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The evolutionary mechanisms by which protein interaction networks grow and
change are beginning to be appreciated as a major factor shaping their
present-day structures and properties. Starting with a consideration of the biases
and errors inherent in our current views of these networks, we discuss the
dangers of constructing evolutionary arguments from naive analyses of network
topology. We argue that progress in understanding the processes of network
evolution is only possible when hypotheses are formulated as plausible
evolutionary models and compared against the observed data within the
framework of probabilistic modeling. The value of such models is expected to be
greatly enhanced as they incorporate more of the details of the biophysical
properties of interacting proteins, gene phylogeny, and measurement error and
as more advanced methodologies emerge for model comparison and the

inference of ancestral network states. [DOI: 10.2976/1.3167215]
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The study of protein interaction net-
works (PINs) is a rapidly maturing
field. Since the first observations of un-
expected structure in the yeast protein
interaction data (Jeong et al., 2001),
focus has shifted somewhat from the
description of large-scale topological
features (Barabasi and Oltvai, 2004)
via simple models of how such fea-
tures may have evolved (Barabasi and
Albert, 1999; Vazquez et al., 2003;
Aloy and Russell, 2004) toward a
broader and more subtle appreciation
of the underlying biological mecha-
nisms of network evolution (Monica,
2005; Keskin ef al., 2008) and the ef-
fects of sampling, bias, and experi-
mental uncertainty on the available data
(Hakes et al., 2008). In this article, we
offer a perspective on the future direc-
tion of this field, with an emphasis on
emerging strategies for interpreting
noisy and incomplete interaction data
and methods for comparing alternative

evolutionary models as explanations
of the network structures we observe
today.

DISCOVERING PROTEIN
INTERACTIONS ON A LARGE
SCALE

The yeast two-hybrid system (Y2H)
and affinity purification followed by
mass spectrometry (AP/MS) are cur-
rently the two predominant techniques
to discover protein interactions on a
large scale. Y2H systematically at-
tempts to test all pairwise combinations
of known proteins to derive a binary in-
teraction network, potentially at the
cost of including biophysically possible
but nonphysiological interactions
(Fields, 2005). Hence, Y2H provides
information on the genomewide, bi-
nary interaction patterns across known
proteins, i.e., the network topology.
Proteins associate (often temporarily)
into larger protein complexes, in which
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all constituents do not necessarily interact directly but are
mediated through others (Keskin e al., 2008). AP/MS aims
to systematically extract and identify protein complexes un-
der particular physiological settings (Wodak et al., 2009),
thus providing information on the architecture of protein
complexes in terms of their constituents within a defined
context. By design, Y2H and AP/MS data sets offer comple-
mentary, genomewide insights into protein-protein interac-
tions (PPIs) and their roles in the functional organization of
the cell (Hartwell et al., 1999).

A number of PPI data sets are now available for both
the prokaryotic and eukaryotic domains, e.g., Titz et al.
(2008), Rain et al. (2001), Parrish et al. (2007), Shimoda
et al. (2008), Sato et al. (2007), Stelzl et al. (2005), and Rual
et al. (2005), with a particular focus on the model organism,
baker’s yeast (S. [Saccharomyces] cerevisiae) (Uetz, 2000;
Ito, 2001; Yu et al., 2008; Gavin ef al., 2006; Krogan et al.,
20006); see also PPI databases such as IntAct (http://www.
ebi.ac.uk/intact/) or database of interacting proteins (DIP)
(http://dip.doe-mbi.ucla.edu/). These data have been com-
piled by a variety of high-throughput techniques, notably
Y2H and AP/MS, and may be augmented with other interac-
tions curated from experimental reports in the literature
(Reguly et al., 2006) and/or computationally inferred inter-
actions (Jensen et al, 2008). Complementary high-
throughput PPI screens (Braun et al., 2009), including mam-
malian cell-based assays, are now becoming available to
target the space of protein interactions more comprehen-
sively, in addition to novel techniques that seek to identify
interactions between proteins and other biomolecules (Rus-
sell and Aloy, 2008).

