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Enzyme-sharing as a cause of
multi-stationarity in signalling systems

Elisenda Feliu and Carsten Wiuf*

Bioinformatics Research Centre, Aarhus University, C. F. Mgllers All¢ 8,
8000 Aarhus, Denmark

Multi-stationarity in biological systems is a mechanism of cellular decision-making.
In particular, signalling pathways regulated by protein phosphorylation display features that
facilitate a variety of responses to different biological inputs. The features that lead to multi-
stationarity are of particular interest to determine, as well as the stability, properties of the
steady states. In this paper, we determine conditions for the emergence of multi-stationarity
in small motifs without feedback that repeatedly occur in signalling pathways. We derive an
explicit mathematical relationship ¢ between the concentration of a chemical species at
steady state and a conserved quantity of the system such as the total amount of substrate avail-
able. We show that ¢ determines the number of steady states and provides a necessary condition
for a steady state to be stable—that is, to be biologically attainable. Further, we identify charac-
teristics of the motifs that lead to multi-stationarity, and extend the view that multi-stationarity
in signalling pathways arises from multi-site phosphorylation. Our approach relies on mass-
action kinetics, and the conclusions are drawn in full generality without resorting to simulations
or random generation of parameters. The approach is extensible to other systems.

Keywords: steady state; kinase; stability; cross-talk; phosphorylation

1. INTRODUCTION

Multi-stationarity (the existence of more than one
steady state under particular biological conditions) in
cellular systems can be seen as a mechanism for cellular
decision-making. How it arises is therefore fundamental
to the understanding of cell signalling—that is, the
communication of signals to regulate cellular activi-
ties and responses. Generally, cell signalling involves
post-translational modifications of proteins, such as
phosphorylation, acetylation or methylation. These
modifications change the state of a protein in a discrete
manner—for example, from an active to an inactive state.

In eukaryotes, reverse phosphorylation is the most
frequent form of protein modification affecting approxi-
mately 30 per cent of all proteins in humans [1]. Kinases
catalyse the transfer of phosphate groups to target pro-
teins and phosphatases catalyse the reverse operation.
After the completion of the human genome project,
genome analysis estimated the number of kinases to
approximately 500 [2], while the number of phosphatases
is smaller by two-thirds [1]. Two protein phosphatases,
PP-1 and PP-2A, account for the vast majority of all
phosphatase activity [3] with more than 50 PP-1 targets
being characterized [4].

As a consequence, there is a substantial complexity
in the interplay between enzymes (kinases and phos-
phatases) and substrates, exemplified by systems
where protein substrates use the same catalysing
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enzymes (enzyme-sharing) and systems where different
enzymes catalyse the same reaction (enzyme compe-
tition). Competition and sharing are general examples
of cross-talk between motifs.

The aim of this work is to determine the characteristics
that lead to multi-stationarity. Following different model-
ling strategies, it has already been shown that feedback in
signalling networks as well as multi-site phosphorylation
can both account for multi-stationarity [5-7].

We present a mathematical approach for analysing the
steady states of small systems. Our method leads to expli-
cit conditions for when multi-stationarity occurs in terms
of rate constants and conserved total amounts of sub-
strates and enzymes. Further, the approach provides
means to study the stability of steady states.

First, we present the motifs that we analyse and then
we develop the method to determine multi-stationarity
and to study stability. The paper concludes with some
perspectives and discussion.

2. MOTTIF'S
2.1. Description

We analyse the motifs shown in figure 1. The motifs
are referred to as Motif (a)— (1) and provide simple abstract
representations of known cellular systems. Some examples
motivating our choice of motifs are given in table 1. A rich
source of examples is found in the well-studied mitogen-
activated protein kinase (MAPK) cascades.

To understand how multi-stationarity relates to
enzyme usage, we base our investigation on a motif that
does not show multi-stationarity itself. Therefore, we

This journal is © 2011 The Royal Society
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Figure 1. Motifs composed of one or two one-site cycles. Motifs with purple label, and only these, admit multiple biologically
meaningful steady states. S; and P; are substrates with i= 0,1,2 phosphorylated sites. F, E|, F> denote kinases, and F, F|, F,
phosphatases. In Motif (b), the kinase and the phosphatase are the same enzyme.

build the motifs from a one-site phosphorylation cycle
which is monostable [16—19] and shown in Motif (a).
A specific kinase (phosphatase) catalyses phosphoryla-
tion (dephosphorylation) and all modifications can be
reversed. In general, protein phosphoforms are denoted
by Sand P (figure 1). If one phosphoform is converted into
another, an arrow is drawn and the enzyme (E or F)
catalysing the reaction is indicated.

Motifs (a)—(d) cover different possibilities for a one-
site modification process. In Motif (b), the same enzyme
catalyses phosphorylation and dephosphorylation.
Motifs (¢) and (d) account for competition between
kinases and/or phosphatases to catalyse the same
modification(s).

In eukaryotes, phosphorylation of most proteins
takes place in more than one site [20], potentially with
different biological effects [21]. Combination of two
one-site cycles into a two-site sequential cycle yields
three motifs: (e) all enzymes are different, (f) only
one kinase but two phosphatases, and (g) one kinase
and one phosphatase. By symmetry, Motif (f) rep-
resents as well a motif with one phosphatase but two
kinases. We assume for simplicity that both phos-
phorylation and dephosphorylation proceed in a
sequential and distributive manner [22]—that is, one
site is (de)phosphorylated at a time in a specific order.

Motif (h) represents one-site modification of two
substrates that share the same kinase but use different
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phosphatases. This motif represents by symmetry also a
system with a shared phosphatase. If both the kinase
and the phosphatase are shared, we obtain Motif (i).

Finally, two one-site modification cycles can be com-
bined in a cascade motif, where the activated substrate
of the first cycle acts as the kinase of the next. The
interplay between enzymes is represented by three cas-
cades: (j) dephosphorylation at each layer uses different
phosphatases, (k) the phosphatase is not layer specific,
and (1) the kinase of the first layer catalyses the modifi-
cation in the second layer as well.

