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Abstract Composite likelihood methods have become very popular for the
analysis of large-scale genomic data sets because of the computational intrac-
tability of the basic coalescent process and its generalizations: It is virtually
impossible to calculate the likelihood of an observed data set spanning a large
chromosomal region without using approximate or heuristic methods. Com-
posite likelihood methods are approximate methods and, in the present article,
assume the likelihood is written as a product of likelihoods, one for each of a
number of smaller regions that together make up the whole region from which
data is collected. A very general framework for neutral coalescent models is
presented and discussed. The framework comprises many of the most popular
coalescent models that are currently used for analysis of genetic data. Assume
data is collected from a series of consecutive regions of equal size. Then it
is shown that the observed data forms a stationary, ergodic process. General
conditions are given under which the maximum composite estimator of the
parameters describing the model (e.g. mutation rates, demographic parameters
and the recombination rate) is a consistent estimator as the number of regions
tends to infinity.
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1 Introduction

Many large scale genomic efforts concentrate on providing comprehensive
genetic data points from many regions in the genome, rather than from few
regions in many individuals. To human geneticists and population biologists,
the availability of large genomic data sets are exciting because such data can be
used to answer many important scientific questions regarding recombination
and mutation in the human genome, and regarding the demographics and ances-
try of human populations. Unfortunately, there are few appropriate statistical
tools available for analysing large genomic data sets.

The basic coalescent process [19] and its modifications and generalizations
[14] are appropriate mathematical models to describe the evolution of chro-
mosomes and chromosomal regions, and their genealogical history. However,
despite its mathematical and biological attractiveness, it has been shown to be
computationally intractable to calculate the likelihood of a sample of chromo-
somes with more than a few dozen variable DNA positions [4,9–12,20,23,29].
These methods are based on approximating the likelihood using sequential
Importance Sampling or Markov Chain Monte Carlo methods. For smallish
data sets the likelihood and the maximum likelihood estimates can easily be
evaluated using simulation, however for large data sets the methods become
time consuming, computationally demanding and inaccurate.

This has sparked an interest in alternative approximate methods, such as
composite likelihood methods (see e.g. [2] for some general perspectives on
composite likelihood methods in statistics and their statistical properties). In
the context of genomic data sets, a composite likelihood method treats differ-
ent regions of the chromosome as being evolutionary independent regions, i.e.
the composite likelihood function (CLF) is obtained by multiplying the like-
lihood of the individual regions. Dependencies between regions must die out
sufficiently fast for the maximum composite estimate (MCE) of the parameters
in the model to be consistent. Parameters here are of two kinds, namely those
describing the shape of the genealogical relationship between small homolo-
gous chromosomal regions (e.g. demographic parameters and mutation rates)
and those describing the correlation between genealogies in different regions
(e.g. recombination and gene conversion rates). Composite likelihood methods
have been suggested and used by a number of authors, among these Hudson
[17], Fearnhead and Donnelly [5], Kim and Stephan [18], McVean et al. [22],
Adams and Hudson [1], and Marth et al. [21].

Let fi(xi; α) be the likelihood of data xi in region i, i ≤ l (xi is the outcome of
the stochastic variable Xi), where α is some parameter describing the possible
models. Then, the logarithm of CLF is given by

1
l

l∑

i=1

log(fi(xi; α)), (1)

and it is natural to consider conditions for which Eq. (1) converges to the expec-
tation of log(fi(xi; α)) under the true model (with parameter α0) as l tends to
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infinity. This is an instance of the law of large numbers. If the variables Xi are
independent this has become a stardard condition in relation to asymptotics
(e.g. Hoffmann-Jørgensen 1994 for a full probabilistic treatment of the con-
sequences of this condition); if the data are not independent convergence of
Eq. (1) is still an important pre-requisite for convergence of the MCE [2,27,28].

Peskir [27] discusses the case where the Xis form a stationary ergodic pro-
cess and provides similar results to those of Hoffmann-Jørgensen (1994). One
important point of Peskir [27] is that his results allow for model misspecifica-
tion, i.e. the true model of the data is not in the class of models parameterized
by α. He shows that if Eq. (1) is converging under the true model, then so is
the MCE. This is a useful addition, in particular in relation to genomic data
analysis, because it is very unlikely that the true model is included in the class
of models parameterized by α. However, if the true model is not included, then
convergence of Eq. (1) under the true model cannot be proven, but must be
postulated. As a further consequence, the interpretation of the MCE in rela-
tion to the biological reality is less straightforward. In the case of independent
data points, convergence of the maximum likelihood estimator under model
misspecification has been treated by White [30], and given in full generality by
Hoffmann-Jøregnsen (1994). The results in this paper are based on Peskir [27].

Theoretical considerations of convergence properties for coalescent-based
estimators have been published previously. Fearnhead [3] discusses the basic
coalescent model with recombination and proves consistency of the MCE of
the recombination rate as the number of genomic regions becomes large. (He
also considers estimators based on pairs of sites but these fall outside the frame-
work of the present article.) Fearnhead’s proof is also based on convergence of
Eq. (1). His result is here extended to more general models, in particular his
result is extended to cover convergence of other parameters, such as demo-
graphic parameters. Fundamentally, data from a series of regions of the same
length (L nucleotides) are considered and a coalescent-like model for the evo-
lution of the sequences is assumed. It is further assumed that the state of all L
nucleotides are observed. Nielsen and Wiuf [25] have provided some consider-
ations about consistency of estimators in this and similar settings; however they
have not undertaking detailed theoretical investigations.