A recent comparison of Y2H and AP/MS data, in terms of
the reproducibility of reference interactions and functional
genomic attributes, confirmed that these screening tech-
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niques have different sensitivities (Yu et al., 2008; Braun
et al., 2009). Y2H is generally better at identifying weaker
transient interactions, whereas AP/MS is generally better for
the extraction of protein complexes with stable cores (Gavin
etal.,2006). Each technique also has a unique distribution of
identified pairwise interactions with respect to functional
categories: AP/MS shows a marked bias toward highly abun-
dant proteins and detects more protein interactions between
proteins of the same functional category (Collins et al.,
2007; Chiang et al., 2007). These different strengths and
weaknesses often reflect both a systematic experimental bias
and genuine biological effects. For example, Y2H matrix
techniques involve the overexpression of both interacting
proteins, thus limiting the effect of abundant proteins,
whereas prey proteins are typically endogenously expressed
in AP/MS (Gavin et al., 2006; Krogan et al., 2006) to more
accurately reflect the architecture of protein complexes.

Protein interactions determined by Y2H and AP/MS ap-
proaches are commonly believed to be of low accuracy. First
established in terms of the false-negative and false-positive
rates relative to a “gold standard” reference set derived from
complex membership (von Mering et al., 2002), this associa-
tion also stems from the low overlaps between the sets of in-
teractions observed in different large-scale S. cerevisiae
screens by different laboratories (Yu ef al., 2008; Collins et
al.,2007). Furthermore, only relatively weak correlations are
seen between the numbers of interactions for each yeast pro-
tein, as observed in independent Y2H screens (Deeds et al.,
2006). However, it is often inappropriate to compare Y2H
directly with AP/MS data (Yu ef al., 2008) and, crucially, the
meaning of comparing network data sets under the tacit in-
terpretation of untested protein pairs as negative measure-
ments remains unclear, see Box 1.

IMPLICATIONS OF COVERAGE, SATURATION AND SENSITIVITY CHARACTERISTICS OF INTERACTION ASSAYS

Several recent studies suggest that the small observed pairwise overlap and weak degree correlations between two PINs can be
explained by characteristics other than a high false positive rate.

First, not all possible pairwise protein combinations are included in high-throughput interaction assays, which results in
incomplete coverage () of the interaction space prior to any screening. Fig. A shows the space of testable interactions as a
fraction of all possible pairwise combinations of known proteins for two bait-prey experiments (1, y,), and the respective
fractions of observed interactions after the assays have been analyzed (15*,75*). One immediate concern is that the
misinterpretation of untested combinations (white) as negative measurements will artificially increase the inferred false

positive rate (Chiang et al., 2007).
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Second, assay sensitivities for detecting reference interactions are in the range of 20-35% (Braun et al., 2009), hence, the
fraction (p) of proteins reported as participating in at least one interaction remains low.

Finally, since the false negative rate in a single assay is still relatively high, the space of testable interactions is independently
screened several (typically n=3) times (Yu ef al, 2008). To benchmark the percentage of identified interactions that are
detectable with a particular method, a candidate set of proteins is repeatedly screened for interactions until no more interactions
are found, and the percentage of detected interactions among the candidate set after n repeats is reported as the saturation ().

The proportion w;= ){’r'%j/ 'yj‘?bs of interactions common to two reported data sets relative to one of the data sets, commonly
termed relative overlap, depends on all of these characteristics. For S. cerevisiae Table B reports 7y, p, and « for the
all-against-all screen by Uetz (2000) and Yu ef al., (2008), those identified at least three times by Ito (2001) and those derived
by Collins ef al. (2007) from complex associations. These characteristics may help to explain the small relative overlaps
between two observed PIN data sets (see Table C for the relative overlap w;; of data set i in rows and data set j in columns). In
future publications of genome-scale interaction assays, detailed reports on the bait and prey proteins actually tested and the
interactions detected in each of the 7 screens would help to clarify false positive rates and the interpretation of overlap between
data sets, and improve the possibilities of subsequent data analysis (Gentleman and Huber, 2007).