2.2. Mathematical modelling

We assume that any modification S — S* follows the
classical Michaelis—Menten mechanism in which an
intermediate complex Z is formed reversibly but dis-
sociates into product and enzyme G irreversibly:

S+G%ZL>S*+G

The phosphate donor, generally ATP, is assumed to
be in large constant concentration and hence embedded
into the rate constants. Imposing mass action kinetics,
the species concentrations over time can be modelled
by a system of polynomial differential equations. For
example, in Motif (a) the equations are (here F also
refers to the concentration of the kinase F, and similarly
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Table 1. Cellular systems represented by Motifs (a)—(1).

Motifs biological phenomena
(b) a kinase acting also as phosphatase on the same substrate, e.g. HPrK/P kinase-phosphatase in
Gram positive bacteria [8].
(¢),(d) several kinases and/or phosphatases acting on the same substrate, e.g. (i) several kinases phosphorylate

the a subunit eukaryotic initiation factor (elF2ea) at Ser51 [9]; (ii) the phosphatases MAP kinase phosphatase 1
and protein tyrosine phosphatase STEP-like both modify Erk1 [10].

(e) multi-site phosphorylation by different kinases and phosphatases at each site, e.g. (i) primed kinases, such as
glycogen synthase kinase 3 [11]; (ii) Akt1 is (de)activated through three-site sequential (de)phosphorylation by

three different kinases (phosphatases) [3].

multi-site phosphorylation with the same kinase and/or phosphatase responsible for all modifications, e.g.

(i) two-site phosphorylation of Erk catalysed by Mek; (ii) dephosphorylation of Erk2 catalysed by

dual specific phosphatase 6 [12].

the same enzyme catalysing the modification of two different substrates—e.g. the kinases Erkl, Erk2 and

the kinase products of the p38 pathway catalyse phosphorylation of two substrates (the mitogen- and
stress-activated protein kinase (MSK) 1/2 and the MAP kinase signal-integrating kinase (MNK) 1/2) [13].

cascades with several modification steps and substrates, e.g. (i) MAPK cascades; (ii) protein kinase A

phosphorylates phosphorylase kinase, which in turn phosphorylates glycogen phosphorylase (with
dephosphorylation carried out by the same phosphatase, PP-1, in the two different layers; [14,

fig. 7.17] and [15]).

for the other species) as follows:

E=0P 4+ )X - aPESy, X =—-(b" + )X + dPES,
F=0+cHY —adf'FS, vV =—-0" + )Y 4+ af'FS,
Sy =b"X+c"Y —d’ES) Sy =X +b7'Y — " FS,,

where X (V) is the intermediate complex formed by the
enzyme E (F) and the substrate Sy (51), and & denotes
differentiation of = z(t) with respect to time. For all
motifs, there are conservation laws that define time-
conserved quantities (total amounts), e.g. F+ X =0
and so £ = E+ X is conserved. The total amounts
are fixed by the initial concentrations and determine
the state space of the dynamical system. Motif (a) has
three conserved total amounts, namely F = F + Y and
S =S+ S + X + Y in addition to that of E.

The steady states of the system are solutions (poten-
tially with negative values) to the polynomial equations
obtained by setting all derivatives to zero with the
constraints imposed by the conservation laws, once total
amounts have been fixed. These laws imply that some
steady-state equations are redundant, e.g. either £' = 0 or
X =0 can be disregarded. We focus on the biologically
meaningful steady states (BMSSs), that is, the steady
states for which all concentrations are non-negative ( posi-
tive or zero). If at least two BMSSs exist for fixed total
amounts, then the system is said to be multi-stationary.

The specific form of the chemical reactions for Motifs
(a)—(1) together with the corresponding systems of
differential equations are described in the electronic
supplementary material.

3. THE STEADY-STATE FUNCTION ¢

In this section, we outline the procedure used to analyse
the motifs. Details of the mathematical analysis are in
the electronic supplementary material.

The system of equations describing the steady states
can be reduced substantially by elimination of varia-
bles [7,23]. For the motifs considered here, elimination of

J. R. Soc. Interface (2012)

variables implies that the steady states are characterized
by a relation S = ¢(Y) between the concentration of one
of the species, typically an intermediate complex Y, and
the total amount of a substrate S. The concentrations of
the other species are given in terms of Y, usually as
ratios of polynomials in Y. By imposing all concentrations
to be non-negative, Y is restricted to a set I" of possible
values. Further, for any S >0, there is at least one
BMSS, that is, S = ¢(Y") for some Y in I". The function
¢ is continuous and differentiable in I" and depends on
the rate constants and the total amounts, except for S.

The number of BMSSs can be found from the analysis
of . If ¢ is strictly increasing or decreasing in I', ¢ is one-
to-one and hence, for a given total amount S, there is a
corresponding unique Y at steady state. Consequently,
multi-stationarity cannot occur (figure 2a).

Figure 2b,c shows situations where multi-stationarity
occurs. If ¢ has increasing and decreasing parts, or if I'is
not connected, then Y; # Y, with ¢(Y}) = ¢(Ys) =S
might exist. Hence, there are at least two BMSSs with
the same S.

These two figures represent substantially different
switch responses. In figure 2¢, there is only one BMSS
for low S. An increase of S to Sy.x causes the system
to switch to a ‘high’ steady state (high Y) under the
assumption that the green steady states in the figure
are stable. If S is decreased again to S'mm, then the
system switches back to a ‘low’ steady state. In
figure 2b, there is one BMSS for low S. An increase of
S keeps the system in the first branch of ¢ and thus it
will behave as a monostationary system.

Interestingly, the derivative ¢'(Y") of ¢(Y) provides
means to determine whether some steady states are
unstable. Unstable steady states are unattainable
under biological conditions. Specifically, we find that
either the regions in which ¢ is increasing or those in
which it is decreasing must correspond to unstable
steady states, see §5.

In summary, the function ¢ determines whether
multiple BMSSs exist and encodes information about
the stability of steady states. In §4, we analyse ¢
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for Motifs (e) and (f). We show how enzyme-sharing in
a two-site cycle (f) leads to multi-stationarity, as
opposed to a two-site cycle with different enzymes (e).
A detailed analysis of all motifs is given in the electronic
supplementary material.

