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Incomplete and noisy network data
as a percolation process
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We discuss the ramifications of noisy and incomplete observations of network data on the
existence of a giant connected component (GCC). The existence of a GCC in a random
graph can be described in terms of a percolation process, and building on general results
for classes of random graphs with specified degree distributions we derive percolation
thresholds above which GCCs exist. We show that sampling and noise can have a profound
effect on the perceived existence of a GCC and find that both processes can destroy it. We
also show that the absence of a GCC puts a theoretical upper bound on the false-positive
rate and relate our percolation analysis to experimental protein–protein interaction data.

Keywords: complex networks; random graphs; protein interaction networks;
sampling problems
1. INTRODUCTION

In many areas of the physical, engineering, life- and
social sciences network data are now becoming increas-
ingly abundant. In light of empirical network data,
mathematical models of networks (Durrett 2006) and
the statistical tools for their analysis have changed
from the beginnings of random graph theory and
improved considerably over the past 10 years. However,
despite these advances, not much effort has been
devoted to detailed investigation and modelling of the
effects of erroneous network data.

While for technological networks sampling (Stumpf
et al. 2005b) and noise are of relatively minor impor-
tance, for biological and social networks the situation
is markedly different. Especially in biology, there
appears to be a genuine trade-off between data quality
and the quantity in which network data are being
generated. In particular, in the context of protein-
interaction network data, the false-positive and
-negative rates have been well documented with
reported error rates frequently exceeding 50 per cent
(von Mering et al. 2002; Bork et al. 2004; Reguly
et al. 2006). With such high error levels, it may not
be automatically expected that inferences obtained
from noisy networks are informative about the true net-
work, and incorporating a detailed analysis of the
effects of noise has now become widely accepted prac-
tice (Middendorf et al. 2004; Yook et al. 2004; deSilva
et al. 2006). Yet, wherever analyses were repeated on
artificially perturbed networks (noise was introduced
by adding false-positive interactions and deleting
reported interactions) the perturbed networks had
correspondence (m.stumpf@imperial.ac.uk, wiuf@birc.
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similar properties to the original network (Middendorf
et al. 2004; Yook et al. 2004; de Silva et al. 2006). The
observation that some networks have similar properties
when perturbed in this way may suggest that some
balance between false positives and false negatives has
already been obtained.

Of the reported genome-wide protein interaction
surveys that have been published to date, only a small
number (Ito et al. 2001; Gavin et al. 2002) do not
show evidence for the existence of a giant connected
component (GCC). This puzzling observation—a
priori we would assume that the molecular machinery
underlying living systems is highly interconnected and
tightly linked—suggests that noise can induce a perco-
lation transition (Stauffer & Aharony 1992) on real
networks. Here we describe percolation transitions on
general random networks due to network sampling
(Han et al. 2005; Stumpf & Wiuf 2005; Stumpf et al.
2005b; de Silva et al. 2006) and noise in the network
observation. This will serve to highlight some differ-
ences in the way noise and incompleteness of networks
will affect our observations. We will also show that
the very existence of a GCC sets an upper limit on
the false-positive rate in interaction data.
2. NOISY AND INCOMPLETE NETWORKS
AND PERCOLATION

Here we introduce the notion of noisy and incomplete
network ensembles (NINEs), which extend the stan-
dard notion of network ensembles (Burda et al. 2001)
in order to account for the differences between true net-
works, and the noisy and incomplete representations
thereoff that we can observe.
This journal is q 2010 The Royal Society
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2.1. Notation

In order to define NINEs, we first assume that we have a
true and complete network described by a graph,

G ¼ ðV; EÞ; ð2:1Þ

which consists of a set of nodes or vertices, V, and a set
of edges among the nodes, E. The order and size of the
network are defined as the number of nodes, N (or the
size of V), and edges, M (or the size of E), respectively,

N ¼ jVj and M ¼ jEj:

Now let VS and ES denote subsets of V and E, respect-
ively, with the property

i [ VS with probability p if i [ V ð2:2Þ

and that e(i,j) [ ES iff i,j [ VS and e(i,j) [ E. Thus,
the graph

GS ¼ ðVS; ESÞ ð2:3Þ

is the subgraph of G that is induced by VS # V.
Trivially, we have ES # E for noiseless data.

