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Simplifying biochemical models with
intermediate species

Elisenda Feliu and Carsten Wiuf

Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark

Mathematical models are increasingly being used to understand complex bio-

chemical systems, to analyse experimental data and make predictions about

unobserved quantities. However, we rarely know how robust our conclusions

are with respect to the choice and uncertainties of the model. Using algebraic

techniques, we study systematically the effects of intermediate, or transient,

species in biochemical systems and provide a simple, yet rigorous mathe-

matical classification of all models obtained from a core model by including

intermediates. Main examples include enzymatic and post-translational

modification systems, where intermediates often are considered insignificant

and neglected in a model, or they are not included because we are unaware

of their existence. All possible models obtained from the core model are classi-

fied into a finite number of classes. Each class is defined by a mathematically

simple canonical model that characterizes crucial dynamical properties, such as

mono- and multistationarity and stability of steady states, of all models in the

class. We show that if the core model does not have conservation laws, then

the introduction of intermediates does not change the steady-state con-

centrations of the species in the core model, after suitable matching of

parameters. Importantly, our results provide guidelines to the modeller in

choosing between models and in distinguishing their properties. Further,

our work provides a formal way of comparing models that share a

common skeleton.
1. Introduction
Systems biology aims to understand complex systems and to build mathemat-

ical models that are useful for inference and prediction. However, model

building is rarely straightforward, and we typically seek a compromise between

the simple and the accurate, shaped by our current knowledge of the system.

Two models of the same system, potentially differing in the number of species

and the form of reactions, might have different qualitative properties and the

conclusions we draw from analysing the models might be strongly model-

dependent. The predictive value and biological validity of the conclusions

might thus be questioned. It is therefore important to understand the role

and consequences of model choice and model uncertainty in modelling

biochemical systems.

Transient, or intermediate, species in biochemical reaction pathways are often

ignored in models or grouped into a single or few components, either for reasons

of simplicity or conceptual clarification, or because of lack of knowledge. For

example, models of the multiple phosphorylation systems vary considerably in

the details of intermediates [1,2], and intermediates are often ignored in

models of phosphorelays and two-component systems [3,4]. Typically, inter-

mediate species are protein complexes such as a kinase–substrate protein

complex. It has been shown that sequestration of intermediates can cause ultra-

sensitive behaviour in some systems [5,6]. Therefore, the inclusion/exclusion of

intermediates is a matter of considerable concern.

As an example, consider the transfer of a modifier molecule, such as a phos-

phate group in a two-component system, from one molecule to another:

A� þ B O . . . OAþ B�, where A, B are unmodified forms (without the modi-

fier group), A*, B* are modified forms (with the modifier), O indicate
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Figure 1. Representation of reaction networks: (a,b) detailed representation;
(c – e) schematic representation. (a) and (e) are core models and (b – d ) are
extended models of (a) and (e). (a) A reaction network with complexes
S0 þ E, S1 þ E, S2 þ E (enclosed in dashed boxes). Each reaction is labelled
with its rate constant (k or ~k). (b) An extension model of network (a) with
intermediate Y. (c) The complex y1 is involved in a reversible ‘dead-end’ reaction
with one intermediate. (d ) The complex y1 is converted into Y, which splits into
y2 or y3, respectively (the former reversibly). (e) Schematic of (a).

rsif.royalsocietypublishing.org
JR

SocInterface
10:20130484

2
reversible reactions, and . . . are potential transient reaction

steps. Two-component systems are ubiquitous in nature and

vary considerably in architecture and mechanistic details

across species and functionality [7]. Whether or not the speci-

fics are known beforehand, it is customary to use a reduced

scheme such as A� þ B OAþ B� [3,4].

We use chemical reaction network theory (CRNT) to

model a system of biochemical reactions and assume that

the reaction rates follow mass-action kinetics. The polynomial

form of the reaction rates has made it possible to apply alge-

braic techniques to learn about qualitative properties of

models, without resorting to numerical approaches [8–14].

Building on previous works [15–17], we propose a math-

ematical framework to compare different models and to

study the dynamical properties of models that differ in how

intermediates are included. The most fundamental and cru-

cial dynamical features are the number and stability of

steady states. We assume that the kinetic parameters are

unknown and study the capacity of each model to exhibit

different steady-state features.

The paper is organized in the following way. We first intro-

duce the concepts of a core model and an extension model.