4. MONO VERSUS MULTI-STATIONARITY
4.1. Monostationarity

Motifs (a)—(e), (h) and (j) have exactly one BMSS for
any choice of rate constants and total amounts. In all
cases, the function ¢ is increasing in I'. The procedure
is very similar in all cases and is thus only illustrated
for Motif (e). We take some effort in explaining the
details as the procedure might have general applicability.

Motif (e) consists of three phosphoforms of the
substrate, Sy, Si, Sz, with subscript indicating the
number of phosphorylated sites. The chemical reactions
of the system are:

a,B a,B a,B (oW
So + E1 b:]; X158 + F S+ By b:; X025 + Fy
1s 25

a,F o, F
S+ F 1::; Yi—S + F1
1y

We denote the inverse of the Michaelis—Menten con-
stants of Ez by Kig= a’i,E/(bi,E + Ci,E) and of FZ
by k; = a; /(b r+ ¢;r). The ratio of the catalytic con-
stants of phosphatase and kinase is denoted by u; = ¢; /
Ci.E-

The system has five conserved total amounts, which
are assumed to be positive: four for the enzymes,
Ei = Ei, —|—XZ angl Fi = F’,‘ + )/7 (Z: 1,2), and one for
the substrate, S =5+ 51+ 5 + X1 + Xo + Y + Y.
The steady-state equations can be rewritten as

f=mh b
XQ = [.LQYQ.

X1 = ki pE1S
Xo = ko, g EnS)

Yi = ki pF15
Yy = ko p F2.5

The last column gives X; in terms of Y; The total
amounts F,; F; give E;, F; in terms of Y; as well:
E;,=E;—w,Y;, F;=F;-Y,. Further, if E;,F; > 0 then
E;=0 or F;=0 cannot be solutions to equation (4.1).
It follows that the concentrations E;, F; are positive if
and only if Y, is in I;=1[0,§) with
& =min(Fy,E; /).

We further isolate Sy, S; from the first row in
equation (4.1) and S, from the second and obtain
A S (R

k1,5(ET —u Y1) kir(Fi =)
for i=1,2. Then, Sy, S; (respectively, S,) are non-
negative increasing continuous functions of Y7 in I
(respectively, Y, in I5). The remaining equation,
Xo = Ko F»S:, gives Y5 in terms of Yi:

(4.2)

Ky p By Yy
Mo(kip(F'h —Y1) + ke g Y1)
The function fis non-negative increasing and continu-

ous in Ij. Further, for Y, to be in I, it is required
that Yy is in I'= [0, &) C I with é=min(&, f~'(&)).

Yo =f(")= (4.3)

J. R. Soc. Interface (2012)

a,F e, F
Sy + Fy b(:; Yo—5 + Fs.
2,y

Finally, using equation (4.3), we find that X, and S,
are increasing functions of Y; in I'. Therefore, using the
earlier mentioned formulae, all concentrations at steady
state are non-negative if and only if Y7 is in I. We
conclude that the BMSSs of the system satisfy

SZSo+S1+Sz+X1+X2+ Y1+Y2:‘P(Yl)

for Y7 in I As ¢ is a sum of increasing continuous
functions in Y7, then so is ¢. Additionally, ¢(0) =0
and ¢(Y)) tends to infinity as Y; tends to & Thus, ¢
has the form in figure 2a with a unique Y7 for any given

S, that is, there is one BMSS.

4.2. Multi-stationarity

We consider a two-site phosphorylation system with
one kinase but different phosphatases for each phospho-
form, as shown in Motif (f). Multi-stationarity has been
observed numerically in this system [6]. The system
derives from Motif (e) by setting F; = F, and we use
the notation introduced previously. The conservation
laws are the same with the exception that there is
only one }{inase law, E=FE+ X, + X,. Define
& =min(l';,E/w,;) and I';=[0,&).

The system of equations to be solved is similar to
equation (4.1) with E= E;. Thus, we start by writing
X;, E, F; as functions of Yj, Y. Because E, F; must
be positive at any BMSS, we require 0 < Y; < F; and
Y1 + o Yo < E. For these values we obtain

IJ«1Y1 Y
= _ and S =—o——
Kig(E — Y1 — pyYs) ki r(Fi —Y))

for ¢ = 1,2, which are non-negative increasing continu-
ous functions of Y. Using Xy = ko pFS;, we obtain Y,
as a non-negative continuous function of Y; in I7:

kep(E — p Y1) Yy
po (k1 p(F1 = Y1) + ko p Y1)

This function resembles that in equation (4.3) except
for the quadratic term in the numerator, which is a con-
sequence of the conservation law for £ involving both
Y7 and Y5. Further, f might not be increasing for all Y;.

Let I'={Y; € I, such that f(Y7) € I:}. Using the
formulae derived earlier, all concentrations at steady
state are non-negative if and only if Y; is in I'. Hence,
for any BMSS,

S=8+S+S+XI+X+ VY + Y, =¢(V])

So

Yo=f{1)=

with ¥7 in I'. The function ¢ is continuous with ¢(0) =0
but I'might not be a connected interval.

Define A = (1 + KQ‘E/KLF)[J,lpl —E.If A <0, then fis
an increasing function in I and we conclude that there is
exactly one BMSS. If A > 0, then fhas a unique local
maximum for some « in I} and all cases in figure 2 can
occur. By varying the value of Fy while keeping the
other constants fixed, we obtain (figure 3):

— Fy < (E—pufF1)/pmy (orange): I'=[0,aq) with
f(a1) =F,. The function f, and thus ¢, are increas-
ing and there is one BMSS (figure 2a).

— (E— ) /gy < F < f(a) (green): T'= [0, ) U
(@2, &) with oy <a< ay and f(ar) = f(az) =Fo.
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Figure 2. Possible shapes of ¢ in I" (coloured regions: magenta = unstable BMSSs; green = (possible) stable BMSSs). (a) ¢ is
increasing and for any s, there is one BMSS () such that ¢ (y) =s. (b) I' consists of two disconnected regions. For s < Sy,

there is one BMSS; for s = Sy, there are precisely two; and for s > Sy, there are three; ¢ is also defined in the white region
but some concentrations become negative. (¢) ¢ is in part decreasing, in part increasing. For Sy, < 8 < Snax, there are three
BMSSs; for s = Sy or 8§ = Snax, there are two; and for s <.Sy;, or s > Sy, there is one.