Table B Table C
Yu- Uetz- Ito- Collins-

Repor‘ted . ReporFed wjj screen screen core score
S. cerevisiae proteins  interactions P’ Y K
Uetz-screen (Y2H) 817 692 0.14 069" 029  Yu-screen - 0.18 0.24 0.02
Ito-core (Y2H) 797 841 0.14 076" 035" ety 0.07 _ 0.14 0.01
Yu-screen (Y2H) 1,278 1809 022 077 085 creen
Collins-score 1,622 9,069 0.28 0.79° 0.84 Tio~aaite 0.11 0.18 _ 0.01
(AP/MS) Collins- 0.08 0.13 0.14 -

*Similar or slightly higher levels values of p were achieved for Y2H screens in
two bacteria, Campylobacter jenuni and Treponema pallidum (Parrish et al., 2007; Titz
et al., 2008), whereas much less complete Y2H screens have been presented for Heli-
cobacter pylori (Rain et al., 2001), Synechocystis sp. (Sato et al., 2007), Mesorhizo-
bium loti (Shimoda et al., 2008), as well as human, fly, and worm.

bReported data sets often lack many experimental details, and these values have been
estimated in (Yu et al., 2008).

score
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Much recent and ongoing effort has been put into im-
proving the accuracy of Y2H and AP/MS techniques. Sys-
tematic errors in extracting protein interaction data, such as
auto-activating bait proteins in Y2H screens and sticky pro-
teins in affinity purifications, have been identified, leading to
the formulation of quality standards (Orchard et al., 2007)
and the development of novel experimental methods (Wodak
et al.,2009; Braun et al., 2009; Russell and Aloy, 2008; Col-
lins et al., 2007). Current Y2H protocols do not detect more
interactions involving nuclear proteins than other interaction
assays, and are able to identify interactions that depend on
post-translational modifications (Braun et al., 2009). Assess-
ing recent Y2H and AP/MS assays in terms of their reproduc-
ibility of respective sets of reference interactions suggests
that overall, both have now matured to match or exceed
literature-curated interaction data sets in their accuracy (Yu
et al.,2008; Collins ef al., 2007). Nevertheless, several unre-
solved issues remain (Yu et al., 2008; Braun et al., 2009),
and the identification of systematic errors in particular is not
straightforward. Novel statistical models that make fuller use
of the directionality of testing interactions in bait-prey sys-
tems (i.e., both Y2H and AP/MS) can be used to investigate
the internal consistency of PIN data sets and help to filter out
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proteins that are likely to be associated with systematic er-
rors (Chiang et al., 2007). Both technological and statistical
advances should help to dispel the commonly held notion
that high-throughput interaction network data are inherently
of low accuracy. Instead, the observed small overlap and
weak correlation of protein degrees between PINs appear to
stem from low assay sensitivities, low coverage of the inter-
action space, and low saturation characteristics of the earlier
high-throughput experiments (see Box 1). However, an accu-
rate and robust estimation of false positive rates remains dif-
ficult and suffers from the small size of reference data sets
(Braun et al., 2009).

NETWORK TOPOLOGY: SAMPLING, BIAS,

AND INTERPRETATION

Even in their present, incomplete, and noisy state, PPI net-
works show many topological features that deviate markedly
from those expected under standard mathematical descrip-
tions of random graphs (Bollobas, 2001) (see Box 2). In
many respects, the initial surprise regarding these topologies
reflects only our poor understanding of what we should ex-
pect to find from our current, biased, and incomplete views
of an evolved and evolving network.

BOX 2
A BRIEF INTRODUCTION TO SOME TOPOLOGICAL FEATURES OF PPl NETWORKS

A multitude of topological features of binary interaction graphs has been investigated, many of which have been claimed to be
of biological importance (Mason and Verwoerd, 2007). Since most biological interpretations of seemingly intuitive features of
available network data are under continued revision, topological features are increasingly interpreted as mere summary
statistics whose statistical properties may be rigorously and systematically investigated under a given utility function
(Middendorf et al., 2004; de Silva et al., 2006; Przuij, 2007; Ratmann ef al., 2007; Reyes et al., 2008). In this context, choosing
an optimal combination of network summaries will likely be an area of future research. Here we provide a brief introduction to
some of the topological features most commonly encountered in analyses of PPI data.