Equally, we define noisy networks via

GD ¼ ðVD; EDÞ; ð2:4Þ

where VD ¼ V and the set of edges ED is defined by

eði; jÞ [ ED with probability
r if eði; jÞ [ E;
j if eði; jÞ � E:

(
ð2:5Þ

Thus r and j are the true-positive and false-
positive rates, respectively. Trivially, E[MD] ¼ rM þ

j
N
2

� �
�M

� �
.

We can also consider the case of a noisy–incomplete
network by simply replacing V and E by VS and ES

in equations (2.4) and (2.5). We will later introduce
different schemes for specifying p, r and j, and study
their interplay in shaping observed network data.
2.2. Percolation on networks

Below we consider general networks and seek to derive
conditions for the GCC to emerge in the context of
noise and incompleteness. The relative size of a com-
ponent is defined as the number of nodes in the
component divided by the number of non-zero degree
nodes. The GCC has non-zero relative size as the size
of the network becomes large.

In the theoretical section we assume that the net-
work is uncorrelated and large and hence it is
sufficient to know the degree sequence or the prob-
ability distribution generating the degree sequence.
Networks given by their degree sequence were first
studied by Hakimi (1962), and later in more detail by
Bender & Canfield (1978) and Molloy & Reed (1995,
1998). The latter also studied percolation processes,
i.e. in the context of random graphs the emergence
of the GCC (Bollobás & Riordan 2006). We shall,
however, refer to these graphs as Bender–Canfield
(BC) random graphs. This has since been studied
repeatedly in relationship to real networks (Callaway
J. R. Soc. Interface (2010)
et al. 2000; Newman et al. 2001). The recent mono-
graphs by Durrett (2006) and Chung & Lu (2006)
provide excellent surveys of this area from (predomi-
nantly) probabilistic and combinatorial perspectives,
respectively.

The central result of Molloy & Reed (1995), fre-
quently referred to as the Molloy–Reed (MR)
criterion is given as follows.

Theorem 1. A Graph G ¼ (V,E) has a GCC with high
probability as N!1 iff

z2 . z1; ð2:6Þ

where z1 and z2 refer to the average numbers of nearest
and next-nearest neighbours, respectively.

The proof of this statement can be found in Molloy &
Reed (1995). Different perspectives are also offered by
Durrett (2006). Here, we are content with analysing
the behaviour of the GCC using equation (2.6) in the
context of noisy and incomplete networks. In particular
we are interested in uncorrelated large BC networks,
where we need only to consider the degree distribution,
Pr(k) (rather than the actual sequence of integers).
Below, we denote the first and second moments of the
degree distribution by kkl and kk2l, respectively.
2.3. Calculating z1 and z2

Calculation of z1 and z2 is straightforward for the cases
we consider and well covered in the literature, e.g.
Dorogovtsev & Mendes (2003) or Burda & Krzywicki
(2004); here it is only briefly repeated for the sake of
completeness. The number of nearest neighbours, z1,
is given by the average degree,

z1 ¼ kkl ¼
X1
k0¼0

k0Prðk0Þ: ð2:7Þ

In uncorrelated graphs, the probability of a random
edge ending in a node of degree l is

lPrðlÞ
kkl

: ð2:8Þ

We can obtain z2 by summing over the probabilities
of a node having degree k0 multiplied by the average
degrees of the k neighbours, i.e.

z2 ¼
X
k0

k0Prðk0Þ
X

l

l
ðl þ 1ÞPrðl þ 1Þ

kkl

¼
X
k0

k0Prðk0Þ kk
2l� kkl

kkl
¼ kk2l� kkl: ð2:9Þ

For classical or Erdös–Rényi (Erdös & Rényi 1959,
1960) random graphs, which are characterized by an
approximately Poisson degree distribution, the MR
criterion yields the well-known result that the GCC
appears as l . 1, where l is the average degree in the
network.