40 ¢ ’, // x\\\

30f Y \}/

20 F / ;

ZZ
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Figure 3. The function ¢ for Motif (f) for different values of F
and fixed £ > p; F; and A > 0. Let N = (E — u; Fy)/py. The
values M and « depend on E, F'; and the rate constants (see
text). The set I' is disconnected only when N <F < f(a).
For large F'5, @ approaches the black line. The vertical bars
mark the boundary of I".

Hence, fis increasing in [0, ), decreasing in (a9, &)
and multi-stationarity occurs (figure 2b).

When f (a) < Fy, there is an M such that:

— f(a) <Fy < M (purple): I'=10,£). The function ¢
has a decreasing part and multi-stationarity occurs
(figure 2¢).

— M <Fy (blue): I'=0,£)). The function ¢ is increas-
ing and there is one BMSS (figure 2a).

4.3. Understanding multi-stationarity

Motifs (f), (g), (i), (k) and (1) exhibit multi-stationarity
for some choices of total amounts and rate constants
(figure 4). The regions for which multi-stationarity
occurs are detailed in the electronic supplementary
material. In Motifs (i), (k) and (1), multi-stationarity
appears only as in figure 2¢, while in Motifs (f) and
(g) both forms in figure 2b, ¢ occur.

It is remarkable that in Motifs (f), (k) and (1), multi-
stationarity occurs for any set of rate constants and
depends only on the initial conditions (that is, the
total amounts). Thus, multi-stationarity can occur in
these systems independently of the specific kinetics. In
contrast, multi-stationarity in Motif (i) depends on
the rate constants and hence not all kinetics exhibit
multi-stationarity. The same appears to be the case
for Motif (g) [24,25].

The common characteristic of these motifs is that a
single enzyme is responsible for catalysing two differ-
ent substrate modifications, which at the same time

J. R. Soc. Interface (2012)

are linked (figure 4). Indeed, in Motifs (f) and (g),
the substrates are linked through S}, which is a modi-
fied as well as an unmodified substrate for the shared
enzyme E. For the Motifs (k) and (1), the link is given
by S}, which is a modified substrate and a kinase, and
the common enzymes are F' and F, respectively. In
Motif (i), the kinase F is common and the phosphatase
F provides the link (or vice versa). In contrast, in
Motif (h) an enzyme is responsible for two different
modifications, but there is no link between the two
substrates. Consequently, multi-stationarity cannot
be observed.

Multi-stationarity can arise from two opposing
dynamics acting on the same substrate (figure 4). For
example, in Motif (f), if F; is much bigger than E and
Fy < M, then there are multiple BMSSs. Thus, because
the amount of phosphatase in the first cycle is much
larger than the amount of kinase, the substrate is
pushed towards the unmodified form S, while in the
second cycle, the substrate is driven towards the fully
modified form S, (because F'y < M).

In Motif (i), provided the conditions on the para-
meters are fulfilled (figure 4), multi-stationarity
occurs if either w F>E>uF or uF<E<uF.
It implies that in one cycle the phosphatase ‘wins’,
while in the other the kinase does.

5. STABILITY ANALYSIS

BMSSs are defined as steady states for which all concen-
trations are non-negative. However, a steady state is
biologically attainable only if it is (asymptotically)
stable—that is, nearby trajectories are attracted to it.
We show here for our motifs that if ¢/(Y) <0 for

some steady-state ¢(Y) =9, then it is unstable.

5.1. The Jacobian and variable elimination

For a system of ordinary differential equations in R™, a
steady-state z is asymptotically stable if all eigenvalues
of the Jacobian evaluated at z have negative real parts
[26, theorem 1.1.1]. Because the Jacobian is a real
matrix, the complex eigenvalues come in pairs of conju-
gates and their product is a positive number. If m is odd
and all eigenvalues have negative real parts, their pro-
duct, and hence the determinant of the Jacobian,
must be negative. If mis even and zstable, then the pro-
duct of the eigenvalues must be positive. Thus, the sign
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Figure 4. Conditions for multi-stationarity are given. The shared enzyme is marked with a coloured square; the link is marked
with a coloured circle; predominant modifications are marked in bold. The symbol >> is short for ‘much larger’.

of the determinant of the Jacobian provides a necessary
condition for a steady state to be stable and a sufficient
condition for it to be unstable.

For z= (24, ..., x,), let ) = (1, ooy Zjyevny @) (
with z; removed). We make the following observation
(see the electronic supplementary material for a
proof): Let f=(fi,..., fn): 2 C R" — R" be a differen-
tiable function defined on an open set {2 and z such that
f(2) = 0. Assume that z; can be eliminated from the
equation f;=0 in a neighbourhood around z; that is,
there exists a differentiable function ¢: Q) C R™ 1
—R, 29 in 0= {z9z€ O}, such that z;=
i[/(a:('j)) if fi(r)=0. Define f: 09 S R py
(@) = filo, ..., 20, Pl(@), 25, .. wyq) for all k4
and let J denotes the associated Jacobian. Then, the
determinant of the Jacobian of fat z satisfies

(—1)i+jg—f;(z) det(J(27)) = det(J(2)).

(5.1)

5.2. Unstable steady states

The relation between the sign of the determinant of the
Jacobian and stability, together with equation (5.1),
leads to a criterion to detect unstable steady states.
For each motif, let = (zy,..., z,) be the species con-
centrations, ; = h;(z) the differential equations and
Ay =g (x),...,A. = g.(x) the equations for the total
amounts. We choose the order of the species such that
%, i=1,..., ¢, can be isolated from A; = ¢;(z) and the
steady-state equation #; =0 becomes redundant. For
fixed total amounts, Ai,...,A,, the steady states are
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0 of n equations in
for i=1,...,c and

the solutions to the system f(z)
n variables with fi(z) = ¢g;(z) —
fi(x) = hy(z) for i=c+1,...,n.