The number of interactions per protein (degree) (Fig. A) is very heterogeneous, and the (node) degree distribution p(k), i.e.,
the frequency with which a protein (node) interacts with & other proteins, is usually observed to follow a fat-tailed distribution
with many low-degree proteins and few high-degree proteins. This relationship was approximated to a power law p(k) =k ¥ by
Barabasi and Albert (1999) and Albert et al. (2000). Nodes of extreme degree (hubs) (Fig. B) are somewhat arbitrarily defined
because the log-log plot of the degree distribution usually resembles a straight line, making it impossible to identify a particular
degree value that would separate “hubs” from “nonhubs.” Nevertheless, network hubs have received extensive attention in the
literature, as further discussed in Box 3. If an interaction is randomly chosen, a node at its end with degree £ and remaining
degree k—1 is not distributed according to p(k), but is distributed in proportion to kp(k). The degree correlation is the expected
difference of observing an interaction with joint remaining degrees (7, k) rather than with remaining degrees j and & at either end
(Newman, 2002). Maslov and Sneppen (2002) investigated the degree correlations between neighboring nodes in the S.
cerevisiae PIN, reporting that hubs are statistically more likely to interact with proteins of small degree rather than with other
hubs, indicating a modular structure of PINs (Ravasz et al., 2002). The clustering coefficient of a node in a connected graph
is defined as the probability that any pair of its neighbors are themselves connected (Fig. C), and the average path length is
the mean length of the paths among pairs of nodes in a connected component. Binary interaction networks show small-world
properties (Watts and Strogatz, 1998) in that they have high average clustering coefficients compared to random graphs
(Bollobas, 2001), and have small average path lengths, such that most proteins can be reached in a small number of
interaction-steps. Subgraphs are small subsets of nodes with specific interaction patterns (Fig. D) that are commonly found to
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overlap one another. Motifs are subgraphs that are significantly overabundant relative to heuristically randomized versions
of the observed network data (Milo ez al., 2002). Their functional or evolutionary interpretation remains controversial, and
no convincing overall associations of subgraph overabundance with gene function or evolutionary conservation beyond generic
pairwise interactions have been found (Mazurie ez al., 2005; Wang and Zhang, 2007). It has been observed that subgraph counts
vary across several orders of magnitude and aggregate in a coordinated manner in PINs (Vazquez et al., 2004; Presser
etal., 2008). As an ensemble, they might therefore readily reflect dynamic evolutionary processes rather than purely stochastic
effects (Rice ez al., 2005). Different kinds of subgraph ensembles may be evaluated in various ways. For example, z-scores can
be computed for each subgraph relative to the same randomization schemes, and networks have been tentatively classified
according to such subgraph profiles (Milo ef al., 2004). Subgraph profiles are by construction contingent on a null model and
are highly sensitive to its specification (de Silva ef al., 2006; Artzy-Randrup ef al., 2004; Wiuf and Ratmann, 2009). However,
subgraphs can simply be enumerated in various ways (Middendorf et al., 2005; Vazquez et al., 2004; Przulj, 2007), and
comparable subgraph distributions are subsequently derived by transforming these counts into relative frequencies.

Figure A. Node degrees. . ) . ) )
Figure B. Hubs, arbitrarily defined as having degree =5, are

shown in blue.

0.67 O

Figure D. Network subgraphs: triangles are shown in green

Figure C. Clustering coefficients are shown for each node .
and squares in orange.

having =2 neighbors.
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BOX 3
CHALLENGING THE CONCEPT OF HUB PROTEINS

Proteins with unusual or extreme properties are of natural interest in molecular biology. Since the first large-scale PPI data sets,
considerable attention has been given to the properties of those proteins that are associated with the fat tail of the power-law like
degree distribution, and how these hubs might relate to the evolution of network structure.

If highly connected proteins are assumed to possess a higher proportion of interface residues, one simple prediction is that
hubs should generally evolve more slowly (Fraser ef al., 2002). However, expression level has been shown to be the most
powerful predictor of a protein’s evolutionary rate over its entire coding sequence (Pal ez al., 2001; Drummond et al., 2005).
When this factor is controlled for a bewildering range of conflicting results are obtained as to whether hubs generally have
evolutionary rates that deviate from proteins with a lower degree, depending on the phylogenetic method and the particular
interaction network employed (Stumpf ez al., 2007). It does at least seem unlikely that selective pressures have directly shaped
the degree distributions of protein interaction networks (Hahn e al., 2004), providing further evidence against an association
between power-law networks and mutational robustness.