An extension model is constructed from the core model by

including intermediates. Next, we discuss how the steady-state

equations of different models are related and illustrate

the findings with an example. We proceed to discuss the

number of steady states of core and extension models. After

that, we introduce the steady state classes, a key concept of

this paper. Extension models in the same steady-state classes

have the same properties at steady state (provided the

parameter sets of the two models can be matched, in some

sense). Using these ideas, we build a decision tree to guide

the modeller in choosing a model and in understanding the

consequences of choosing a particular model. Finally, we illus-

trate our approach with an example based on two-component

systems. All proofs and mathematical details are in the

electronic supplementary material.
2. The core model and its extensions
We use the notation and formalism of CRNT [18,19]. A reac-
tion network is defined as a set of species, denoted by capital

letters (e.g. A, B, C ), a set of complexes and a set of reactions

between complexes. Each complex is a combination of

species, for example y1 ¼ A þ B or y2 ¼ 2C (not to be con-

fused with a protein complex). A potential reaction could

be A þ B! 2C, or also written simply y1! y2. A reaction is

not necessarily reversible, that is, we can have A þ B! 2C
without having the reverse reaction 2C! A þ B. Whenever

a reaction is reversible, we model it as two separate irrevers-

ible reactions. We assume that each reaction occurs according

to mass-action kinetics, that is, at a rate proportional to the

product of the species concentrations in the reactant or

source complex [20]. For example, the reaction A þ B! 2C
occurs at a rate k[A][B], where [A], [B] are the concentrations

of the species A, B and k is a reaction-specific positive con-

stant. Reaction networks are often drawn graphically as

shown in figure 1a–e. Figure 1c–e is schematic of reaction net-

works: only the structure of the network is shown, and

neither the species nor the rate constants are indicated.

Figure 1a corresponds to a simple enzymatic mechanism

where E is an enzyme and Sj is a substrate with j ¼ 0,1,2
phosphorylated sites. The substrate S0 can be doubly phos-

phorylated sequentially via S1 or directly (processively). In

figure 1b, a transient product Y formed by S0 and E, or by

S1 and E (these are often denoted by S0
. E and S1

. E) is

shown. In the particular case, we do not distinguish between

the two transient products (which might be unrealistic, but it

serves an illustrative purpose).

An intermediate is defined as a species in a reaction net-

work that is created and dissociated in isolation, that is, it

is produced in at least one reaction, consumed in at least

one reaction and it cannot be part of any other complex

(e.g. Y in figure 1b–d). A core model is the minimal reaction

mechanism to be modelled. Each reaction yi! yj in the core

model consists of two core complexes yi, yj. The species contri-

buting to the core complexes are referred to as core species. An

extension model is any reaction network such that
(i) the set of complexes consists of core complexes and

some intermediates that are not part of the core model;

(ii) reactions are between two core complexes, two inter-

mediates or between an intermediate and a core

complex; and

(iii) the core model is obtained from the extension model

by collapsing all reaction paths yi! Y1! . . .! Yk!
yj, where Yi are intermediates, into a single reaction

yi! yj.
Some examples are given in figure 1. Figure 1b is an extension

model of figure 1a and figure 1c and d are extension models of

figure 1e. Figure 1a is a concretization of figure 1e. Note that

the directionality of the reaction arrows needs to be preserved.

For instance, in figure 1e, an extension of the reaction y1! y2

cannot be y1 OY O y2, because it would imply that y2! y1

also is in the core model. By adding arbitrarily many
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intermediates (e.g. y1 OY1 O . . . OYk), we can create arbi-

trarily many extension models with the same core.

Under mass-action kinetics, the dynamics of figure 1b is

described by a polynomial system of ordinary differential

equations (ODEs):

½ _S0� ¼ �k1½S0�½E�;
½ _S1� ¼ �k3½S1�½E� þ k2½Y�;
½ _S2� ¼ k4½Y�;
½ _E� ¼ �k1½S0�½E� � k3½S1�½E� þ k2½Y� þ k4½Y�

and ½ _Y� ¼ k1½S0�½E� þ k3½S1�½E� � k2½Y� � k4½Y�;

9>>>>=
>>>>;

ð2:1Þ

where k* are rate constants, [X ] denotes the concentration of

species X and ½ _X� is the instantaneous change in [X]. In

addition, there are two conservation laws,

SB
cons ¼ ½S0� þ ½S1� þ ½S2� þ ½Y� and EB

cons ¼ ½E� þ ½Y�; ð2:2Þ

that is, quantities that are conserved over time and determined

by the initial concentrations. Conservation laws confine the

dynamics to an invariant space given by SB
cons and EB

cons (referred

to as conserved amounts), and the dynamical analysis must

be restricted to this space. The invariant spaces are called

stoichiometric classes in the CRNT literature. If we consider a

maximal set of independent conservation laws, then the species

that appear in the conservation laws are independent of the

chosen set.