Let J(2) denote the Jacobian of f at z In the elec-
tronic supplementary material we prove: if z is a
steady state, that is, f(2) =0, and either (i) n— ¢ is
even and det(J(z)) <0 or (ii) n—c is odd and
det(J(z)) > 0, then z is unstable. The proof relies on
the observation made about the eigenvalues and
equation (5.1).

The function ¢ of our motifs is derived through
successive elimination of variables precisely from the
system of equations f(z) = 0. Using equation (5.1), the
sign of det(J(z)) at a steady-state z can be traced
back from the sign of the derivative of ¢ (the Jacobian
of a system with one equation) by considering the
equation number (i), the equation variable (j) and
the sign of 0f; /Ox; after each elimination.

To exemplify the procedure, consider Motif (f),
where n =10 and ¢=4. The system is (see the elec-
tronic supplementary material for details):

i

file)=E+ X1+ X, —E fo(x) = Xo — ko g ES
hlx)=F+Y 1 —-F filz) =X —m Y
f(z) =F+ Yy —Fy R(z) =X — uy Vs
filx) =S+ S+ S +X1 fo(z) = Yo — ko pF25,

+ XN+ +Yo =S

fi(z) = X1 — ki,gES) fio(z) = Y1 — ki pFiS)

with species Tr= (EW,FE7 FQ, S(), Xl; XQ, Sly Sz, YQ, Yl)
The function ¢ is f; in terms of Y, after successive
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Table 2. Elimination of variables for Motif (f). After each elimination the system f is rewritten to correctly determine the sign

of Of ; /0z; before the next elimination.

k elimination behaviour® € k elimination behaviour €x
1 (flv E) (17 17 +) + 6 (f57 SO ) (27 1, 7) +
2 (f27 Fl) (17 1> +) + 7 (f()7 Sl ) (27 17 7) +
3 (f37 F2 ) (17 17 +) + 8 (fga SQ ) (27 17 7) +
4 (f?a Xl ) (47 27 +) + 9 (f107 Yl) (27 1, 7) +
5 (va XZ ) (47 27 +) +

*(4, j, 0) indicates that 4, j are the indices of the equation and the variable iteratively being eliminated and o shows whether
fi (fi after substitution of the previous eliminations) is increasing (o= +) or decreasing (o= —) as a function of z;.

Pobtained as o(—1)"".

eliminations. Let €,= +1 depending on whether the
sign of the determinant of the Jacobian changes (—)
or not (+) after the Fkth elimination. Then,
sign(¢'(Y2)) = ([ [r.€x)sign(det(J(2))), where z is the
steady state with zg = Y.

The order and sign of the eliminations are shown in
table 2. We find that []e,= 1, implying that the
sign of ¢/(Ys5) agrees with the sign of the determinant
of the Jacobian of f evaluated at the corresponding
steady state. Because n— c=06 is even, we conclude
that the values of Y, for which ¢ is decreasing, that
is, ¢'(Y,) <0, correspond to unstable steady states.
Further, it follows that unstable points come between
other steady states that presumably are stable.

5.3. Stability in monostationarity motifs

The Routh—Hurwitz criterion [27] gives sufficient and
necessary conditions for the Jacobian to have all eigen-
values with negative real parts. Thus, the (asymptotic)
stability of a steady state can be determined by this
criterion. For the Motifs (a)—(e) and (h), the criterion
is fulfilled and the unique BMSS is asymptotically
stable. We have not been able to determine whether
the criterion is fulfilled for Motif (j).

6. DISCUSSION

We have investigated small motifs without feedback
that account for cross-talk, enzyme competition, shar-
ing and specificity in post-translational modification
systems and determined some features that lead to
multi-stationarity in signalling pathways.

Bistability, and generally multi-stability, in biologi-
cal systems is seen as a mechanism of cellular
decision-making. Compared with systems with a single
steady state, the presence of multiple stable steady
states provides a possible switch between different
responses and increased robustness with respect to
environmental noise. Our study has been driven by
the observation that biological systems deviate from a
one-to-one correspondence between enzymes and
the modifications they catalyse. This phenomenon,
known as cross-talk and enzyme-sharing, can cause
multi-stationarity and hence be essential for regulating
signalling systems.

Our work extends the view of multi-stationarity as
arising from multi-site phosphorylation [7] to the view
that multi-stationarity is driven by a single enzyme

J. R. Soc. Interface (2012)

that catalyses linked substrates. Two opposing
dynamics acting on the same substrate is a recurrent
characteristic of multi-stationarity. These observations
await a precise mathematical formulation and an inves-
tigation of its generality.

Our approach is conceptually simple and reduces to
the study of analytical properties of a function ¢ that
relates a conserved total amount and the concentration
of a species at steady state. The graph (¢(Y),Y) can be
seen as a bifurcation diagram with one parameter, S.
When mono-stationarity occurs, analysis of ¢ is quite
straightforward, while a more in-depth analysis is
required when multi-stationarity occurs. An advantage
of this approach is that unstable steady states are
readily detected from the form of ¢.

The existence of ¢ is not guaranteed in general. For
instance, the function ¢ does not seem to exist for a
three site modification cycle, that is, a motif resembling
Motif (f) and Motif (g), but with an extra cycle allow-
ing substrate S, to be modified to a substrate S3. The
existence of ¢ appears to be related to the number of
reactions among the species rather than the number
of species of the system. For instance, we have shown
that for cascades of arbitrary length (extentions of
Motif (j)) [23], as well as for arbitrary phosphorelays
(not closely related to any of the motifs here) [28], the
function ¢ exists.