Other properties of hub proteins have been no less controversial. The deletion of a gene encoding a network hub might be
expected to have greater phenotypic consequences than the deletion of a nonhub gene, either due to the higher likelihood of
disrupting the network connectivity (Jeong ef al., 2001) or, more simply, because of the larger number of interacting partners
that are affected. However, in a recent comparative analysis of several different yeast PPI data sets, Yu et al. (2008) found
protein degree to be significantly correlated with gene essentiality only for literature-curated (Reguly et al., 2006) and
small-scale Y2H (Uetz, 2000) networks, both of which are known to be biased toward essential proteins. In their comprehensive
Y2H network, degree was found to be unrelated to gene essentiality but significantly correlated with the number of observed
phenotypes upon single gene knockout (genetic pleiotropy), implying that hub proteins are involved in more cellular processes
than nonhubs. Finally, a distinction between “party” (simultaneously interacting) and “date” (serially interacting) hubs has
been proposed, based on multiple lines of evidence including bimodal expression correlation (Han ez al., 2004), differential
enrichment in colocalization annotation (Han ez al., 2004), differences in evolutionary rate across the entire coding sequences
(Fraser, 2005), and the structural network stability on party or date hub deletion. However, employing a literature-curated

interaction network, Batada and co-workers (Batada ef al., 2006; Bertin et al., 2007) could not reproduce these findings.
These disagreements concerning the properties of hub proteins have largely been attributed to the biases and interpretation

of primary AP/MS data (Hahn et al., 2004; Bloom and Adami, 2003; Bertin et al., 2007). Alternatively, the sensitivity of these
results may also indicate that “node degree” alone is a poor surrogate measure for the biophysical properties of interacting
proteins. Kim ez al. (2006) were able to map a subset of the observed interactions in the yeast binary interaction network to
structurally resolved interfaces (Finn et al., 2005), and classified hubs in terms of their distinct binding interfaces. If a protein
with high degree has only one or two binding interfaces, then it must interact with its partners transiently; conversely, if it has
multiple interfaces, then it may interact with all its partners simultaneously, potentially forming an obligate complex. The
authors found that multi-interface hubs are more likely to be coexpressed with their interaction partners than those with one or
two interfaces, twice as likely to be genetically essential and have significantly lower overall evolutionary rates even when
controlling for gene expression levels. It thus appears that, when stratified according to their biophysical properties, at least a
subset of hub proteins can be found that correlate with the genomic attributes traditionally associated with the hubs of binary
interaction networks (Jeong et al., 2001; Fraser ef al., 2002; Han et al., 2004). Ongoing efforts to map different forms of PPI
evidence onto structurally classified proteins (Jensen et al., 2008; Winter et al., 2006; Wilson et al., 2009) are expected to lead
to a more detailed and comprehensive understanding of protein interactions and their evolution (Keskin et al., 2008).

The observation that the degree distributions of many could be subject to natural selection in the way initially pro-

biological networks have similar fat-tailed forms (see Box 2)
was initially taken as an example of evolutionary conver-
gence to maintain the correct functioning of the cell when
genetic aberrations may incur the random loss or failure of
its constituents, a hypothesis known as mutational robustness
(Albert et al., 2000). This interpretation has since been con-
tested (Yu et al., 2008; Wagner, 2003a, 2003b; Keller, 2005),
and it seems unlikely that the global network topology itself
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posed. It is now largely recognized that fat-tailed distribu-
tions that approximately follow a power law are in fact quite
common, particularly when the property in question (protein
degree) can be expected to be highly heterogeneous (Keller,
2005). In addition, fitting data of limited range to such distri-
butions is suspiciously easy on a log-log plot (Keller, 2005).
More rigorous statistical methods have shown that the avail-
able data are in many cases better fitted by other fat-tailed

295



HFSP Journal

distributions, particularly the lognormal (Stumpf et al.,
2005; Clauset et al., 2009). On statistical grounds, there is
thus little support for interpreting the ubiquity of fat-tailed
degree distributions in current network data sets as a univer-
sal law of biology. Rather, the fact that fat-tailed degree dis-
tributions are easy to generate (Vazquez et al., 2003; Deeds
et al.,2006; Doyle et al., 2005; Han et al., 2005) implies that
the network architecture may have been chiefly determined
by well-known genetic events, such as gene duplication,
gene loss, and point mutation (Aloy and Russell, 2004), with
no requirement for selection acting at the level of its global
topology (Wagner, 2003a, 2003b).