Some familiarity with the basic coalescent and its generalizations is assumed.
All proofs are in the Appendix.

2 The model

A continuous time coalescent model that allows for coalescence, migration,
recombination, and gene conversion is considered. The setting is somewhat
more general than in Griffiths and Tavaré [10,11], Griffiths and Tavaré [13],
and Griffiths and Marjoram [8], but the model and notation is straightfor-
wardly extrapolated from their model(s) and notation; see also Hein et al. [14],
Hudson [15,16], and Wiuf and Hein [32] for further background on the notation
and models. The model has the following characteristics:
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(M1) A DNA sequence consists of L consequetive nucleotides
(M2) t ∈ R denotes time and α ∈ A ⊆ R

d is an d-dimensional vector describ-
ing possible demographic and genetic scenarios

(M3) There are K time points, T1(α), T2(α), . . . , TK(α), where scaled rates
for the four types of events can change discontinuously; corresponding
to K + 1 time epochs, k = 0, 1, . . . , K beginning at time T0(α), T1(α),
. . . , TK(α), respectively, with T0(α) = 0 always

(M4) In time epoch k there are Dk demes. A sequence in deme i of epoch
k − 1 jumps at time Tk(α) to a new deme of epoch k as determined
by a transition probability matrix {qk

ii′(α)}i,i′ : With probability qk
ii′(α) a

sequence in deme i, i = 1, . . . , Dk−1, moves to deme i′, i′ = 1, . . . , Dk,
of epoch k

(M5) λik(t; α) is the reciprocal relative deme size of deme i = 1, . . . , Dk at
time t, and λik(0, α) = 1

(M6) νijk(t; α) is the scaled migration rate from deme i to deme j at time t;
i, j = 1, . . . , Dk

(M7) ρik(t; α) is the per sequence scaled recombination rate in deme i =
1, . . . , Dk at time t; the break point is between position x and x + 1,
x = 1, . . . , L − 1, with equal probability

(M8) γik(t; α) is the per sequence scaled gene conversion rate in deme i =
1, . . . , Dk at time t; one end point of the gene conversion tract is cho-
sen uniformly, i.e. the break point is between position x and x + 1,
x = 1, . . . , L − 1 with equal probability. The other break point is cho-
sen according to a symmetric distribution g(y; α), y ∈ R, such that the
break point is y nucleotides away from x and extends in either direction
with equal probability

(M9) The mutation process is Markovian and the L positions evolve inde-
pendently of each other along a given genealogy. The mutation process
is parameterized by α

(M10) n(t) = (n1(t), . . . , nDk(t)) is the sample configuration and counts the
number of ancestral sequences at time t in each deme. (Note that the
sample configuration does not contain any information about the alle-
lic state of the sequences, only their numbers in different demes.) Total
sample size at time t is n(t) = ∑Dk

i=1 ni(t)

The functions λik, νijk, ρik, and γik are referred to as the rate functions.
Typically, the parameters describing λik, νijk, ρik, and γik are variation inde-
pendent. For completeness and notational convenience these parameters are
collectively referred to as α. The number of demes is not allowed to depend on
α. Times and rates are all scaled in N, the effective population size at time t = 0.

Condition (M3) refers to mergings and splittings of populations. Rates might
depend on deme, e.g. reflecting different effective deme sizes, or that demes rep-
resent different species (e.g. human and chimps) with different genetic mecha-
nisms. Rates might also depend on time epoch, e.g. reflecting that the number
of demes might change from one epoch to the next, or that effective popula-
tion sizes are modelled to change abruptly. Finally, rates might depend on time



Consistency of estimators of population scaled parameters 825

locally, either because of fluctuations in effective population size, changes in
migration patterns over time, or because the genetic mechanisms change as
species’ evolve.

One model of gene conversion is Wiuf and Hein [32], see also Wiuf [31]. It
is parameterized by G = 4NLg and Q = qL, where N is the effective pop-
ulation size, g the probability of a gene conversion tract initiating in a given
position per generation, and q the probability that the tract extends beyond
the neighbour nucleotide, i.e. the tract length has a geometric distribution. The
tract extends to the right or to the left with equal probability. It follows that
γik(t; α) = G[1 + (1 − e−Q)/Q] ≡ γ for large L, and an alternative parameteri-
zation, and perhaps more natural in this context, is thus given by (γ , q).

The dependence on α is often suppressed in the rate functions, the transition
probability matrices and the times of epochs, as is the dependency of t in n(t).
Further define (again with α suppressed)

(R1) The total rate at time t,

Rk(t; n) =
Dk∑

i=1

(
ni

2

)
λik(t) +

Dk∑

i=1

ni

2

⎡

⎣
∑

i �=j

νijk(t) + ρik(t) + γik(t)

⎤

⎦

(R2) The relative rates of coalescence (c), migration (m), recombination (r),
and gene conversion (g), respectively, for sequences in deme i,

cik(t; n) = ni(ni − 1)λik(t)
2Rk(t; n)

, mijk(t; n) = niνijk(t)

2Rk(t; n)

rik(t; n) = niρik(t)
2Rk(t; n)

, gik(t; n) = niγik(t)
2Rk(t; n)

.