Equations (2.7) and (2.9) together with equation
(2.6) allow us to study the percolation behaviour of
uncorrelated BC graphs by simply determining the

http://rsif.royalsocietypublishing.org/
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functional form for the degree distribution in the incom-
plete, GS, and noisy, GD, network ensembles. Below, we
will study the percolation transitions in incomplete and
noisy BC networks, and we will briefly comment on the
validity of these results for real correlated networks
(Berg & Lässig 2002).
3. PERCOLATION PROCESSES DUE TO
INCOMPLETE AND UNRELIABLE
NETWORK DATA

Noise and incompleteness are known to affect present
network data sets; in particular, most biological net-
work data sets are subject to considerable uncertainty
(Han et al. 2005; de Silva et al. 2006). For incomplete
network data, several studies have recently made
some theoretical progress (Stumpf & Wiuf 2005;
Stumpf et al. 2005b; Lee et al. 2006; Wiuf & Stumpf
2006), while investigations of the effects of noise have
thus far been confined to semi-rigorous assessments of
experimental data sets, in particular regarding protein
interaction data (von Mering et al. 2002; Hart et al.
2006).
3.1. Percolation due to network sampling

Let p be the probability of sampling a node to be
included in the set of subnet vertices VS. We can
either specify p [ (0,1) or set p to the fraction of
sampled nodes p ¼ NS/N. The degree distribution in
the subnet PrS(k) is then given by (Stumpf & Wiuf
2005; Lee et al. 2006),

PrSðkÞ ¼
X
l�k

l
k

� �
pkð1� pÞl�kPrðlÞ: ð3:1Þ

Thus, the degree distributions in the true network
and random subnets are generally of a different func-
tional form.

The number of nearest and next-nearest neighours in
the subnet, z1

S and z2
S, respectively, are straightforward

to calculate and we can find the condition for which
the MR criterion, equation (2.6), is fulfilled. We
obtain for the number of nearest neighbours in the
subnet,

zS
1 ¼ pz1 ð3:2Þ

and the next nearest neighbours,

zS
2 ¼ kk2lS � kklS ¼ p2kk2l� p2kkl ¼ p2z2: ð3:3Þ

Taken together with the MR criterion we can thus
derive the critical value for the sampling fraction
which indicates the appearance of the GCC,

pc ¼
kkl

kk2l� kkl
¼ z1

z2
: ð3:4Þ

From equation (3.4), it is obvious that for degree
distributions with a diverging second moment, the
GCC only disappears as pc! 0; of course, this is only
relevant in the limit, N!1.
J. R. Soc. Interface (2010)
3.2. Percolation due to noisy network data

Here we consider how observational noise affects the
GCC, i.e. if each edge is observed with (true-positive)
probability r [ [0,1], and each non-existing edge is
observed with (false-positive) probability j [ [0,1], do
we observe the GCC or not?

We start again by determining the degree distri-
bution in a network with given error rates, r and j.
Assuming that a node has degree k in G, the degree of
a node in GD is the sum of two binomial variables,
one controlling the number of false positives, the
other the number of false negatives. Hence, the node
has degree l in GD with probability,

PrDðljkÞ ¼
Xk

i¼0

k

i

� �
rið1� rÞk�i �

N � 1� k

l � i

� �

� jl�ið1� jÞN�k�1�lþi

¼ ðN � 1� kÞ!
l!ðN � 1� k � lÞ! ð1� rÞkð1� jÞN�1�k�l

jl

� 2F1 �k;�l;N � k � l;
rð1� jÞ
jð1� rÞ

� �
;

ð3:5Þ

where 2F1 (a, b, c, x) is the hypergeometric function
(Gradshteyn et al. 1994; Arfken & Weber 2005). We
note that l . k may occur as the sum of the numbers of
observed true positive and false positive edges may be
larger than the number of true edges. For the degree
distribution of the noisy network, GD, we thus have

PrDðlÞ ¼
XN�l

k¼0

ðN � 1� kÞ!
l!ðN � 1� k � lÞ! ð1� rÞkð1� jÞN�1�k�l

jl

�2F1 �k;�l;N � k � l;
rð1� jÞ
jð1� rÞ

� �
PrðkÞ:

ð3:6Þ

While this expression is clearly intractable, the two
moments kklD and kk2lD have tractable analytic
expressions in terms of kkl and kk2l. Here we find

kklD ¼ ðr� jÞkklþ ðN � 1Þj ð3:7Þ

and

kk2lD¼ðr� jÞ2kk2l�ðr�jÞ2kkl

þ2ðN �2Þjðr�jÞkklþ j2ðN �1ÞðN �2Þþ kklD:

ð3:8Þ

Next, we define d ¼ r2 j; then z1
D and z2

D are given by

zD
1 ¼ dkklþ ðN � 1Þj ð3:9Þ

and

zD
2 ¼ d2kk2l� d2kklþ 2ðN � 2Þjdkkl

þ j2ðN � 1ÞðN � 2Þ: ð3:10Þ

Note, that many real networks show average degrees
that are not comparable to the entire network size N.
It suggests that it is reasonable to consider the situation

http://rsif.royalsocietypublishing.org/
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j � 0 with J ¼ Nj, and d � r (assuming r�j) in which
case z1

D and z2
D become

zD
1 ¼ rkklþJ ð3:11Þ

and

zD
2 ¼ r2kk2l� r2kklþ 2JrkklþJ

2
: ð3:12Þ

The parameter J is essentially the expected number
of false positives per node. Together with equation
(2.6), equations (3.11) and (3.12) allow us to determine
the critical boundary where the GCC appears. For fixed
r (or J) we can thus determine the critical value of J
(or r) where the percolation transistion occurs. In con-
trast to network sampling, we see that depending on
the parameter values the GCC might appear even if it
is absent in the true network.

One important observation is that if J � 1 then z2
D .

z1
D always, i.e. if more than one false positive is expected

per node a GCC is present. This is not surprising since
the number of false positives approximately follows a
Poisson distribution with parameterJ for large networks.
It also transpires from equations (3.11) and (3.12) that r
essentially affects the number of nearest and next-nearest
neighbours in the same way as p does under network
sampling; though in addition there is a term that also
depends on J. The quantities z1

S and z2
S might be obtained

from z1
D and z2

D by letting r ¼ p and J ¼ 0.
3.3. Percolation due to the combined effects
of noise and sampling

Combining sampling and noise is straightforward.
There is, however, a subtle—so subtle to be undetect-
able in practice in fact—dependence on the order of
sampling and noise. If we first choose the set of nodes,
VS to assay for interactions, and then observe inter-
actions subject to noise, we find

zSD
1 ¼ pdkklþ ð pN � 1Þj ð3:13Þ

and

zSD
2 ¼ p2d2kk2l� p2d2kklþ 2pðNp� 2Þjdkkl

þ ð pN � 1Þð pN � 2Þj2: ð3:14Þ

Should we, however, consider a subnet drawn from an
already global but noisy network data set then we have

zDS
1 ¼ pdkklþ pðN � 1Þj ¼ pzD

1 ð3:15Þ

and

zDS
2 ¼ p2d2kk2l� p2d2kklþ 2p2ðN � 2Þjdkkl

þ p2ðN � 1ÞðN � 2Þj2 ¼ p2zD
2

ð3:16Þ

In practice, however, the differences are so small that
the order in which noise is added to the network and
nodes are sampled from it does not matter, i.e.

zDS
1 � zSD

1 ð3:17Þ

and

zDS
2 � zSD

2 ; ð3:18Þ
J. R. Soc. Interface (2010)
which is valid for pN� 1. The percolation transition
again occurs when z1

DS ¼ z2
DS. We reiterate that the

MR criterion is derived in the limit of a large network
and we note that as N!1 or Nj! J the order in
which sampling and noise enter the problem becomes
irrelevant. But for very small networks this order may
indeed matter.
3.4. Examples—theoretical network ensembles

We illustrate the percolation transitions using classi-
cal random graphs (Bollobás 2001) and scale-free
random graphs (Barabasi & Albert 1999; Barabasi
et al. 2001).
3.4.1. Classical random graphs. Classical random
graphs are characterized by a binomial, or for suffi-
ciently large graphs, Poisson degree distribution,

PrðkÞ ¼ lk expð�lÞ
k!