To assess the impact of incompleteness, the topological
features of binary interaction networks may be investigated
under different sampling schemes. As statistical measures
become less local, the effects of sampling become increas-
ingly subtle (de Silva ef al., 2006). For example, assuming
current levels of link coverage, true networks with qualita-
tively different degree distributions may give rise to subnets
with power-law like degree distributions (Han et al., 2005).
A case in point is that conclusions derived from single node
properties, such as correlations between multi-interface hubs
and their evolutionary rate (see Box 3), are thought to be
robust under high levels of incompleteness because sampling
effects are proportional to the fraction of retained nodes
under random node sampling (de Silva et al., 2006). By
contrast, network motifs (Milo et al., 2002) and subgraph
profiles (Milo et al., 2004) are severely affected under vari-
ous models of incompleteness (de Silva ef al., 2006) as they
are contingent on an arbitrarily defined network null model,
e.g., (Artzy-Randrup et al., 2004) (see Box 2). Simply enu-
merating subgraph counts circumvents the problem of
null model selection and in addition provides a more
comprehensive survey of the local topological features of a
given network (Middendorf et al., 2005). By analogy to foot-
prints in the soil that provide clues about the movements of
several animals (Rice et al., 2005), subgraph censuses may
provide deeper insights into the dynamics of network evolu-
tion. Already, they have been successfully employed to dis-
criminate between various qualitative evolutionary scenarios
in several studies (Middendorf et al., 2004, 2005; Kuo et al.,
2006; Ratmann ef al., 2009).

In addition to being incomplete, binary interaction data
sets exhibit numerous biases under fixed experimental
conditions, stemming both from experimental protocols
(von Mering et al., 2002) and data handling, such as the
interpretation of primary data (Wodak et al., 2009; Collins
etal.,2007) or postprocessing to increase the accuracy of the
reported interactions (Hakes et al., 2008). Such biases are
known to affect network summaries. For example the corre-
lation between the degrees of interacting proteins (Maslov
and Sneppen, 2002) (see Box 2) can change from positive to
negative depending on the choice of data set (Hakes et al.,
2008), thus casting doubt on any biological conclusions de-
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rived solely from this topological property. Against the back-
drop of the flexible and dynamic nature of protein interac-
tions (Keskin ef al., 2008), observed network data must also
be associated to particular experimental conditions in the
same way as gene expression data, and these conditions must
ultimately be varied to obtain a more comprehensive under-
standing of protein interactions (Benfey and Mitchell-Olds,
2008).

In this context, we argue that the interpretation of pri-
mary network data deserves more attention. For example,
concerning AP/MS screens, either all proteins associated in a
complex are traditionally said to interact directly (the “ma-
trix” model), or only the bait protein is interpreted to interact
directly with all other associated proteins (the “spoke”
model) (Wodak et al., 2009). Changing from one model to
the other typically causes considerable shifts in the topology
of the derived binary interaction networks (Hakes et al.,
2008). Therefore, any purportedly significant observations
that are contingent on either the matrix or the spoke model
could potentially be artifactual (Bloom and Adami, 2003).
As a consequence, more sophisticated models to derive bi-
nary interaction information from primary AP/MS data have
been proposed and tested; the “socio-affinity index” pro-
posed by Gavin ef al. (2006) has been superseded by Baye-
sian classifiers that also take negative measurements into ac-
count (Krogan et al., 2006; Collins ef al., 2007), while it is
also possible to explicitly model and infer protein member-
ship in functional modules (Scholtens and Gentleman,
2004). Although methods generally applicable to bait-prey
systems exist (Gilchrist et al., 2004), robust statistical meth-
ods that take into account the particularities of primary data
on specific platforms are likely to be more powerful (Braun
et al., 2009). Furthermore, while the quality of primary net-
work data from recent AP/MS screens appears to be compa-
rable (Collins et al., 2007), the computational method used
to partition the set of identified binary interactions into clus-
ters, which aim to represent functional complexes, accounts
for the most discernible differences between published net-
work descriptions (Wodak ez al., 2009). Turning one step fur-
ther, recent probabilistic developments allow now to directly
estimate important topological quantities, such as the node
degree, from noisy bait-prey data (Scholtens et al., 2007). It
thus appears that a deeper appreciation of the nature of the
primary network data derived from high throughput experi-
ments, and the systematic and stochastic measurement errors
therein are key to making better use of existing data (Gentle-
man and Huber, 2007). Along this way, the developemnt of
refined, more appropriate statistical tools will be necessary.