For convenience, e will be short for the rate of an arbitrary event,
e.g. e(t; n) = rik(t; n)

With the above notation and definitions the model can be described as a
birth-death process with migration between demes and time dependent rates,
i.e. a time inhomogeneous birth–death process with migration between demes.
The time, Tnext, until the next event depends on the rate Rk(t; n) and the present
time, s, and has density

P(Tnext > t|n(s) = n) = exp

⎧
⎨

⎩−
s+t∫

s

Rk(u; n)du

⎫
⎬

⎭ , (2)

i.e., Tnext is a stretched exponential variable. If Tnext > Tk(α) then the next
event did not happen in time epoch k, and a new variable is drawn with rate
Rk+1(t; n). The type of the event is determined by the relative rates; if a coa-
lescent event then the number of ancestral sequences n(t) goes down by one;
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if a migration event, n(t) remains unchanged; and if a recombination event or a
gene conversion event, then n(t) goes up by one. Mutations and break points are
superimposed afterwards. This formulation of the model is very similar to the
birth-death process described in Griffiths and Marjoram [8] for the coalescent
with recombination only.

Whenever n(t) = 1, a common ancestor of the sample has been found. The
first time, TMRCA, for which n(t) = 1, is called the time of the most recent
common ancestor (MRCA). It is not guaranteed that the process will reach the
state of a MRCA, and hence it must be assumed that this is the case,

P(TMRCA < +∞|n(0) = n) = 1. (3)

A necessary condition for condition (3) to hold is

∞∫

TK(α)

λiK(t; α)dt = ∞, (4)

for all i = 1, . . . , DK; however it is not a sufficient condition as Eq. (3) also
depends on the rates of recombination and migration. However, because the
birth rate is linear in the number of sequences and the death rate is quadratic,
Eq. (3) is likely to hold in all reasonable models.

3 Sample histories

The aim of this section is to introduce and discuss the concept of a (time-dated)
sample history and to prove that certain probabilities are continuous functions
of α.

An outcome T of the birth-death process is called a time-dated (sample)
history and consists of a series of sample configurations. Figure 1 illustrates
the concept of a history; a formal definition is given below. The sequences in
a sample configuration are called ancestral sequences, though these need not
be ancestors of the sample in a genetic sense. Other formulations of the model
avoid the genetically ‘empty’ or non-ancestral sequences. However, formulat-
ing the model as a birth–death process has the advantage that the probability
of the data takes the form

P(Data) =
∫

T

∑

break pts

P(Data|T , break pts)P(break pts|T )P(T )dT , (5)

(the number of ways break points can be chosen are finite for a given history)
in contrast to other formulations of the process where the break points are part
of the history of the data.
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Fig. 1 The figure shows an
example of a history of a
sample of three sequences,
two sampled in one deme and
one sampled in another deme
(the two demes are separated
by the dashed line). The first
event is a recombination
event, splitting the sequence
into two sequences with
ancestral material as shown to
the right of the event (thick
lines ancestral material thin
lines non-ancestral). L and R
indicate the left and the right
sequence after the event. At
the second recombination
event a genetically ‘empty’
sequence is created that does
not carry any genetic
information ancestral to the
sample. Migration events are
indicated by arrows with the
head showing the direction of
the migration

A time-dated history T of a sample n(0) taken at time t = 0 (in epoch 0) is a
series of sample configurations with time of occurence attached,

n(Tk), n(tk1), . . . , n(tkjk) (6)

for each epoch k = 0, 1, . . . , K, and Tk < tkj < tk,j+1 < Tk+1 (with TK+1 = ∞),
such that

(H1) n(tk1) is obtainable from n(Tk) by a single event
(H2) n(tk,j+1) is obtainable from n(tkj) by a single event
(H3) n(t) > 1 for 0 ≤ t < tKjK
(H4) n(tKjK ) = 1, and
(H5) n(Tk+1) is a possible transition from n(tkjk).

The type of event transforming one configuration into another is taken as being
part of the definition of a time-dated history, but it is generally suppressed in
the notation.

A history H differs from a time-dated history in that times of sample configu-
rations are ignored, only the order in which the configurations occur is registred
and whether a configuration is the first configuration in an epoch (at times Tk,
k = 0, 1, . . . , K).

Informally, a history is a series of events describing the evolution of the
sample. It evolves (backwards in time) through mergings (coalescent events),
splittings (genetic exchange events), and migrations such that finally a MRCA
of the sample is found. Mutation events and break points are not part of the
(time-dated) history.