In this work, the existence and computation of ¢,
and the determination of its domain, are obtained by
direct manual inspection of each motif. Because each
motif has its own particularities, it is unclear to us
whether there is an automated procedure to determine
the existence of ¢ and subsequently to compute it.
For some of the motifs, ¢ could be chosen to relate
another total amount or depend on another variable,
while for other motifs only one variable seems to do
the trick. For some motifs the function ¢ is rational
and an explicit analytical description is available,
while for other motifs it is not rational and its existence
is derived from the Implicit Function Theorem. For
some of the motifs, and after appropriately selecting
the variable of ¢, the command Solve in Mathematica
provides rational functions expressing all other vari-
ables in terms of the selected one. In this case,
however, it is still required to determine the domain of
¢ that ensures non-negativity of all concentrations at
steady state by other means. We are currently investi-
gating conditions that guarantee the existence of ¢
and algorithmic procedures to compute it.
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Different mathematical procedures exist to rule out the
existence of more than one BMSS. Two examples are
found within the scope of chemical reaction network
theory (CRNT) [29-31], which aims to understand dyna-
mical properties of a system that depend on the network
structure alone, and not on the specific reaction rates or
total amounts. The first of them concerns the deficiency
zero and one theorems [32,33] that provide conditions
for the existence of a unique positive equilibrium and
how it is approached for any set of total amounts. Motif
(b) fulfils the assumptions of the deficiency zero theorem
and we conclude that there exists a unique asymptotically
stable positive steady state for any set of positive total
amounts and fixed rate constants, and further that
there is no non-trivial periodic orbit in the positive
orthant. The other motifs do not satisfy the assumptions
of the deficiency zero and one theorems.

The second approach concerns the so-called injective
chemical networks taken with mass-action kinetics
[34,35]. These were introduced by Craciun & Feinberg
[34] for networks modelled in the context of a continuous
flow stirred tank reactor (CFSTR) but the techniques
apply more generally to networks that are not subject
to conservation laws. In the study of Feliu & Wiuf [35],
we extend the results to chemical reaction networks
modelled with mass-action kinetics with conservation
laws. An easy algorithmic criterion based on the Jaco-
bian of the system of ODEs, similar to that in the
study of Craciun & Feinberg [34], is provided. The
motifs that do not allow multiple steady states are in
fact injective in the sense of Feliu & Wiuf [35]. This
implies that multi-stationarity cannot occur and that
all steady states are non-degenerate. Using this
approach, however, the existence of exactly one BMSS
is not guaranteed, nor is the stability of the steady
state. Further, if a network is not injective, then the exist-
ence of reaction rates and total amounts for which the
system exhibits multi-stationarity cannot be concluded.
Explicit values for which multi-stationarity occurs need
to be found. The route taken in the present work provides
a rationale to determine regions of multi-stationarity
that is not based on random generation of parameter
values. Additionally, information about the stability of
the steady states is obtained as well. A remarkable differ-
ence between the present work and CRNT is the explicit
use of the equations for the conservation laws and the
specific values for the total amounts.

The results on injective networks have been extended
to arbitrary kinetics fulfilling some mild properties
[36,37] and dynamical systems modelling interacting
species in general [38]. It turns out that our monostatio-
narity motifs except Motif (b) fulfil the conditions for
injectivity with arbitrary kinetics when considered as
CFSTRs; that is, the stoichiometric matrix is strongly
sign-determined [36]. In combination with the study
of Craciun & Feinberg [39], we conclude that the
motifs admit at most one (non-degenerate) positive
steady state for any set of fixed total amounts. Some
general considerations are provided about systems
with feedback in Radde et al. [40].

Finally, within the theory of monotone dynamical
systems [41], conditions can be given for a network to
admit one globally asymptotic positive steady state
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for a given set of total amounts [42]. One of the assump-
tions is that no species take part in more than two
reactions, which is only fulfilled by Motif (a).

The mathematical approach we have taken to analyse
the motifs requires manual intervention. When this route
can be pursued, the BMSSs are the solutions to a single
equation S = @(Y). Analysis of ¢ enables multi-statio-
narity to be determined even in situations where the
number of parameters is large. Further, the steady-
state concentrations of all species are given in terms of
the steady state of the selected species (Y); in many
cases, this relationship can be stated as a rational func-
tion. Further, the approach enables comprehensive
studies of qualitative features of the system, such as the
system’s response to variations in total amounts or sensi-
tivity in stimulus-response curves, independently of rate
constants [23,28,43].
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thanked for commenting on the manuscript.

REFERENCES

1 Cohen, P. 1989 The structure and regulation of protein
phosphatases. Annu. Rev. Biochem. 58, 453—508.
(doi:10.1146 /annurev.bi.58.070189.002321)

2 Manning, G., Whyte, D. B., Martinez, R., Hunter, T. &
Sudarsanam, S. 2002 The protein kinase complement of
the human genome. Science 298, 1912-1934. (doi:10.
1126/science.1075762)

3 Xiao, L. et al. 2010 Protein phosphatase-1 regulates Akt1
signal transduction pathway to control gene expression,
cell survival and differentiation. Cell Death Differ. 17,
1448-1462. (doi:10.1038/c¢dd.2010.16)

4 Cohen, P. T. 2002 Protein phosphatase 1-targeted in many
directions. J. Cell Sci. 115, 241-56.

5 Kapuy, O., Barik, D., Domingo Sananes, M. R., Tyson,
J. J. & Novak, B. 2009 Bistability by multiple phosphoryl-
ation of regulatory proteins. Prog. Biophys. Mol. Biol.
100, 47-56. (doi:10.1016/j.pbiomolbio.2009.06.004)

6 Markevich, N. L., Hoek, J. B. & Kholodenko, B. N. 2004
Signaling switches and bistability arising from multisite
phosphorylation in protein kinase cascades. J. Cell Biol.
164, 353—-359. (doi:10.1083/jcb.200308060)

7 Thomson, M. & Gunawardena, J. 2009 Unlimited multi-
stability in multisite phosphorylation systems. Nature
460, 274-277. (doi:10.1038 /nature08102)

8 Chaptal, V., Vincent, F., Gueguen-Chaignon, V., Monedero,
V., Poncet, S., Deutscher, J., Nessler, S. & Morera, S. 2007
Structural analysis of the bacterial HPr kinase/phosphoryl-
ase V267F mutant gives insights into the allosteric
regulation mechanism of this bifunctional enzyme. J. Biol.
Chem. 282, 34 952—-34 957. (doi:10.1074/jbc.M705979200)

9 de Haro, C., Mendez, R. & Santoyo, J. 1996 The elF-2a
kinases and the control of protein synthesis. FASEB J.
10, 1378-1387.