The core model in figure 1a has two conservation laws,

SA
cons ¼ ½S0� þ ½S1� þ ½S2� and EA

cons ¼ ½E�: ð2:3Þ

The two sets of conservation laws, (2.2) and (2.3), differ by a

linear combination of intermediate concentrations (here a single

term). This similarity between (2.2) and (2.3) holds generally.

Theorem 2.1. The conservation laws in the core model are in one-
to-one correspondence with the conservation laws in any extension
model. The correspondence is obtained by adding a suitable linear
combination of the [Y]’s to each conservation law of the core model.

Theorem 2.1 does not depend on the assumption of

mass-action kinetics but relies on the structure of the network

only, that is, on the set of reactions of the network.
3. Steady-state equations
We next state theorems 3.1 and 3.2 that allow us to relate the

dynamics near steady states of the core and extension models

to each other.

At steady state ½ _X� ¼ 0 for all species X. Under the assump-

tion of mass-action kinetics, this condition translates into a

system of polynomial equations in the species concentrations.

A way to solve the equations is to express one variable in terms

of other variables. This expression must then be satisfied by

any solution to the system. We let [y] denote the product of

the species concentrations in complex y, for example, [2S] ¼

[S]2 and [S0 þ E] ¼ [S0][E]. Different extension models contain

different intermediates, resulting in different steady-state

equations. Because the intermediates always appear as linear

terms in the steady-state equations of an extension model

(see (2.1)), they can be eliminated from the equations and

written in terms of the concentrations of the core species.

Theorem 3.1. Using the equations ½ _Y� ¼ 0 for all intermediates in
the extension model, the steady-state concentrations of the inter-
mediates Y are given as linear sums ½Y� ¼

P
y mY;y½y� of products
of the core species concentration [17,21]. The constant mY,y is
either zero or positive and depends only on the rate constants of the
extension model. [y] appears in the expression, that is, mY,y= 0,
if and only if there is a reaction path y! . . .!Y involving
exclusively intermediates.

As a consequence of the theorem, once the steady-state

concentrations of the core species are known, the steady-state

concentrations of the intermediates are also known. Because

mY,y � 0 and at least one of the constants is non-zero (all inter-

mediates are produced), positive steady-state concentrations

of the core species lead to positive concentrations of the

intermediates.

Theorem 3.1 makes explicit use of mass-action kinetics. It

remains true for non-mass action kinetics in the sense that an

explicit expression for [Y ] can be found if all reactions Y! y0

have mass-action reaction rates, whereas all other reactions

can have arbitrary reaction rates. In that case, however, the

form of the expression might not be polynomial nor lead to

positive concentrations.

The manipulations leading to the expression ½Y� ¼P
y mY;y½y� from ½ _Y� ¼ 0 are purely algebraic and do not

require any assumptions about the conserved amounts. In

example (2.1), the equation ½ _Y� ¼ 0 gives

½Y� ¼ m1½S0�½E� þm3½S1�½E�; ð3:1Þ

where mi ¼ ki/ðk2 þ k4Þ are reciprocal Michaelis–Menten

constants [20]. If (3.1) is substituted into (2.1), we obtain a

new ODE system:

½ _S0� ¼ �k1½S0�½E�;
½ _S1� ¼ �k4m3½S1�½E� þ k2m1½S0�½E�;
½ _S2� ¼ k4m1½S0�½E� þ k4m3½S1�½E�

and ½ _E� ¼ 0;

9>>=
>>; ð3:2Þ

which is a mass-action system for the core model in figure 1a
with ek1 ¼ k2m1, ek2 ¼ k4m3 and ek3 ¼ k4m1 (as k1 ¼ ek1 þ ek3 ¼
k2m1 þ k4m1). We say that the rate constants ek� are realized
by k� and that k* and ek� are a pair of matching rate constants.

In the particular case, ek1,ek2,ek3 are realized by choosing

k1 ¼ ek1 þ ek3, k3 ¼ ðek1 þ ek3Þek2=ek3 and any k2, k4 such that

k4 ¼ k2
ek3=ek1. Choosing k2 fixes the values of m1, m3 in (3.1).