828 C. Wiuf

The probability Pα(T ) of a time-dated history T can be computed from
the total rate, the relative rates and the transition probability matrices defined
above. It can be written in the form

Pα(T ) =
K∏

k=0

Uαk(T )

K−1∏

k=0

Vαk(T ), (7)

where

Uαk(T ) = Pα{n(tkjk), n(tk,jk−1), . . . , n(tk1)|n(Tk)}

= Pα

(
n(tk1)|n(Tk)

) jk−1∏

j=1

Pα

(
n(tk,j+1)|n(tkj)

)
(8)

and
Vαk(T ) = Pα(n(Tk+1)|n(tkjk)). (9)

Strictly speaking, Pα(T ) is a mixture of a density with respect to a (multi-
dimensional) Lebesgue measure and a Markov Chain. The probabilities in
Eq. (8) depend on the total rate and the relative rates, whereas the probabil-
ity in Eq. (9) also depends on the transition matrix {qk

ii′(α)}. To decompose
the probability in Eq. (8) into a product the Markov Property of the coales-
cent process is used. The Markov Property also guarantees that the individual
probability terms have the form

Pα(n(tk,j+1)|n) = e(tk,j+1; n)Rk(tk,j+1; n) exp

⎧
⎪⎨

⎪⎩
−

tk,j+1∫

tkj

Rk(u; n)du

⎫
⎪⎬

⎪⎭
, (10)

where n = n(tkj). Also

Pα(n(tk1)|n) = e(tk1; n)Rk(tk1; n) exp

⎧
⎪⎨

⎪⎩
−

tk1∫

Tk(α)

Rk(u; n)du

⎫
⎪⎬

⎪⎭
, (11)

where n = n(Tk). Equation (9) becomes

Pα(n(Tk+1)|n) = Qαk(n(Tk+1)|n)

⎡

⎢⎣1 − exp

⎧
⎪⎨

⎪⎩
−

Tk+1(α)∫

tkj

Rk(u; n)du

⎫
⎪⎬

⎪⎭

⎤

⎥⎦ , (12)

where n = n(tkjk), and Qαk(n(Tk+1)|n) is a (finite) sum of multinomial proba-
bilities reflecting the ways n can be transformed into n(Tk+1). It is calculated
from {qk

ii′(α)}i,i′ .
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Integrating Pα(T ) over time provides the probability Pα(H) of the
corresponding history H,

Pα(H) =
∫

TK

∫

TK−1

· · ·
∫

T0

Pα(T ) dtKdtK−1 · · · dt0, (13)

where tk = (tk1, tk2, . . . , tkjk) and Tk = {tk|Tk < tkj < tk,j+1 < Tk+1}, again with
TK+1 = ∞.

To procede a number of regularity conditions is required.

Assumption 1 Assume the rate functions (cf. assumptions M5–M8) are contin-
uous in t for each time epoch (cf. M3–M4) and fixed α ∈ A (left/right continuous
at Tk(α) with finite limit). Further, assume int(cl(A)) ⊆ A and that the rate func-
tions are continuous in α for fixed t, Tk(α) (cf. M3) is continuous in α, {qk

ii′(α)}i,i′ ,
k = 1, . . . , K (cf. M4) are continuous in α, g(y; α) (cf. M8) is continuous in α,
and the mutation process (cf. M9) is continuous in α, for any α ∈ A.

Let 1S(x) be the indicator function for a set S. Assume the functions in u,
indexed by n,

1[TK(αn),t](u) Rk(u; αn, n), (14)

for t > 0, and

1[Tk(αn),Tk+1(αn)](u) Rk(u; αn, n), (15)

for k = 0, . . . , K − 1, are uniformly integrable for any series αn → α and any n
and t (fixed).

Further assume the functions in t, indexed by n,

1[TK(αn),∞)(t) Rk(t; αn, n) exp

⎧
⎪⎨

⎪⎩
−

t∫

TK(αn)

Rk(u; αn, n)du

⎫
⎪⎬

⎪⎭
(16)

are uniformly integrable for any series αn → α and any n (fixed).

The uniform integrability conditions are typically fulfilled, e.g. Eqs. (14) and
(15) are fulfilled if Rk(u; αn, n) ≤ C(n) for all u and some constant depending
on n, and Eq. (16) is fulfilled if Rk(u; αn, n) ≥ ε(n) > 0 for some constant
depending on n.

Note that Condition (3) and Assumption 1 ensure that there are countable
many histories H for a given sample configuration n, such that

1 =
∑

H
Pα(H), (17)
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and
Pα(Data) =

∑

H
Pα(Data|H)Pα(H). (18)

Asumption 1 guarantees the following result.

Lemma 1 Pα(T ), Pα(H) and Pα(Data) are continuous in α.

4 Two-locus sample histories

The aim of this section is to prove that two co-evolving loci, separated by a
large genetic distance almost evolve independently of each other. In this sec-
tion a fixed α is considered, in contrast to the previous section where continuity
properties in α were investigated.

Let two loci each L nucleotides long and separated by M nucleotides be
given. Only the DNA sequences of the two loci are observed (2L nucleotides).
A (time-dated) history for the two loci is embedded in the (time-dated) his-
tory of the 2L + M nucleotides. However, the history might be described by a
modified birth-death process with migration that has fewer events than the full
history of the 2L + M nucleotides. It can be done in the following way.

There are three types of sequences: (1) Those that are ancestral to locus 1
only, (2) those that are ancestral to locus 2 only, and (3) those that are ancestral
to both loci. In the beginning all sequences are of type 3. If a recombination
event happens in a type 3 sequence between the two loci (in the M nucleotides)
then it is replaced by one sequence of type 1 and one of type 2. If a recombina-
tion event happens in a type 3 sequence in locus 1 (2), a type 3 sequence and a
type 1 (2) sequence are created. If a recombination event happens in a type 1
(2) sequence in locus 1 (2), then two type 1 (2) sequences are created. After a
MRCA is found for locus 1 (2) that locus is subsequently ignored when tracing
the history of the other locus further back in time. See Fig. 2 for an illustration.