: ð3:19Þ

The first and second moments are given by

kkl ¼ l and kk2l ¼ l2 þ l: ð3:20Þ

The percolation transition thus occurs at the critical
sampling fraction

pc ¼
1
l
; ð3:21Þ

and a GCC is present if p . 1/l. The noise-induced
transition occurs at the critical values fulfilling

rcl ¼ 1�Jc; ð3:22Þ

and a GCC is present if

rl . 1�J: ð3:23Þ

Note that this condition reduces to equation (3.21)
for J ¼ 0, as it should.
3.4.2. Scale-free random graphs. Scale-free random
graphs exhibit a power-law degree distribution,

PrðkÞ ¼ k�g

zg
; ð3:24Þ

where zx is Riemann’s zeta function and acts as a nor-
malizing constant. For g � 3, the second moment
diverges and therefore neither sampling nor noise will
induce a percolation transition on a scale-free
random network unless g . 3. Below we assume that
we are dealing with a finite (though potentially very
large, i.e. N . 106, scale-free random graph) with a
degree sequence generated by drawing N random num-
bers from the distribution given by equation (3.24); in
order to qualify as a proper degree distribution the
sum of the degree sequence has, of course, to be even.

The sampling transition occurs at a critical value of
the sampling fraction given by

pc ¼
zg�1

zg�2 � zg�1
: ð3:25Þ

http://rsif.royalsocietypublishing.org/
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Figure 1. Contour-plot of the fraction of nodes contained in the GCC for different fractions of true-positive and false-positive
edges in a network (area labels refer to the whole area to the right and above of the corresponding curves). Only when the fraction
of true and false positives are both very small, will the GCC disappear. On the left-hand side of the figure we show illustrative
examples of cases which correspond (loosely) to areas in the (r, J) plane indicated by the arrow-tips. Real edges are indicated in
blue, whereas false-positive edges are drawn in green.
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Likewise, the noise-induced transition occurs when

r2
c

zg�3 � zg�2

zg�1
þ ð2Jc � 1Þrc

zg�2

zg�1
þJcðJc � 1Þ ¼ 0;

ð3:26Þ

and if the left side is larger than zero for a given value of
(r,J) then a GCC appears. As stated before, this is
automatically fulfilled for J � 1. The areas where a
GCC exists are shown in figure 1 for different values
of the exponent g.

Note that for some fixed values of r and J ¼ 0 the
GCC is present, disappears for small non-zero values
of J and then reappears for larger values of J. The
explanation for this phenomomen is that the size of
the GCC is relative to the number of non-zero degree
nodes: for J ¼ 0 there are many zero degree nodes;
when J increases they become connected in many
small disconnected components and for large J, the
small components are connected to form a GCC.
4. PERCOLATION ANALYSIS FOR
FINITE SYSTEMS

Most real networks are finite in size and we would not
expect to see a sharp percolation transition (i.e. the
disappearance of a GCC) for either noise or sampling
processes on networks. In figure 2, we show the
effect of sampling on three different networks of order
J. R. Soc. Interface (2010)
N ¼ 5000; each network has 15 000 edges but was gen-
erated in a different way. From each network we
sampled, at random, a fraction p of the nodes in the net-
work and determined the components of the resulting
induced subgraph. The networks considered are an
Erdös–Rényi random graph (with l ¼ 3), a network
generated by the Barabasi–Albert (BA) construction
(Barabasi & Albert 1999) (at each timestep a new
node was added and preferentially attached to the exist-
ing graph with three edges), and a corresponding BC
random graph (i.e. we took the degree sequence of a
BA graph and generated a randomly rewired graph
with the same degree sequence).