However, for some (unrealistic) extension models, not all

choices of rate constants of the core model are realizable

(see electronic supplementary material).

The relation between the ODEs in figure 1a,b holds

generally for any pair of core and extension models.

Theorem 3.2. After substituting the expressions ½Y� ¼
P

y mY;y½y�
into the ODEs of the extension model, we obtain a mass-action
system for the core model.

The quasi-steady-state approximation (QSSA) proceeds

similarly [22]. An equation of the form ½ _Y� ¼ 0 is used to

find an expression for [Y ] in terms of [y] under the additional

assumptions that certain species are in high or low concen-

tration. This expression is subsequently substituted into the

remaining ODEs to reduce the system. Theorems 3.1 and

3.2 show that this always can be performed, irrespective of

any biological justification of the procedure.

As a consequence of the theorems, the steady states of an

extension model can be found in this way: we first solve the

equations ½ _Y� ¼ 0 for [Y ] in terms of [y] (theorem 3.1) and

then insert the expressions for [Y ] into the remaining
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steady-state equations (theorem 3.2). The steady states of the

extended model are now found by solving the steady-state

equations for the core model to obtain the concentrations

of the core species. This corresponds to solving (3.2) in the

abovementioned example. The obtained values are sub-

sequently plugged into the expressions given in theorem 3.1

to find the steady-state values of the intermediates. That is,

for matching rate constants between the core and an extension

model, the solutions to the steady-state equations of the core

model completely determine the solutions to the steady-state

equations of the extension model.

The conservation laws, however, impose different con-

straints on the steady-state solutions for given conserved

amounts. Specifically, by inserting (3.1) into (2.2), we obtain

SB
cons ¼ ½S0� þ ½S1� þ ½S2� þm1½S0�½E� þm3½S1�½E�

and

EB
cons ¼ ½E� þm1½S0�½E� þm3½S1�½E�:

9>=
>; ð3:3Þ

The steady states of the extension model solve (3.2) and (3.3),

whereas they solve (3.2) and (2.3) in the core model. Equation

(3.3) is nonlinear in the concentrations of the core species.

Nonlinear terms in the conservation laws can cause the two

models to have substantially different properties. This is

reflected in the example in §4.

Importantly, if the system has no conservation law, then

addition of intermediates cannot alter any property of the

core model at steady state. This will be the case, for instance,

when production and degradation of all core species in the

model are explicitly modelled.
4. An example
The number of steady-state solutions for the core model and

an extension model can differ substantially. For matching rate

constants, the steady states of each system are found by inter-

secting the steady-state equations for the core species with the

conservation laws of each of the systems. The number of

points in this intersection might differ between extension

models and the core model, depending on the form of the

conservation laws.
We illustrate this using the two-site phosphoryla-

tion system in figure 1a and include dephosphorylation

reactions

S2 ! S1 and S1 ! S0: ð4:1Þ

In addition, we add the reactions

0! S2 and S2 ! 0: ð4:2Þ

The motivation for the addition is not biological but for

illustrative reasons. It allows us to plot the steady-state

equations in two dimensions. We will consider the positive

steady states of the core model in figure 1a together with

(4.1) and (4.2), and the extension model in figure 1c together

with (4.1) and (4.2), and y1 ¼ S0 þ E, y2 ¼ S1 þ E, y3 ¼ S2 þ E.

The added reactions are core reactions and do not involve

intermediates. Because the substrate S2 is degraded (S2! 0),

the total amount of substrate is no longer conserved and

there is only one conservation law, namely that for the

kinase (compare (2.3)).

At steady state, the core and any extension model fulfil

the relation

½S0� ¼
a1

½E�ð½E� þ a2Þ
ð4:3Þ

for some constants a1, a2 . 0 that depend on the rate con-

stants of each model (see electronic supplementary material).

The relation is obtained from the steady-state equations of

the core model alone and therefore must be fulfilled by all

extension models for matching rate constants (theorem 3.2).

One can show that the concentrations of [S1] and [S2] at

steady state are uniquely determined by [E] and [S0] (see

electronic supplementary material).

For a given conserved amount for the kinase, the steady-

state concentrations are determined by the common points of

the graph of (4.3) and the curve for the conservation law. For

the core model, this curve is EA
cons ¼ ½E�, which is a vertical

line in the ([E], [S0])-plane. Because (4.3) is strictly decreasing

in [E], it follows that there is a single steady state for any

choice of EA
cons (figure 2a).