Fig. 2 An illustration of the difference between the full coalescent model and the modified model.
Shown is a sequence of L + M + L nucleotides separated by small vertical bars. Only locus 2 is
ancestral to the sample in this example. If a recombination event happens in the middle M nucle-
otides it counts in the (full) history of the 2L + M nucleotides, whereas it does not count in the
modified history
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The recombination and gene conversion rates of type 1 and 2 sequences do
not depend on M, only L, whereas the rates of type 3 sequences depend on L
and M. To procede the following assumption is required.

Assumption 2 The recombination rate ρik(t) is linear in sequence length, such
that the rate for type 1 and 2 sequences is ρik(t) = Lρ0ik(t), and the rate for type
3 sequences is (2L + M)ρ0ik(t). Further, it is assumed that ρ0ik(t) is bounded
uniformly away from 0, i.e. ρ0ik(t) > ρ0 > 0 for all t ≥ 0, i, and k.

This modification of the process reduces the total number of recombination
events in a sample history substantially. For the standard coalescent process the
number of recombination events is of order e(2L+M)ρ for the full birth-death
process, whereas it is of order e2Lρ for the modified process [9]. Here ρ is the
per site recombination rate.

Assumption 2 implies that the rate of recombination between two ancestral
loci is Mρ0ik(t). Informally, this has the consequence that for large M, a type 3
sequence is likely to break up into a type 1 and a type 2 sequence before being
involved in other events. The statement will be made more rigourous at the end
of the section.

The rate of gene conversion events for sequences of types 1 and 2, respec-
tively, is just the rate γik(t). Only break points within an ancestral locus affect
the history of the sample. The rate for sequences of type 3 can be divided into
the rate of events with one or two break points in locus 1 and none in locus 2
(and vice versa for locus 2), and the rate of events with a break point in each
locus. Thus, the rate, γ ∗

ik(t), of gene conversion events affecting one or both of
the loci can be decomposed into

γ ∗
ik(t) = 2γ 1

ik(t) + γ 2
ik(t), (19)

where γ 1
ik(t) is the rate of gene conversion in locus 1 (2) with the second break

point not in locus 2 (1) and γ 2
ik(t) is the rate of gene conversion affecting both

loci. The term γ 1
ik(t) appears once for each locus. Events with two break points

within the M nucleotides can be ignored as they do not affect the sample’s
history.

It follows that γ 1
ik(t) + γ 2

ik(t) = γik(t) and γ ∗
ik(t) = 2γik(t) − γ 2

ik(t) ≤ 2γik(t).
According to Wiuf [32], γ 2

ik(t) → 0 as M → ∞. It shows that for large M only
gene conversion events in type 1 and 2 sequences are likely to occur.

The next lemma shows that the histories of two loci with large distance M are
very similar to the histories of two unlinked loci (corresponding to M = ∞).
First a definition is required.

Definition 1 A T3-history (“Type 3 history”) is a time-dated history of two loci
fulfilling the following condition: If the sample configuration n(t) at time t con-
tains sequences of type 3, then the first event after time t is a recombination event
in a type 3 sequence with break point between the two loci (in the M nucleotides).

Note that all histories of two unlinked loci are T3 in that any type 3 sequence
break up instantaneously. Let PM denote the joint distribution of a sample of
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two loci, and P∞ the joint distribution of a sample of two independent loci, i.e.
for M = ∞.

Lemma 2 Let TMRCA(i) be the time of the MRCA of locus i, i = 1, 2; E(12)

the number of events where a type 3 sequence is created from a type 1 and a
type 2 sequence; E(i), i = 1, 2, the number of events only affecting the history
of locus i; and � the minimum time span between two events none of which are
recombination events in type 3 sequences.

Choose, tε < +∞, dε > 0, eε(12), and eε(i), i = 1, 2, such that P∞(Kε) > 1−ε,
where Kε = {TMRCA(i) < tε , δε < �, E(12) < eε(12), E(i) < eε(i), i = 1, 2} for
ε > 0. Then

PM(Kε , T3) > 1 − 2ε

for M > Mε , where Mε depends on Kε .

To prove consistency of the MCE bounds (depending on M) on the prob-
abilities of individual histories are required. However these appear of little
general interest and will not be reproduced here, but derived in the Appendix
in connection with the proofs of Lemmas 2 and 3.

5 Consistency

In order to prove consistency Peskir (1996) is followed closely. He considers
general stationary and ergodic processes, that further fulfill a number of regu-
larity conditions. The regularity conditions are similar to (but slightly stronger
than) conditions that normally are required for the maximum likelihood estima-
tor to be consistent under repeated (independent) sampling. Peskir’s conditions
are generally met in coalescent models that have been used for analyses of data.

Some conditions are now imposed to ensure ergodicity of the process.
Assume

(C1) An infinite array of consecutive segments of L nucleotides each, sampled
from an infinitely long chromosome is given

(C2) The array Data = (Data1, Data2, Data3, . . .), where Dataj is the observed
data in segment j, forms a stationary process, i.e. the distribution of the
data is translational invariant, for any α ∈ A

(C3) Pα(Dataj) is positive for all α ∈ A and all possible Dataj
(C4) Assumptions 1 and 2 are true.