The fraction of nodes which are contained in the
GCC is virtually identical for the BA network and its
BC counterpart. This suggests that, as far as the perco-
lation behaviour is concerned, the type of network
which is grown to order N under the BA preferential
attachment model is not different from a corresponding
BC network ensemble. That is the degree sequence
determines the percolation behaviour as suggested by
the MR criterion (Molloy & Reed 1995). For the
Erdös–Rényi random graph we observe, of course,
differences, and the transition appears to be somewhat
sharper. In fact, as predicted by equation (3.19), the
transition occurs in the vicinity of 1/l ¼ 1

3.
For noisy networks, the lack of simple analytic

expressions makes the analysis of simulations somewhat
more complicated. What we find in extensive

http://rsif.royalsocietypublishing.org/
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Figure 2. Average fraction of nodes in subnets of a network
with 5000 nodes and 15 000 edges against sampling frac-
tion/subnet size. Shown are results obtained for a scale-free
network grown under the BA preferential attachment model
(black), the corresponding BC graph (see text for details)
(grey), and an Erdös–Rényi random graph. Averages were
taken over 1000 independent simulated networks (black cir-
cles, scale-free RGG; crosses, scale-free BC; triangles, ER,
random graph).

Table 1. Details of two protein–protein interaction networks.
NGCC is the number of nodes which belong to the largest
component in the data set. We have used recent estimates
(Hart et al. 2006; Stumpf et al. 2008) of approximately 40
000 interactions among the 6000 or so protein-coding yeast
genes in order to estimate p̂ and kk̂l � 6.7; for humans, the
average degree is expected to be approximately kk̂l � 25.
Only the data sets of Ho et al. (2002) and Gavin et al. (2002)
show no evidence for a GCC.

experiment NS MS NGCC p̂

Uetz et al. (2000) 1328 1438 921 0.221
Ho et al. (2002) 871 694 95 0.145
Gavin et al. (2002) 726 367 20 0.121
Ito et al. (2002) 3245 4449 2808 0.541
Gavin et al. (2006) 1432 6532 1359 0.238
Krogan et al. (2006) 2676 7076 2527 0.446
Rual et al. (2005) 1527 2671 1286 0.069
Stelzl et al. (2005) 1665 3119 1568 0.076
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simulations studies, however, is that the GCC is
remarkably stable against noise (see figure 1). Only
when both the true-positive rate, r, and the false-
positive rate, j, are sufficiently small, will the GCC
vanish. It follows straightforwardly from equation
(2.5) that the expected number of false-positive edges
in a network—we always assume independence among
edges—is given by

Ej½M �	 ¼ j
N
2

� �
�M

� �
: ð4:1Þ

As most real networks are sparse,
N
2

� �
dominates M,

and therefore for moderate values of Ej[M*] will gener-
ally be sufficiently large to ensure that a GCC exists.
5. ERROR BOUNDS FOR BIOLOGICAL
DATA

Protein interaction network (PIN) data have been
rightly chastised for the high error rates in the exper-
imental assays. But the very fact that a GCC is
absent can be used in order to put an upper bound on
the false-positive rate, j, or, equivalently, the average
number of false-positive edges per node, J. Only two
high-throughput surveys (we considered all yeast and
human PIN data sets deposited in the IntAct database,
Kerrien et al. 2007) show no evidence for a GCC; some
of the basic properties of these networks are summar-
ized in table 1. Using the expressions for z1

DS and z2
DS,

equations (3.15) and (3.16), respectively, we obtain an
inequality for the existence of a GCC which depends
on J, r and p.
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For real networks, however, we do not know the
moments of the degree distribution, kkl and kk2l. For
yeast, a range of studies has estimated the size of the
true PIN and with the estimated number of edges, M̂ ,
we may in turn estimate kk̂l ¼ M̂/N, which still leaves
us with kk2l unknown. If we further set p̂ ¼ NS/N we
can write as:

p̂ rkk̂lþJ
� �

� p̂2 r2kk2l�r2kk̂lþ2Jrkk̂lþJ
2

� �
� 0

ð5:1Þ

to identify the region for which a GCC should exist
according to the MR criterion.