Consider next the extension model corresponding to

figure 1c (with the modifications introduced in (4.1) and

(4.2)). For arbitrary fixed rate constants of the core model,
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we choose rate constants of the extension model that

realize the rate constants of the core model. This can

always be achieved for extension models with ‘dead-end’

complexes, like that of figure 1c (see electronic supplemen-

tary material). For ½ _Y� ¼ 0, the concentration of the

intermediate is [Y ] ¼ a3[E][S0] for some constant a3 . 0

that depends on the rate constants of the extension model.

Consequently,

EC
cons ¼ ½E� þ a3½E�½S0� or ½S0� ¼

EC
cons � ½E�

a3½E�
provided that a3 = 0:

9=
; ð4:4Þ

If a3 ¼ 0, then we obtain the core model. In the particular

case, a3 varies independently of a1, a2 and all values of a3

can be obtained when realizing the rate constants of the

core model. Combining (4.3) and (4.4) yields a second-

order polynomial in [E]:

a1a3 ¼ ðEC
cons � ½E�Þð½E� þ a2Þ: ð4:5Þ

Hence, for fixed a1, a2, a3, the polynomial can have zero, one

or two positive solutions, depending on the value of Econs
C .

Figure 2 shows graphically the steady-state solutions for the

core (figure 2a) and the extension (figure 2b,c) model as the

intersection of the steady-state equation (4.3) and the curve

for the conservation law for different values of EA
cons, EC

cons

and a3. In figure 2, the curve for the steady-state equation

(dashed) is given for a1 ¼ 2 and a2 ¼ 0.5 and is the same

for the two models. For the core model, the conservation

law curve is a vertical line (solid, figure 2a), which intersects

the steady-state curve in precisely one point (figure 2a). For

the extended model, the conservation law curve (solid,

figure 2b,c) is the ratio in (4.4). Depending on the value of

EC
cons, the two curves intersect in zero, one or two points illus-

trating how the number of steady states vary with EC
cons

(figure 2b, with a3 ¼ 2). The same conclusion is obtained by

varying a3 while keeping EC
cons fixed (figure 2c, with

EC
cons ¼ 4).

In this particular case, we could find explicit expres-

sions for the steady-state concentrations in terms of the

conserved amounts and the rate constants. This is not

always the case.
5. Number of steady states
In the example in §4, one can choose rate constants and con-

served amounts such that the extension model does not have

a positive steady state, even though the core model has a

positive steady state for all choices of rate constants.

However, it is easy to see that a3 can always be chosen so

small that there is at least one positive solution for fixed a1,

a2 and EC
cons. If a3 � 0, then the contribution of [E][S0] in

(4.4) becomes insignificant, and the extension model is

‘similar’ to the core model. This is observed in figure 2c
for small a3, the curve for the conservation law is almost a

vertical line.

Therefore, in the example, it is always possible to choose

matching rate constants such that the number of steady states

in the extension model is at least as big as the number of

steady states in the core model, for corresponding conserved

amounts. This observation holds generally. We now state the

main result concerning the dynamical properties of extension

models and the number of steady states.
Theorem 5.1. If the core model has N non-degenerate1 positive
steady states for some rate constants and conserved amounts,
then any extension model that realizes the rate constants has at
least N corresponding non-degenerate positive steady states for
some rate constants and conserved amounts. Oppositely, if the
extension model has at most one positive steady state for any rate
constants and conserved amounts then the core model has at
most one positive steady state for any matching rate constants
and conserved amounts. The rate constants and conserved amounts
can be chosen such that the correspondence preserves unstable
steady states with at least one eigenvalue with non-zero real part
and asymptotical stability for hyperbolic steady states.

The proof essentially relies on the observation in the pre-

vious example that a certain parameter (a3 in the example)

can be chosen so small that the extension model and the

core model are almost identical at steady state. The relation-

ship between a reaction network and a subnetwork has

been studied previously, but in different contexts. For

example in [23,24], where subnetworks are defined by (cer-

tain) subsets of reactions, or in [24], where subnetworks are

defined by removing species from reactions. Characteriz-

ations similar to theorem 5.1 about the number of steady

states hold in these situations.

