if the estimator of h found by investigator i (i ¼ 1, 2) is denoted
ĥhki, we have to a close approximation

ðĥhk1 � ĥhk2Þ2

2
¼ ðK1 � K2Þ2

2ðln nÞ2
: ð14Þ

Taking expectations throughout in Eq. (14), and using the approxi-
mate formula h ln 2 for the narrow variance of K, we find that the

TABLE 1 Empirical and Theoretical Narrow Variances of K, the Number
of Alleles Seen in a Sample of n Genes, for Various Values of h and n.
The Theoretical Variance is Given in Eq. (9)

h n N Empirical variance Theoretical variance

100 1,250 .068 .069414
.1 150 2,500 .072 .069381

Decreasing to .06932
.2 50 500 .141

1,000 .144 .138412
2,500 .142

.2 100 500 .162
1,000 .157 .138525
2,500 .154

.2 150 1,500 .129
2,500 .113 .138561

Increasing to .1386
1 50 1,000 .688

2,500 .682 .668
5,000 .645

1 100 1,000 .666
2,500 .696 .681
5,000 .690

1 150 1,000 .712
2,500 .707 .684
5,000 .672

Increasing to .693
2 50 500 1.25

2,500 1.19 1.28
5,000 1.28

2 100 500 1.25
2,500 1.26 1.33
5,000 1.30

2 250 500 1.20 1.39
Increasing to 1.39

Two Variance Results in Population Genetics Theory 101
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narrow variance of the estimator ĥhk is approximately

½h ln 2�
½ðln nÞ2�

: ð15Þ

Three Comparisons

It is interesting to compare the approximate narrow variance of ĥhk

given in the expression (15) with three other variances. The first of
these is with the broad variance of ĥhk. As already mentioned, there
is no alleles-based unbiased estimator of h, but in large samples the
bias of the maximum likelihood estimator ĥhk is small, and the broad
mean square error of ĥhk is, to a close approximation,

MSEðĥhkÞ ¼
hPn�1

j¼1 j=ðjþ hÞ2
; ð16Þ

(Ewens, 2004: 304). An accurate calculation shows that for the range
of parameter values that we consider, this approximation is typically
within about 2% of the true mean square error. We therefore use
Eq. (16) here and in the discussion in the following section. The
right-hand side in Eq. (16) is approximately h=ln n, so that the
narrow variance (15) is smaller than this by a multiplicative factor
of approximately ln 2=ln n.

Second, it is found from the expression (15) that the narrow vari-
ance of the estimate of the heterozygosity probability h=(1þ h), when
based on the number of alleles k observed in the sample of n genes,
is approximately

½h ln 2�
½ð1þ hÞ4ðln nÞ2�

: ð17Þ

The corresponding approximate broad variance of h=ð1þ hÞ is

h

½ð1þ hÞ4ðln nÞ�
; ð18Þ

and these two expressions also differ by a multiplicative factor of
approximately ln 2=ln n.

Third, the ‘‘natural’’ estimator of the heterozygosity probability
h=ð1þ hÞ is the sample heterozygosity 1�

P
j njðnj � 1Þ=nðn� 1Þ;where

allele j is observed nj times in the sample. The sufficiency of K for h shows
that this has a larger variance, as an estimator of h=ð1þ hÞ, than that of
the estimator of h=ð1þ hÞ deriving from K. However, it does not follow

102 W. J. Ewens et al.
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that a corresponding statement holds about the narrow variance of
the sample heterozygosity, measuring the extent to which the two
investigators will have different values of their respective sample
heterozygosities. This narrow variance can be shown to be

4h
½nð1þ hÞð2þ hÞð3þ hÞ� ; ð19Þ

This is of order n�1 and is thus of a smaller order of magnitude than the
narrow variance given by the expression (17). The implication of this is
that the two investigators should have quite close values for their sam-
ple heterozygosities, even though their respective value will not neces-
sary be close to the true mean heterozygosity h=ð1þ hÞ.

The following result is parallel to that in the expression (17). An
alternative way of estimating the sample heterozygosity is to use

p̂p ¼ 2
X

i

X
j

Iij=nðn� 1Þ;

where Iij ¼ 1 is sequences i and j are different, Iij ¼ 0 otherwise. This
estimator also has mean h=ð1þ hÞ. The narrow variance of p̂p; that is
1=2Eðp̂p1 � p̂p2Þ2; is

4h½ðn� 1Þhþ nÞ�
nðn� 1Þð1þ hÞð2þ hÞð3þ hÞ : ð20Þ

The comments following the expression (19) apply for this estimator
also. For large n, the expressions (19) and (20) differ by a multiplicative
factor 1þ h.