The first two items are natural requirements in the context of models for
large genomic data sets. Then the following lemma holds.

Lemma 3 The stationary process Data = (Data1, Data2, Data3, . . .) is ergodic.
In particular, the CLF

hl(α; Data) = 1
l

l∑

j=1

log(Pα(Dataj)) (20)
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converges almost surely for l → ∞ to a limit, say, Iα0(α), for any α ∈ A, where
α0 ∈ A denotes the true value.

The proof of Lemma 3 suggests that the rate of convergence of the MCE is
log(M)/M, where M is the length between the two most distant segments. How-
ever, the convergence rate cannot be made exact by the methods used here:
The proof shows that outside a set of measure ε > 0 (where ε can be chosen
arbitrary small) the rate of convergence of hl(α; Data) is log(M)/M. This cannot
directly be translated into a rate of convergence of the MCE.

Assumption 3 Assume

inf
α∈A

hl(α; Data) > −∞ (21)

for any outcome of Data.

For example, Assumption 1 ensures that Assumption 3 is fulfilled if A is closed
and bounded (remember there are only finitely many possible data points). The
above conditions and assumptions guarantee the following:

Theorem 1 Let Amax be the set of maximum points of Iα0(α), where α0 denotes
the true value. Always α0 is in Amax. Let α̂l be the MCE of α obtained by maxi-
mizing the CLF hl(α; Data) with respect to α. Then the set of accumulation points
of the series {α̂l}l≥1 is in Amax. In particular, if Amax = {α0}, then α̂l converges
almost surely to α0 for l → ∞.

If the model is identifiable (not over-parameterized), then Amax = {α0}. For
a model to be identifiable it is required that for all α and α′ there is some Dataj
such that Pα(Dataj) �= Pα′(Dataj).

If the true model is not in A the ergodic property cannot be proven from the
assumptions. If the ergodic property holds then Theorem 1 is still true and α̂l
has accumulation points in Amax. In particular, if Amax = {α1} for some α1 in A,
then α̂l converges almost surely to α1 for l → ∞.

6 Discussion

Consistency of the MCE has been discussed in a very general coalescent frame-
work and conditions for which the MCE is consistent has been provided. The
examples that fall under this framework are many, including the basic coales-
cent with recombination and a general mutation process (e.g. Jukes–Cantor,
Kimura, or F84; see e.g. [8]). Coalescent models allowing for exponential
growth, or logarithmic growth, and bottlenecks similarly fulfill the conditions for
Theorem 1 to apply. For example the demographic models that are
allowed in Hudson’s programms fulfill the conditions (http://www.home.uchica-
go.edu/∼rhudson1). Similarly, Theorem 1 applies to models with a fixed number
of demes of constant size and migration between the demes [26], and Theorem 1
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also applies to the model by Nielsen and Wakeley [24] in which two popula-
tions mix some time in the past and migration is (not) allowed while the two
populations are separated. All the parameters used to describe these models
can be estimated consistently, or at least the MCE will approach a set of equally
optimal points, as specified in Theorem 1. Initially one might investigate Iα0(α)

computationally to ensure it is likely to have only one maximum point. Only in
rare cases will this information be available analytically.

The break point distributions for recombination and gene conversion are
perhaps not as general as sometimes required. The break point distributions,
uniform in both cases, are both independent of time and translational invariant,
i.e., variation in recombination and gene conversion rates along the chromo-
some is not modelled, neither is variation in tract length. These features are
realistic and important biological features. One way to accomodate for varia-
tion in the rates is to adopt a prior distribution on the rates. This will introduce
additional correlation between genealogies and data of linked loci and also
complicate the likelihood of the data given the history, because break points
are no longer drawn uniformly on the sequence but according to some other
distribution. This kind of model is not covered by the theory presented here –
and cannot be incoorporated without modifications.

The tract length distribution g(y; α) can be made more general (e.g. time and
deme dependent) – however it was kept simple for convenience. None of the
proofs nor techniques used in the paper require special modification to apply
more generally.

The present theory does not apply to models with selection, and to models
with contex dependent mutation rates, e.g if the mutation rate of a nucleotide
depends on the states of its neighbours. In these cases the likelihood of the data
does not separate in the form given in Eq. (5) and the techniques applied here
are not sufficient to prove consistency. An exception is codon-based models
where codons evolve independently of each other [7].

If the regions are not equally spaced the theory still applies. This will often
be the case for empirically collected data. Similarly, it is possible to prove con-
sistency if the regions are not of equal size. However, in this case it must be
assumed that all regions have size less than L (for some L), because otherwise
convergence of the CLF cannot be guaranteed. Strictly speaking it is not nec-
esaary to assume a lower bound on the size, because the theory applies equally
well for regions of size L = 1 as for regions of size L > 1. However, if L is very
small (e.g. L = 1) then the model is likely to be over-parametrized and the CLF
will not have a unique maximum.
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Appendix

In this section proofs of the lemmas in the main text are given.

Proof of Lemma 1. Consider Pα(T ). Continuity follows from continuity (by
assumption) of e(t; α, n), Rk(t; α, n), and Qαk(n(Tk+1)|n(tkjk)). The latter is a
sum of finitely many continuous terms. To prove continuity of the integrals in
Eq. (10)–(12) it suffices to note that the rate functions are uniformly integrable
according to Assumption 1, Eqs. (14) and (15).