10 Shaul, Y. D. & Seger, R. 2007 The mek/erk cascade: from
signaling specificity to diverse functions. Biochim. Bio-
phys. Acta 1773, 1213-26. (doi:10.1016/j.bbamecr.2006.
10.005)


http://dx.doi.org/10.1146/annurev.bi.58.070189.002321
http://dx.doi.org/10.1126/science.1075762
http://dx.doi.org/10.1126/science.1075762
http://dx.doi.org/10.1038/cdd.2010.16
http://dx.doi.org/10.1016/j.pbiomolbio.2009.06.004
http://dx.doi.org/10.1083/jcb.200308060
http://dx.doi.org/10.1038/nature08102
http://dx.doi.org/10.1074/jbc.M705979200
http://dx.doi.org/10.1016/j.bbamcr.2006.10.005
http://dx.doi.org/10.1016/j.bbamcr.2006.10.005
http://rsif.royalsocietypublishing.org/

1232

Downloaded from rsif.royalsocietypublishing.org on April 30, 2012

Enzyme sharing and multi-stationarity E. Feliu and C. Wiuf

11

12

13

14

15

16

17

18

19

20

21

22

23

24

26

27

Cohen, P. 2000 The regulation of protein function by
multisite phosphorylation—a 25 year update. Trends Bio-
chem. Sci. 25, 596—601. (doi:10.1016/S0968-0004(00)
01712-6)

Ferrell, J. E. & Bhatt, R. R. 1997 Mechanistic studies of
the dual phosphorylation of mitogen-activated protein
kinase. J. Biol. Chem. 272, 19008-16. (doi:10.1074/jbc.
272.30.19008)

Keshet, Y. & Seger, R. 2010 The map kinase signaling
cascades: a system of hundreds of components regulates
a diverse array of physiological functions. Methods Mol.
Biol. 661, 3—38. (doi:10.1007/978-1-60761-795-2_1)

Fell, D. 1997 Understanding the control of metabolism.
London, UK: Portland Press.

Cohen, P. 1992 Signal integration at the level of protein
kinases, protein phosphatases and their substrates.
Trends Biochem. Sci. 17, 408-413. (doi:10.1016/0968-
0004(92)90010-7)

Goldbeter, A. & Koshland, D. E. 1981 An amplified sensi-
tivity arising from covalent modification in biological
systems. Proc. Natl Acad. Sci. USA 78, 6840—6844.
(doi:10.1073 /pnas.78.11.6840)

Goldbeter, A. & Koshland, D. E. 1984 Ultrasensitivity in
biochemical systems controlled by covalent modification.
Interplay between zero-order and multistep effects.
J. Biol. Chem. 259, 14 441-14 447.

Bluthgen, N., Bruggeman, F. J., Legewie, S., Herzel, H.,
Westerhoff, H. V. & Kholodenko, B. N. 2006 Effects of
sequestration on signal transduction cascades. FEBS J.
273, 895-906. (doi:10.1111/j.1742-4658.2006.05105.x)
Salazar, C. & Hofer, T. 2006 Kinetic models of phos-
phorylation cycles: a systematic approach using the rapid-
equilibrium approximation for protein—protein interactions.
Biosystems 83, 195-206.  (doi:10.1016/j.biosystems.
2005.05.015)

Olsen, J. V., Blagoev, B., Gnad, F., Macek, B., Kumar, C.,
Mortensen, P. & Mann, M. 2006 Global, in vivo, and site-
specific phosphorylation dynamics in signaling networks.
Cell 127, 635—648. (d0i:10.1016/j.cell.2006.09.026)

Wu, R. C., Qin, J., Yi, P.,, Wong, J., Tsai, S. Y., Tsai,
M. J. & O’Malley, B. W. 2004 Selective phosphorylations
of the SRC-3/AIB1 coactivator integrate genomic
reponses to multiple cellular signaling pathways. Mol.
Cell 15, 937-949. (doi:10.1016/j.molcel.2004.08.019)
Salazar, C. & Hofer, T. 2009 Multisite protein phosphoryl-
ation—from molecular mechanisms to kinetic models.
FEBS J. 276, 3177-3198. (doi:10.1111/j.1742-4658.2009.
07027 x)

Feliu, E., Knudsen, M., Andersen, L. N. & Wiuf, C. 2011
An algebraic approach to signaling cascades with n layers.
Bull. Math. Biol. (doi:10.1007/s11538-011-9658-0).
Conradi, C., Flockerzi, D. & Raisch, J. 2008 Multistatio-
narity in the activation of a MAPK: parametrizing the
relevant region in parameter space. Math. Biosci. 211,
105-131. (doi:10.1016/j.mbs.2007.10.004)

Wang, L. & Sontag, E. D. 2008 On the number of steady
states in a multiple futile cycle. J. Math. Biol. 57, 29-52.
(doi:10.1007/s00285-007-0145-z)

Wiggins, S. 2003 Introduction to applied nonlinear dynami-
cal systems and chaos, 2nd edn. New York, NY: Springer.
Hurwitz, A. 1996 Uber die Bedingungen, unter welchen
eine Gleichung nur Wurzeln mit negativen reellen Theilen
besitzt. In Stability theory (Ascona, 1995). International

J. R. Soc. Interface (2012)

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

Series of Numerical Mathematics, vol. 121, pp. 239—-249.
Basel: nBirkhéuser. (Reprinted by Math. Ann. (1895),
273-284 [JFM 26.0119.03]).

Knudsen, M., Feliu, E. & Wiuf, C. 2011 Exact analysis of
intrinsic qualitative features of phosphorelays using math-
ematical models. (http://arxiv.org/abs/1109.5159)

Horn, F. & Jackson, R. 1972 General mass action kinetics.
Arch. Rational Mech. Anal. 47, 81-116. (doi:10.1007/
BF00251225)

Feinberg, M. 1980 Lectures on chemical reaction net-
works. See http://www.che.eng.ohio-state.edu/
~Feinberg/LecturesOnReactionNetworks.