THE NARROW VARIANCE OF ESTIMATES OF h,
USING ‘‘SITES’’ DATA

Our emphasis is on those DNA segments corresponding to a gene, so
that the assumption of no recombination between the sites in the seg-
ment considered is made throughout.

We start with the theoretical result in Eq. (10). We consider the
coalescent tree spanning the joint sample of 2n genes, and, in the
various expressions in Eq. (10), we take Zi to be the length Li of the tree
spanning sample i (i ¼ 1, 2). Let Si be the number of mutations in the
subtree corresponding to sample i. Si has a Poisson distribution with
parameter hLi=2; and our aim is to find an expression for EðS1 � S2Þ2=2
and to find an asymptotic ðn!1Þ expression for this variance.

The total length L of all branches in the coalescent tree can be
written as L1 þ L2 � L12 þ L0, where L12 is the sum of the lengths of
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the branches shared between the two subtrees corresponding to the
two samples and L0 is the length of the branch in the subtree for both
samples not included in the subtrees of either sample. L0 is positive
only if the subtrees for both samples form monophyletic groups, and
the probability of this rapidly approaches 0 as n increases.

Define Xi to be Xi ¼ Si � S12, the number of mutations in sample i
not shared by the other sample. It follows that

EðS1 � S2Þ2 ¼ EðX1 � X2Þ2;

so that for this case, Eq. (10) becomes

EðS1 � S2Þ2=2
hEðL1 � L12Þ=2þ EðL1 � L2Þ2=2

;

because Xi is Poisson with intensity hðL1 � L12Þ=2. In the Appendix we
prove that for large sample sizes

EðS1 � S2Þ2=2 � hEðL1 � L12Þ=2 � h ln 2; ð21Þ

a result similar to that for alleles data.
The standard estimator of h obtained from segregating sites data,

given by Watterson (1975), is

ĥhs ¼ S
Xn�1

i¼1

1=i � S=ðln nÞ ð22Þ

where S is defined as the number of segregating sites seen in a sample
of n genes. Using the approximate result in (21), we find the narrow
variance of this estimator to be close to the narrow variance of the
estimator based on ‘‘alleles’’ data given by the expression (15).

An alternative to the estimator of h given in Eq. (22) is the pairwise
estimator

ĥh�s ¼ 2
X
i 6¼j

mij=nðn� 1Þ; ð23Þ

where mij is the number of aligned nucleotide differences observed
when comparing sequence i with sequence j. This is an unbiased esti-
mator of h, and its narrow variance is 2=h ½3ðn� 1Þ� þ 2ð2nþ 3Þ
h2=½9nðn� 1Þ�. This is of order n�1, so that we obtain a conclusion
similar to that obtained for the pairwise alleles estimator, namely that
two investigators are likely to have quite close estimates of h if each
uses the pairwise estimator given in Eq. (23), despite the well-known
fact that the estimator in Eq. (23) is not consistent (i:e., its variance
does not approach 0 as n!1). It follows that for large sample sizes
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the two estimates, although likely to be close, might differ substan-
tially from the true value.

ESTIMATING h USING ALLELES AND SITES DATA:
A COMPARISON

We now take up the question of whether broad estimation of h is best
carried out by using alleles or sites data. It is assumed in the sites case
that all sites are completely linked, since the case of interest for the
DNA segments considered is that where they correspond to a gene.

We consider first the estimation of h using sites data, specifically by
using the number S of segregating sites in a sample of n genes. The
variance of the standard unbiased estimator of h, using S, given by
Eq. (22), is

VarðĥhsÞ ¼ h=g1 þ g2h
2=g2

1� ð24Þ

where g1 ¼
Pn�1

j¼1 j�1; g2 ¼
Pn�1

j¼1 j�2� To the extent that Eq. (16) gives a
sufficiently accurate value for the mean square error of the alleles-
based estimator ĥhk, the comparison of the efficiencies of ĥhk and ĥhs

reduces to a comparison of the numerical values derived from the
expressions on the respective right-hand sides of Eq. (16) and Eq. (24).

When h is very small we expect these numerical values to be close,
since in this case we expect only a small number of segregating sites
and a matching small number of alleles. This expectation is confirmed
by observing that when h is small, the expressions on the right-hand
sides of both Eq. (16) and Eq. (24) are approximately h=ln n and that
their ratio approaches 1 as h approaches 0. It is possible to show that
when h < 1, the expression on the right-hand side in Eq. (24) is always
less than that on the right-hand side in Eq. (16) whatever the value of
n. Numerical evidence suggests that this inequality is also true when-
ever n < 50 for all values of h. This bound appears to be sharp: when
n ¼ 51 we can find values of h for which the expression in Eq. (16) is
less than that in Eq. (24). Examples are given by some of the values
in Table 2, which gives the ratio of the expression in Eq. (24) to that
in Eq. (16).