Consider Pαn(H) written in the form of Eqs. (13):

Pαn(H) =
∫

TK

∫

TK−1

. . .

∫

T0

Pαn(T ) dtKdtK−1 . . . dt0. (22)

Using Eq. (7) each of the terms Uαnk(T ) and Vαnk(T ), k = 0, . . . , K − 1, are
uniformly integrable by Assumption 1, Eqs. (14) and (15), because Eqs. (10)
and (11) are bounded by Eqs. (14) and (15). The last term UαnK(T ) is uniformly
integrable by Assumption 1, Eq. (16). Because Pαn(T ) → Pα(T ) for every
time-dated history consistent with H, it follows that Pαn(H) → Pα(H), and that
Pα(H) is continuous in α.

Finally, consider Pα(Data) = ∑
H Pα(Data|H)Pα(H). For given H, one has

Pαn(H) → Pα(H), and further 1 = ∑
H Pαn(H). It follows, using Fatou’s lemma,

that
∑

H∈�

Pαn(H) →
∑

H∈�

Pα(H)

for any αn → α and any set � of histories. Hence for given ε > 0 one can choose
E such that

∑

H∈�E

Pαn(H) < ε

for large n, where �E is the set of histories with more than E events. Also
Pαn(Data|H) → Pα(Data|H), because

Pαn(Data|H) =
∫

TK

∫

TK−1

· · ·
∫

T0

Pαn(Data|T )Pαn(T )dtKdtK−1 · · · dt0,

Pαn(Data|T )Pαn(T ) and Pαn(T ) are uniformly integrable, and Pαn(Data|T )

is continuous by assumption (a sum of finitely many continuous terms).
It follows that

Pαn(Data) =
∑

H∈�c
E

Pαn(Data|H)Pαn(H) +
∑

H∈�E

Pαn(Data|H)Pαn(H)
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converges to Pα(Data) because the first summation is over finitely many
continuous terms and the second is at most ε for sufficiently large n. �

Proof of Lemma 2. The lemma is proven in the special case where n(0) is a
configuration with 2n sequences such that there are n sequences of type 1 and
n sequences of type 2. The proof in the general case can be derived in the same
way as the proof presented here.

Let T12 be a T3-history. The probability of T12 is (with the terms explained
below)

PM(T12) = P∞(T �
12)

E(12)∏

j=1

rikj(sj; nj)Rkj(sj; nj)

× exp

⎧
⎪⎨

⎪⎩
−

sj∫

tj

Rkj(u; nj) − Rkj(u; n′
j)du

⎫
⎪⎬

⎪⎭
, (23)

where T �
12 is the corresponding history for M = ∞; and tj, j = 1, . . . , E(12),

are the times of the E(12) events, where a type 3 sequence is created, and sj,
j = 1, . . . , E(12), are the times when the sequence again is broken up into a type
1 and a type 2 sequence. The configuration nj has one type 3 sequence and n′

j is
the same as nj but with the type 3 sequence broken up.

The times of events in T �
12 are the same as the times of events in T12 with

the exception that type 3 sequences break up instantaneously, i.e. at time tj.
Consequently, there is a one-many relation between histories T �

12 and T12. The
term

rikj(sj; nj)Rkj(sj; nj) exp

⎧
⎪⎨

⎪⎩
−

sj∫

tj

Rkj(u; nj)du

⎫
⎪⎬

⎪⎭

in Eq. (23) is the density of a recombination event in a type 3 sequence at time
sj. For M = ∞, the recombination event happens at time tj with probability 1
and the rate becomes Rkj(u; n′

j) for tj ≤ u ≤ sj.
Integrating out sj provides an upper and a lower bound to PM(T12). First note

that on Kε , the number of events is bounded by eε = 2eε(12) + eε(1) + eε(2),
and c1(t), c2(t), d(t) > 0 can be chosen such that

Rk(u; nj) − Rk(u; n′
j) > d(t)M, (24)

1 + c1(t)
M

>
Rk(u; nj)

Rk(u; nj) − Rk(u; n′
j)

≥ 1, (25)

and

1 ≥ rik(u; nj) > 1 − c2(t)
M

(26)
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for all 0 ≤ u ≤ t, i = 1, . . . , Dk, k = 1, . . . , K and any possible configuration nj
with at least one type 3 sequence. It is possible to choose such numbers because
of Assumption 1 and 2 and because 2 ≤ ∑

i ni ≤ 2n + eε is a (crude) upper
bound to the total number of sequences in the sample at any time on Kε . It
follows that

P∞(T �
12)

(
1 + c1(tε)

M

)e(12)

>

∫

S12

P(T12)ds, (27)

where

S12 = {t′j ≥ u ≥ tj|j = 1, . . . , E(12)}

and t′j is the time of the event following that at time sj. To prove the inequality,
relations (25) and (26) have been used, in addition to e(12) ≥ E(12), and

1 ≥
∫

tj≤sj≤t′j


(sj) exp

⎧
⎪⎨

⎪⎩
−

sj∫

tj


(u)du

⎫
⎪⎬

⎪⎭
dsj,

where 
(s) is a function such that 
(s) > 0; in particular this is true for 
(u) =
Rk(u; nj) − Rk(u; n′

j).
Similarly, it follows that

∫

S12

P(T12)ds > P∞(T �
12)