In figure 2, the steady state in the extension model closest

to the steady state in the core model (for the same conserved

amount) inherits the stability properties of the steady state of

the core model. In this case, it is asymptotically stable. How-

ever, we cannot conclude anything about the other steady

state in the extension model from the core model alone.
6. Steady-state classes and canonical models
The observations made about the conservation laws and the

steady-state equations (theorems 2.1, 3.1 and 3.2) suggest that

it suffices to know what core complexes contribute to the con-

servation laws in order to compare the extension and core

models at steady state. In figure 1b, the core complexes

S0 þ E, S1 þ E contribute to the conservation laws for the

kinase and substrate. Any other extension model, contribut-

ing the same core complexes to the conservation law, will

result in equations for the steady states of the same form.

Specifically, if two extension models contribute the same

core complexes to the conservation laws and realize the

same rate constants,2 then the two models are identical at

steady state. In particular, we can apply theorem 5.1 to any

of the two models.

Therefore, we can group extension models according to

the core complexes that appear in the conservation laws.

We say that two extension models belong to the same

steady-state class if they share the same core complexes

in the conservation laws. The complexes characterizing a

steady-state class are called the class complexes. We can use

theorem 3.1 to provide a graphical characterization of the

classes: the core complexes that contain a species appearing

in some conservation law are selected. If there exists a reac-

tion from such a core complex to an intermediate, then the

core complex is a class complex. The class of the core

model is the class with no class complexes.

In figure 3, the graphical characterization is illustrated

using the core model in figure 1a, written in simplified

form. All species appear in some conservation law, and
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Figure 3. We consider the core model of figure 1a (with y1 ¼ S0 þ E, y2 ¼ S1 þ E, y3 ¼ S2 þ E) and its steady-state classes. Each class is characterized by an
extension model (the canonical model) with a dead-end reaction added for each class complex (upper right corner). Each class (except the class of the core model)
has an infinite number of members and a few of these are shown. Class complexes are source complexes of a reaction with an intermediate as product (marked in
bold in the figure). For the number of steady states we consider the model given in figure 1a and dephosphorylation reactions S2! S1 and S1! S0 (not shown in
the figure). The number of steady states in each class refers to the maximal number of steady states that a model in the class can have for some choice of rate
constants and total amounts. This has been found by direct computation of the steady states (see electronic supplementary material). Alternatively, the CRN Toolbox
could have been used [25].
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hence all core complexes can be class complexes. Consider

the extension models in figure 1b and figure 1c,d with y1 ¼

S0 þ E, y2 ¼ S1 þ E, y3 ¼ S2 þ E. The extension model in

figure 1c belongs to the steady-state class with class complex

y1, because there is only one path from a core complex to an

intermediate: y1! Y. Similarly, the extension models in

figure 1b,d have class complexes y1, y2. We conclude

that figure 1b,d are in the same class, whereas the models in

figure 1a,c are in different classes and have different

equations. In this case, figure 1a has always one steady

state for any choice of conserved amounts and rate constants,

whereas figure 1b–d can be multistationary (this is proved by

direct computation of the steady states in the electronic

supplementary material).

Because class complexes characterize the steady-state

classes, there is a finite number of classes, at most 2K, with K
the number of core complexes (K ¼ 3 in figure 3). The classes

are naturally ordered by set inclusion: a class is smaller than

another class if the latter contains the class complexes of the

former. In particular, the steady-state class of the core model is

smaller than any other class. Thus, the class of figure 1a is smaller

than the classes of figure 1b–d, then classes of figure 1b,d
are the same and the class of figure 1c is smaller than the class

of figure 1b. The classes of the models in the first and the third

box of figure 3 are not comparable as the first is fy1g and the

last is fy2, y3g.
All extension models in a steady-state class have common

properties at steady state (subject to the requirement of realiz-

ability of rate constants). Thus, it is natural to select a

representative for each class with a small number of inter-

mediates and such that the behaviours of all models in the

class are reflected in the behaviour of the representative. To

each class, we construct a canonical model by adding a dead-

end reaction, y OY, for each class complex (see figure 3 for

an example). Importantly, the steady-state equations for the

canonical model are simpler than for any other extension

model in the same class. It is shown in the electronic

supplementary material that the parameter space of the cano-

nical model is as large as possible. This leads to the following

corollary to theorem 5.1.
Corollary 6.1. If the canonical model of a steady-state class has a
maximum of N steady states for any rate constants and conserved
amounts, then all extension models in the class, or in any smaller
class, have at most N steady states.
In particular, if the largest canonical model (with a dead-

end reaction added to all core complexes) is not multistationary,

then no extension model, including the core model, can be mul-

tistationary. Likewise, if the smallest canonical model (the core

model) is multistationary, then all extension models are multi-

stationary. If there are no conservation laws, then there is

only one steady-state class and any steady state in the core

model corresponds precisely to a steady state in the extension

model (assuming rate constants are realizable; theorems 3.1

and 3.2). Hence, either all extensions models (with realizable

rate constants) and the core model are multistationary or none

of them are. Further, if the core model cannot have multistatio-

narity neither can an extension model, independently of the

realizability of the rate constants.