TABLE 2 Selected Values of Var ðĥhsÞ=MSEðĥhkÞ for Various Values of n and h

h ¼ .5 h ¼ 1 h ¼ 3 h ¼ 5

n ¼ 50 .902 .874 .891 .928
n ¼ 100 .918 .903 .960 1.038
n ¼ 500 .943 .942 1.047 1.178
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For the values of n and h listed in the table, the approximate MSE of
ĥhk is less than the variance of ĥhs when n and h are both large. However,
this observation is partly misleading: for any given value of n, the
MSE of ĥhk appears to be less than the variance of ĥhs only for a bounded
range of values of h. Thus when n ¼ 100, the MSE of ĥhk is less than the
variance of ĥhs when 4.01 < h < 158.9. When n ¼ 200 the correspond-
ing range of values of h is even wider, extending from about 4 to about
650. On the other hand, the values of n for which the approximate
MSE of ĥhk is less than the variance of ĥhs appears to be of the form
n�n(h), for some n(h) depending on h. For h ¼ 3, n(h) ¼ 177 and for
h ¼ 4, n(h) ¼ 101.

Neither ĥhk nor ĥhs make full use of the data in the n sample
sequences. The calculation of ĥhk is found by observing whether two
sequences are the same or different, but if they are different the calcu-
lation does not make use of the way in which they are different. The
calculation of ĥhs is found by observing whether a site is polymorphic,
but if it is, the calculation does not use the frequencies of the
segregating nucleotides. More complete information about h would
be available if the times of the coalescent of the sample were known
and the branches on which mutations took place, as well as the
numbers of these mutations, were available (Felsenstein, 1992). In
practice this information cannot be expected to be available, and a less
extreme assumption is that the number of mutation events on each
branch of the coalescent is available. The Fisher information bound
for the asymptotic mean square error of the estimator of h, given this
information, was found by Fu and Li (1993). As expected, both the
expressions in Eq. (16) and Eq. (24) exceed the value that they find,
which can be written as

hPn�1
j¼1

1
jþh

: ð25Þ

If the sites had been unlinked, the variance of ĥhs would be h=g1, and
this also exceeds the value in Eq. (25). Thus linkage between sites,
as well as the times at which various mutational events occurred,
is a factor in variance calculations.

The comparison of the MSE of ĥhk and the variance of ĥhs is best
discussed through the coalescent of the sample. It is a standard pro-
perty of the coalescent that, when the population size is constant over
time, its longest arms tend to occur just before the final coalescence to
the most recent ancestor of all genes in the sample. When the sample
size is small, most mutations tend to occur on these arms. Sites data
record all these mutations but alleles data do not. Thus for small sample
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sizes, estimation of h using sites information should have smaller
mean square error than estimation of h using alleles data, and this
is what is observed. For large sample sizes there are many shorter,
recent arms of the coalescent, and thus an increased chance of muta-
tions on short arms, with perhaps only a small number of mutations on
each. Single mutations on such arms are recorded in alleles data, lead-
ing to significant information about h from these data. Thus for large
sample sizes and moderate values of h it is plausible that alleles data
provides more information about h than does sites data. Finally, as the
mutation rate, and hence h, increases, even short arms can accumu-
late several mutations, all of which are recorded in sites data but
not in alleles data. Thus for large h we once again expect sites data
to give more information about h than alleles data, and this agrees
with the calculations derived from Eq. (16) and Eq. (24).
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Saunders, I.W., Tavaré, S., and Watterson, G.A. (1984). On the genealogy of nested
sub-samples from a haploid population. Advances in Applied Probability 16:
471–491.

Watterson, G.A. (1975). On the number of segregating sites in a genetical model without
recombination. Theoretical Population Biology 7: 256–276.

Watterson, G.A. (1976). The stationary distribution of the infinitely-many neutral
alleles diffusion model. Journal of Applied Probability 13: 639–651.

Two Variance Results in Population Genetics Theory 107



D
ow

nl
oa

de
d 

By
: [

St
at

e 
Li

br
ar

y 
of

 th
e 

U
ni

ve
rs

ity
 o

f A
ar

hu
s]

 A
t: 

16
:2

1 
14

 M
ay

 2
00

7 

APPENDIX

In this appendix we prove Eq. (21).
ThevariableLi relates to the total lengthof the treeof the whole sample

of size 2n through L ¼ L1þL2� L12þL0, where L12 is the sum of
branches shared between the two trees, and L0 is all branches in the
whole tree that is not counted in either L1 or L2. The variable L0 is only
non-zero if either sample forms a monophyletic group. If it is necessary
to emphasize that these quantities depend on the sample size n for each
investigator, we write them as L(n), L1(n), L2(n), L12(n), and L0(n).