(
1 − c2(tε)

M

)e(12) e(12)∏

j=1

[
1 − e−(t′j−tj)d(tε )M

]

> P∞(T �
12)

(
1 − c2(tε)

M

)e(12) [
1 − e−δεd(tε )M

]e(12)

, (28)

where it has been used that

∫

tj≤sj≤t′j


(sj) exp

⎧
⎪⎨

⎪⎩
−

sj∫

tj


(u)du

⎫
⎪⎬

⎪⎭
dsj ≥ 1 − e−(t′j−tj)δ ,

if 
(u) > δ. This is in particular true for 
(u) = Rkj(u; nj) − Rkj(u; n′
j) >

d(tε)M = δ.
For convenience define the constants k1 and k2 by

k1 =
(

1 + c1(tε)
M

)e(12)

, (29)
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and

k2 =
(

1 − c2(tε)
M

)e(12) [
1 − e−δεd(tε )M

]e(12)

. (30)

Both of these are 1 + O(1/M) and depend on Kε . (The constants k1 and k2 will
be used again in the proof of Lemma 3.)

Integrating over the remaining times, keeping the constraint Kε , gives

k1 P∞(H�
12, Kε) > PM(H12, Kε) > k2 P∞(H�

12, Kε).

Summing over all T3 histories compatible with marginal histories H1 and H2
yields

k1

∑

comp

P∞(H�
12, Kε) ≥

∑

T3, comp

PM(H12, Kε) ≥ k2
∑

comp

P∞(H�
12, Kε)

with equality if there are no histories H12 and H�
12 that fulfill the constraints in

Kε . Next, this results implies that

k1 P(H1)P(H2) ≥ PM(H1, H2, Kε , T3)

≥ k2
[
P(H1)P(H2) − P∞(H1, H2, Kc

ε)
]

.

As a consequence Mε can be chosen such that

PM(Kε , T3) > 1 − 2ε

for M > Mε . This completes the proof. �

Proof of Lemma 3. Note that because the number of nucleotides L is fixed,
any function that does not take the value ±∞ is bounded. Consider a function
f (Dataj) of the Dataj and the average over all l regions

Fl(Data) = 1
l

l∑

j=1

f (Dataj).

It is to be proven that Fl(Data) converges for all bounded functions. To do so it
will be shown that the variance of Fl(Data) converges to zero as l → ∞. Now

Var[Fl(Data)] = 1
l

E[f (Data1)
2]

+ 2
l 2

∑

i<j

E[f (Datai)f (Dataj)] − E[f (Data1)]2, (31)

using stationarity of the process. The first term converges to zero.
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Let Kε be chosen as in Lemma 2. Then

E[f (Datai)f (Dataj)] =
∑ ∫

Kε ,T3

f (Datai)f (Dataj)PM(Datai, Dataj|T12)

×PM(T12)dt ± 2εfmax =
∑ ∫

Kε ,T3

f (Datai)f (Dataj)

×P(Datai|T1)P(Dataj|T2)PM(T12)dt ± 2εfmax, (32)

where the sum is over all possible observations, fmax is the maximum absolute
value f (Datai) can obtain, and T1 and T2 are the marginal histories of locus 1
and 2, extracted from the joint history T12.

Using the the inequalities (27) and (28) provides the following upper and
lower bound to the sum in Eq. (32). Upper bound:

k1

∑ ∫

Kε

f (Datai)f (Dataj)P(Datai|T1)P(Dataj|T2)P∞(T �
12)dt,

and lower:

k2
∑ ∫

Kε

f (Datai)f (Dataj)P(Datai|T1)P(Dataj|T2)P∞(T �
12)dt,

where k1, k2, and T �
12 are as in the proof of Lemma 3 (k1 and k2 are defined

in Eqs. (29) and (30), respectively), and Ti, i = 1, 2 are the marginal histo-
ries extracted from T �

12. For corresponding histories T12 and T �
12, the marginal

histories are identical.
Regarding the upper bound. Integrating over all possible histories (instead

of over Kε) yields the bound

k1E[f (Datai)]E[f (Dataj)]. (33)

Regarding the lower bound. Integrating over all possible histories yields the
bound

k2E[f (Datai)]E[f (Dataj)] − k2fmaxε. (34)

Note that k1 and k2 are 1 + O(1/M), where O(1/M) depends on the chosen ε

(see proof of Lemma 2). Inserting Eqs. (33) and (34) into Eq. (31) shows that
the variance can be made arbitrary small by first choosing ε > 0 sufficiently
small and then M sufficiently large. Note that there is a term depending on
log(M)/M that converges to zero for large M. The proof is completed. �
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Proof of Theorem 1. With the assumptions made in this paper the following
is also true: The regularity assumptions in Peskir [27], Sect. 2; the conditions
in Peskir [27], Lemma 1; and Eqs. (7)–(9), p. 307 in Peskir [27] with � = A
(in Peskir’s notation). Hence M̂ ⊆ M (in Peskir’s notation) and the theorem
follows from Theorem 1, Eqs. (2) and (3), in Peskir [27]. �
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