Theorem 5.1 and corollary 6.1 provide assistance to the

model builder. First of all the modeller can focus on the cano-

nical models only. By screening the canonical models for the

possibility of multistationarity, the modeller obtains a clear

idea about the effects of intermediates. In figure 3, the

steady-state class given by fy2, y3g does not have multiple

steady states, hence the same holds for the classes fy2g,
fy3g and the core model (theorem 5.1). Multistationarity in

figure 3 (two first columns) is due to the nonlinearity intro-

duced by [y1] in the conservation laws, irrespective of the

presence or absence of [y2] and [y3].

Our approach provides a simple graphical procedure to

classify the extension models into a finite set of classes with

common dynamical features, thereby elucidating the con-

sequences of choosing a specific model. Figure 4 shows a

decision diagram that guides the modeller through a

number of possibilities. Each decision can be checked using

various computational methods [25–28] or by manually sol-

ving the system (a task that simplifies due to the simple form

of the canonical models).



Q1: is the core model
multistationary?

‘all’ extension models are multistationary

Q2: is the maximal canonical
model multistationary?

none of the models are multistationary

Q3: is some other canonical
model C multistationary?

‘all’ extension models that include model
C are multistationary

none of the models included in model C are
multistationary

yes

no

no

yes

no

yes

Figure 4. A decision tree to detect multistationary steady-state classes. ‘All’ means that the model exhibits multistationarity as long as the rate constants of the core
model can be realized by the extension model. Q3 must be checked for different canonical models as necessary.

Table 1. Example of an application of the decision tree in figure 4. Three models of two-component systems are considered. All models are core in the sense
that they are not extension models of any smaller models. SK, sensor kinase; RR, response regulator; Ph, phosphatase; T, phosphatase; asterisk denotes
phosphorylated (activated) state. (A) Basic phosphorelay mechanism: SK autophosphorylates and transfers the phosphate group to RR; a phosphatase
dephosphorylates RR*. (B) Same as (A); in addition SK is bifunctional and dephosphorylates RR* and RR catalyses dephosphorylation of SK*. (C) Same as (B)
with the addition of a phosphatase T for SK*. System (B) is a core model of the mechanism considered in [29] and in [30, model A]. (C) is a core model of
[30, model B]. The models analysed in [29,30] are extension models belonging to multistationary classes (last column of the table) and hence display
multistationarity. The answers to Q1 – Q3 have been obtained using the CRN Toolbox [25].

reactions Q1 Q2 Q3 multistationary models

A SK O SK*

SK* þ RR! SK þ RR*

Ph þ RR*! Ph þ RR

no no — none

B reactions in A and

SK* þ RR! SK þ RR

SK þ RR*! SK þ RR

no yes multistationary: SK þ RR

non-multistationary: fSK* þ RR, SKþ RR*g
models including the class complex

SK þ RR

C reactions in B and

SK* þ T!SK þ T

yes — — ‘all’ extension models
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7. Example: two-component systems
Table 1 shows a biological application of the decision

diagram in figure 4. We consider three models of two-

component systems of increasing complexity [29,30]. The

basic mechanism consists of a sensor kinase that autophos-

phorylates SKNSK* (here asterisk indicates a phosphate

group), the phosphate group is subsequently transferred to

a response regulator RR and dephosphorylation of RR* is cat-

alysed by a phosphatase Ph. This model is considered in table

1 (model A). Models B and C in table 1 consist of the first

model enriched with more mechanisms. In model B, SK has

a bifunctional role and acts as a phosphatase, and likewise

RR catalyses dephosphorylation of SK. Model C is an enrich-

ment of model B with dephosphorylation of SK* by a

phosphatase T. Models B and C in table 1 are core models

of the models considered in [29,30]. Models B and C are

not extension models of model A, nor of each other. All

models considered in table 1 have the total amount of

kinase and the total amount of response regulator conserved.