These regions are shown in figure 3 for the only two
published data sets that do not exhibit a GCC (accord-
ing to the usual definitions). Depending on the second
moment of the degree distribution, kk2l, the absence
of a GCC indicates fairly low true- and false-positive
rates. From the results in figure 4, we conclude that
for those PIN data sets for which we do not observe a
GCC, the fraction of false positive edges must be
below 50 per cent, a number that has sometimes been
suggested (von Mering et al. 2002; Bader et al. 2004).
6. CONCLUSIONS

Networks offer a convenient and powerful framework
for the analysis of structured and complex processes
and data. But network data, especially in biology, are
also subject to considerable uncertainty and highly
incomplete. Here we have studied the effects of
incompleteness and noise on the existence of a GCC
in theoretical network ensembles and experimental
network data. We have introduced the notion of
NINEs as a suitable conceptual framework to deal
with observational vagaries of experimental network
data sets. For uncorrelated networks we have derived
the criteria which determine the existence of a GCC
(with high probability). We have furthermore per-
formed some simulations for finite-size network
ensembles which show that the theoretical results
describe the average behaviour of realistic networks.
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Figure 3. Representations of eight networks in the IntAct database. The two early data sets generated by mass spectrometry (Ho
et al. 2002; Gavin et al. 2002) do not show evidence for a GCC, as may well be expected given that they focus on protein
complexes. The details of the data sets are provided in table 1.
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We have seen that the GCC’s persistence under
sampling but especially under the effects of noise
depends strongly on the second moment of the degree
distribution (by virtue of the MR criterion). If networks
J. R. Soc. Interface (2010)
are scale-free with exponent g � 3, then the divergence
of kk2l means that a GCC will persist for all levels of
noise. For real data sets that are finite—and almost
certainly not scale-free in the classical sense (Przulj
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Figure 4. The coloured regions indicate combinations in (kk2l,
r, J)-space for which we will observe a GCC. (a) The corre-
sponds to the case of p̂ in Ito et al. (2001), (b) to the case of
p̂ in Gavin et al. (2002). Perhaps somewhat unexpectedly we
also observe a pronounced effect of p̂ ( j � 14.5% in (a)
and � 12.1% in (b)) on the boundary of the parameter space
allowing for a GCC with high probability.
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et al. 2004; Stumpf et al. 2005a; Tanaka et al. 2005;
Khanin & Wit 2006)—we can, however, use the emer-
gence of a GCC as (weakly) indicative of the relative
effects of false-positive to true-positive error rates.

We have illustrated this in the context of published
high-throughput protein interaction data in yeast and
humans. Only two data sets fail to exhibit a GCC.
The data of Gavin et al. (2002) and Ho et al. (2002)
focused on interaction in protein complexes and there-
fore we would not necessarily expect a GCC to be
visible in the data. Previous analyses of error rates in
protein interaction data have sometimes focused on
overlap between different sets of data (von Mering
et al. 2002; Hart et al. 2006), which we expect to
J. R. Soc. Interface (2010)
systematically overestimate error rates in such data.
However, we are aware that our analysis relies on
errors being distributed evenly in the network. This
assumption is naturally debatable and further theoreti-
cal developments might be called for.

Fruitful applications of the present analysis could
arise when reversing our approach: how much can we
learn from incomplete and noisy data about the true
(but unobserved) network? The notion of NINEs intro-
duced above allows us to address this question
rigorously. For any realistic complex system, we may
start from the assumption that observed data were
sampled from a connected graph. There have been
only preliminary attempts (e.g. Stumpf et al. (2008))
at reverse-engineering the global topology of networks
from partial (often poor) data. Especially, in the
social sciences Robins & Pattison (2001) where network
sampling is fraught with all manner of methodological,
social and ethical problems, and in systems biology,
where technological problems frequently prevent us
from seeing e.g. protein interactions that are conditional
on post-translational modifications, we see the need and
much scope for suitable inferential procedures.

The authors thank Sophie Lèbre and Thomas Thorne for
helpful discussions. MPHS is a Royal Society Wolfson
Research Merit Award holder and acknowledges support
from the BBSRC; CW acknowledges research support from
the Danish Research Councils.
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