Feinberg, M. & Horn, F. J. M. 1977 Chemical mechanism
structure and the coincidence of the stoichiometric and
kinetic subspaces. Arch. Rational. Mech. Anal. 66,
83-97. (doi:10.1007/BF00250853)

Feinberg, M. 1987 Chemical reaction network struc-
ture and the stability of complex isothermal reactors.
I. The deciency zero and deciency one theorems. Chem.
Eng. Sci. 42, 2229-2268. (doi:10.1016/0009-2509(87)
80099-4)

Feinberg, M. 1995 The existence and uniqueness of steady
states for a class of chemical reaction networks. Arch.
Rational Mech. Anal. 132, 311-370. (doi:10.1007/
BF00375614)

Craciun, G. & Feinberg, M. 2005 Multiple equilibria in
complex chemical reaction networks. I. The injectivity
property. SIAM J. Appl. Math. 65, 1526—1546. (doi:10.
1137/50036139904440278)

Feliu, E. & Wiuf, C. 2011 Injectivity of chemical reaction
networks with mass action kinetics revisited. (http://
arxiv.org/abs/1109.5149)

Banaji, M., Donnell, P. & Baigent, S. 2007 P matrix prop-
erties, injectivity, and stability in chemical reaction
systems. SIAM J. Appl. Math. 67, 1523—-1547. (doi:10.
1137,/060673412)

Banaji, M. & Craciun, G. 2010 Graph-theoretic criteria for
injectivity and unique equilibria in general chemical reac-
tion systems. Adv. Appl. Math. 44, 168—184. (doi:10.
1016/j.aam.2009.07.003)

Banaji, M. & Craciun, G. 2009 Graph-theoretic
approaches to injectivity and multiple equilibria in
systems of interacting elements. Commun. Math. Sci. 7,
867-900.

Craciun, G. & Feinberg, M. 2006 Multiple equilibria in
complex chemical reaction networks: extensions to
entrapped species models. Syst. Biol. (Stevenage) 153,
179-186. (doi:10.1049/ip-syb:20050093)

Radde, N., Bar, N. S. & Banaji, M. 2009 Graphical
methods for analysing feedback in biological networks: a

survey. Int. J. Syst. Sci. 41, 35. (doi:10.1080/
00207720903151326)
Smith, H. L. 1995 Monotone dynamical systems. Math-

ematical surveys and monographs, vol. 41. Providence,
RI: American Mathematical Society.

Angeli, D., De Leenheer, P. & Sontag, E. 2010 Graph-
theoretic characterizations of monotonicity of chemical
networks in reaction coordinates. J. Math. Biol. 61,
581-616. (doi:10.1007/s00285-009-0309-0)

Feliu, E., Knudsen, M. & Wiuf, C. In press. Signaling cas-
cades: consequences of varying substrate and phosphatase
levels. In Advances in systems biology, vol. 736 (eds I. 1.
Goryanin & A. B. Goryachev). Berlin, Germany: Springer.


http://dx.doi.org/10.1016/S0968-0004(00)01712-6
http://dx.doi.org/10.1016/S0968-0004(00)01712-6
http://dx.doi.org/10.1074/jbc.272.30.19008
http://dx.doi.org/10.1074/jbc.272.30.19008
http://dx.doi.org/10.1007/978-1-60761-795-2_1
http://dx.doi.org/10.1016/0968-0004(92)90010-7
http://dx.doi.org/10.1016/0968-0004(92)90010-7
http://dx.doi.org/10.1073/pnas.78.11.6840
http://dx.doi.org/10.1111/j.1742-4658.2006.05105.x
http://dx.doi.org/10.1016/j.biosystems.2005.05.015
http://dx.doi.org/10.1016/j.biosystems.2005.05.015
http://dx.doi.org/10.1016/j.cell.2006.09.026
http://dx.doi.org/10.1016/j.molcel.2004.08.019
http://dx.doi.org/10.1111/j.1742-4658.2009.07027.x
http://dx.doi.org/10.1111/j.1742-4658.2009.07027.x
http://dx.doi.org/10.1007/s11538-011-9658-0
http://dx.doi.org/10.1016/j.mbs.2007.10.004
http://dx.doi.org/10.1007/s00285-007-0145-z
http://arxiv.org/abs/1109.5159
http://arxiv.org/abs/1109.5159
http://dx.doi.org/10.1007/BF00251225
http://dx.doi.org/10.1007/BF00251225
http://www.che.eng.ohio-state.edu/~Feinberg/LecturesOnReactionNetworks
http://www.che.eng.ohio-state.edu/~Feinberg/LecturesOnReactionNetworks
http://dx.doi.org/10.1007/BF00250853
http://dx.doi.org/10.1016/0009-2509(87)80099-4
http://dx.doi.org/10.1016/0009-2509(87)80099-4
http://dx.doi.org/10.1007/BF00375614
http://dx.doi.org/10.1007/BF00375614
http://dx.doi.org/10.1137/S0036139904440278
http://dx.doi.org/10.1137/S0036139904440278
http://arxiv.org/abs/1109.5149
http://arxiv.org/abs/1109.5149
http://arxiv.org/abs/1109.5149
http://dx.doi.org/10.1137/060673412
http://dx.doi.org/10.1137/060673412
http://dx.doi.org/10.1016/j.aam.2009.07.003
http://dx.doi.org/10.1016/j.aam.2009.07.003
http://dx.doi.org/10.1049/ip-syb:20050093
http://dx.doi.org/10.1080/00207720903151326
http://dx.doi.org/10.1080/00207720903151326
http://dx.doi.org/10.1007/s00285-009-0309-0
http://rsif.royalsocietypublishing.org/

	Enzyme-sharing as a cause of multi-stationarity in signalling systems
	Introduction
	Motifs
	Description
	Mathematical modelling

	The steady-state function [phiv]
	Mono versus multi-stationarity
	Monostationarity
	Multi-stationarity
	Understanding multi-stationarity

	Stability analysis
	The Jacobian and variable elimination
	Unstable steady states
	Stability in monostationarity motifs

	Discussion
	E.F. is supported by a post-doctoral grant from the ‘Ministerio de Educación’ of Spain and the project MTM2009-14163-C02-01 from the ‘Ministerio de Ciencia e Innovación’. C.W. is supported by the Lundbeck Foundation (Denmark), the Carlsberg Foundation (Denmark), the Leverhulme Trust (UK) and the Danish Research Councils. Neil Bristow, Freddy Bugge Christiansen and Michael Knudsen are thanked for commenting on the manuscript.
	References