Rewriting the equality in the previous paragraph yields
L1� L12 ¼ LþL2� L0. The proof of Eq. (21) is carried out in several
steps. First we will find asymptotic expressions for the mean and vari-
ance of L1� L12. To find these we find various asymptotic expressions
as shown below.

A) Mean and variance of L0:

First, L0! 0 almost surely as n!1, because eventually sample 1
and 2 share a MRCA (Saunders et al., 1984). Also L0� 2H1, where
H1 is the height of the entire (infinite) population coalescent. Since
H1 and (H1)2 are integrable, it follows that E(L0)! 0 and Var(L0)! 0
0 as n!1.

B) The mean of L(n)� L2(n):

Taking expectation yields

E½LðnÞ � L2ðnÞ� ¼ 2
X2n�1

i¼1

1=i� 2
Xn�1

i¼1

1=i: ð26Þ

For large n, this gives

E½LðnÞ � L2ðnÞ� � 2ðlnð2n� 1Þ þ cÞ þ 2ðlnðn� 1Þ þ cÞ � 2 lnð2Þ; ð27Þ

where c is Euler’s constant.
C) The variance of L(n)� L2(n):

Let LðnÞ ¼
P2n

i¼2 TiðnÞ and L2ðnÞ ¼
Pn

i¼2 T2iðnÞ, where TiðnÞ,
i ¼ 2, . . . ,2n are independent exponential variableswith intensities
i(i� 1)=2, and> T2iðnÞ, i ¼ 2, . . . ,n also are independent exponential
variables with intensities i(i� 1)=2. We note that L(n) and L2(n) are
not independent, so that Ti(n) and T2j(n) are not independent. For
any fixed K, we write

LðnÞ ¼
XK
i¼2

TiðnÞ þ
X2n

i¼Kþ1

TiðnÞ; ð28Þ
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and

L2ðnÞ ¼
XK
i¼2

T2iðnÞ þ
X2n

i¼Kþ1

T2iðnÞ: ð29Þ

For any given e > 0, we can choose K large enough so that

X2n

i¼Kþ1

VarðTiðnÞÞ < e

and

X2n

i¼Kþ1

VarðT2iðnÞÞ < e

for all n > K. This can be done because

supn VarðLðnÞÞ ¼ supn VarðL1ðnÞÞ ¼
X1
i¼2

4=ði� 1Þ2 ¼ 2p2=3:

Next, consider the sum
PK

i¼2 TiðnÞ � T2iðnÞ. It follows from
Saunders et al. (1984) that the tree of the total sample and the tree
of sample 2 eventually (for large n) share the K oldest ancestors. Hence
Dn ¼

PK
i¼2 TiðnÞ � T2iðnÞ ! 0 almost surely as n!1. The difference

Dn is bounded, so that jDnj < KH1, and it follows that E(Dn)! 0 and
Var(Dn)! 0 as n!1. This implies that for any e > 0 there exists M
such that Var(Dn) < e for n > M. Finally, combining these results,
we find that Var(L(n)�D2(n)) < 3e for any given e > 0 and
n > max(M, K), where M and K are as given above. It follows that

VarðLðnÞ � L2ðnÞ ! 0 as n!1:

Next we turn to the mean and variance of L1� L12.
D) The mean of L1� L12:

Taking expectations yield E½L1 � L12� ¼ E½L� L2� � E½L0� � 2 lnð2Þ
for large n (from A and B).

E) The variance of L1� L12 (and L2� L12):

The variance is bounded by

VarðL1 � L12Þ � 3 VarðL� L2Þ þ 3 VarðL0Þ;
so that Var(L1� L12)! 0 as n!1 (from A and C).
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Finally, we return to the evaluation of E[(S1� S2)2=2. We apply
Eq. (10) with Xi ¼ Si� S12 and Zi ¼ Li. Then

ð1=2ÞE½ðS1 � S2Þ2� ¼ ð1=2ÞE½ðX1 � X2Þ2�

and it follows that

ð1=2ÞE½ðS1 � S2Þ2� ¼ ðh=2ÞE½L1 � L12� þ ð1=2ÞE½ðL1 � L2Þ2�

because Xi ¼ Si� S12 is Poisson with parameter (h=2)(L1� L12). From
the fact that E[(L1� L2)2] ¼ E[{(L1� L12)� (L2� L12)}2]! 0 as n!1,
it follows that ð1=2ÞE½ðS1 � S2Þ2� ! h lnð2Þ, as we set out to prove.
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