We have applied the decision tree in figure 4 to each of the

models. Models A and C are robust with respect to the choice of

intermediates: model A cannot exhibit multistationarity for any
choice of rate constants and model C exhibits multistationarity
for some choice of rate constants, independently of how inter-

mediates are included in the models. On the other hand, model

B is sensitive to how intermediates are introduced. The core

model is not multistationary, but inclusion of intermediates

in some reaction paths introduces multistationarity. We con-

clude that modelling of this system needs to be performed

carefully, as the qualitative conclusions that can be drawn

from the model depend on the choice of intermediates.

Our analysis of the canonical models identifies the steady-

state classes that can exhibit multistationarity and pinpoints

the particular class complexes that introduce nonlinearity in

the conservation laws. The analysis provides a simple overview

of the effect of introducing intermediates in different reactions.
8. Discussion
Our work develops from the perspective of the model and

clarifies the effects of intermediate species in biochemical

modelling. Simplifications are always applied in model

building but generally on a case to case basis, motivated by

biological assumptions. One example is the QSSA, where

equations of the form ½ _Y� ¼ 0, together with some (but not



rsif.royalsocietypublishing.org
JR

SocInterface
10:20130484

8
all) conservation laws, are used to eliminate species [20,22].

This results in a hybrid model between our core and extension

models. Our framework allows us to eliminate interme-

diate species generally and to compare core and extension

models in a formal mathematical way. This comparison can

be made independently of particular biological assumptions.

An important insight is that model simplification and model

choice must be pursued with great care as crucial dynamical

properties might change radically by the inclusion of

intermediates.

We remarked in the introduction that intermediates have

been shown to affect steady-state properties of a system, such

as the emergence of ultra-sensitivity [5,6]. It follows from our

results that intermediates cannot change a model’s properties

at steady state if there are no conservation laws. In particular,

if production and degradation of each species are explicitly

modelled, then a model without intermediates is fully

justified at steady state.

It has previously been noted that models that seem very

similar can have different qualitative properties [31]. Our

analysis is a step forward in quantifying the relationship

between simple and complex models of the same system,

and in using simple models to predict properties of complex

systems. Our results can guide the modeller through the criti-

cal issue of choosing a model and in learning about model
properties. As such, the results are useful for interpretation

of experimental data and for designing synthetic systems.

We envisage that our techniques can be extended to other

models than those defined by intermediates and can provide

further insights into the nature of biochemical and other

types of modelling [17,32].
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Endnotes
1A steady state is said to be non-degenerate if the Jacobian of the ODE
system evaluated at the steady state is non-singular (see the electronic
supplementary material).
2Here, it is also required that the constants mY,y vary independently.
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30. Salvadó B, Vilaprinyó E, Karathia H, Sorribas A, Alves
R. 2012 Two component systems: physiological
effect of a third component. PLoS ONE 7, e31095.
(doi:10.1371/journal.pone.0031095)

31. Craciun G, Tang Y, Feinberg M. 2006 Understanding
bistability in complex enzyme-driven reaction
networks. Proc. Natl Acad. Sci. USA 103,
8697 – 8702. (doi:10.1073/pnas.0602767103)

32. Rao S, van der Schaft A, van Eunen K, Bakke BM,
Jayawardhana B. 2013 Model-order reduction of
biochemical reaction networks. See http://arxiv.org/
abs/1212.2438.
S
oc
Interface
10:20130484

http://dx.doi.org/10.1007/s10910-012-0072-0
http://dx.doi.org/10.1007/s10910-012-0072-0
http://www.crnt.osu.edu/crntwin
http://www.crnt.osu.edu/crntwin
http://dx.doi.org/10.1073/pnas.0705731104
http://dx.doi.org/10.1073/pnas.0705731104
http://dx.doi.org/10.1016/j.amc.2012.07.048
http://dx.doi.org/10.1016/j.amc.2012.07.048
http://dx.doi.org/10.1007/s11538-011-9685-x
http://dx.doi.org/10.1007/s11538-011-9685-x
http://dx.doi.org/10.1111/j.1365-2958.2008.06221.x
http://dx.doi.org/10.1371/journal.pone.0031095
http://dx.doi.org/10.1073/pnas.0602767103
http://arxiv.org/abs/1212.2438
http://arxiv.org/abs/1212.2438
http://arxiv.org/abs/1212.2438

	Simplifying biochemical models with intermediate species
	Introduction
	The core model and its extensions
	Steady-state equations
	An example
	Number of steady states
	Steady-state classes and canonical models
	Example: two-component systems
	Discussion
	Acknowledgements
	Funding statement
	References