STRUCTURAL INFORMATION ON PROTEIN
INTERACTIONS

In general, binary interaction networks encode only high-
level information on which proteins may interact with each
other. Those protein complexes for which the structure has
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been determined provide more detailed information on how
proteins interact at an atomic resolution (Keskin et al.,
2008). Interestingly, proteins that form transient complexes
are found to evolve significantly faster than proteins that
are part of obligatory complexes (Teichmann, 2002). More-
over, this rate difference is not solely due to the difference in
the number of residues implicated in binding (Janin ef al.,
2007): analyzing a carefully curated set of protein com-
plexes, Mintseris and Weng (2005) found that interface resi-
dues in obligatory complexes are significantly more con-
served than those of transient interactions, show much
stronger residue interdependence, and evolve at significantly
lower rates. Although both types of interaction impose evo-
lutionary constraints on the interacting proteins (Teichmann,
2002), the selective pressures on the latter are relaxed rela-
tive to the former and result in a smaller degree of interface
coevolution between transiently interacting proteins. There-
fore, it appears to be important to distinguish between obli-
gate and transient interactions from an evolutionary perspec-
tive.

These findings support our view that, despite their cur-
rent limitations, current binary network representations pro-
vide a useful framework for mapping out the evolutionary
properies of interacting proteins. Integrating binary network
data with the increasingly comprehensive catalog of structur-
ally resolved protein interactions (Berman et al., 2003) is one
promising avenue for the reinterpretation of topological
quantities in terms of biophysical properties of interacting
proteins (Kim et al., 2006) (see Box 3). Taking biological
representation one step further, composite networks (Yu et
al., 2006), comprising regulatory, protein-protein, and meta-
bolic interactions, as well as those to other biomolecules,
may provide a better static picture of the dynamic interac-
tome than the basic PPI network. The details provided by an
atomic resolution of all of these interactions are likely to be
necessary to fully comprehend the evolutionary plasticity
and constraints on the cellular system (Aloy and Russell,
20006).

GENE DUPLICATION AND PROTEIN

NETWORK EVOLUTION

If we hope to understand the origins and functional implica-
tions of protein interaction networks, the analysis of static
network properties is not enough. Moving from network to-
pology to evolutionary dynamics means considering the fine
grain of changes to the protein network in the context of the
dynamic genome in which it is encoded. Notwithstanding
the importance of genes that may originate from other
sources (e.g., de novo gene production from noncoding se-
quence or horizontal gene transfer events), the majority of
new genes are generated from existing genes by various
mechanisms of duplication (Lynch, 2007¢). Since the pro-
teins encoded by these duplicate genes inherit at least part of
their parent’s structure intact, it seems that any reasonable
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model of protein network evolution must invoke gene dupli-
cation as a fundamental mechanism for network growth. In-
deed, the direct inheritance of interactions has been shown to
be an important mechanism in the evolution of the S. cerevi-
siae protein interaction network (Presser et al., 2008) and ex-
plains the organization of many protein complexes (Pereira-
Leal et al., 2007; Levy et al., 2008).

The molecular mechanisms by which duplicate genes
arise are diverse, ranging from whole genome duplication to
more restricted duplications of chromosomal regions, of
which single gene duplications appear to occur most often
(Lynch, 2007c). After a single gene duplication event, the
two genes may assume one of several fates over relatively
short evolutionary timescales (Lynch, 2007c), and several
models have been proposed to explain changes in the func-
tion of one or both genes (Conant and Wolfe, 2008), as de-
tailed in Fig. 1. In general, it is difficult to define and delimit
what the function of a protein is (Pal ef al., 2006), and hence
what would constitute a change in function, particularly
when the set of ancestral functions remains elusive (Conant
and Wolfe, 2008). Complementing the substantial evidence
regarding the evolutionary fate of gene duplicates that have
been collected from genomic sequence and expression data
(Lynch, 2007c¢; Li et al., 2005), the protein interaction pat-
terns among gene duplicates may provide new insights into
the functional role of each protein.

Although protein-protein interactions are only one aspect
of gene function (Pal ef al., 2006) and binary interaction net-
works may contain a large number of nonphysiological inter-
actions (Russell and Aloy, 2008), analysis of current data
suggests that the partial and/or complementary functional di-
vergence between retained paralogs is an important factor in
evolution (Force et al., 1999; Des Marais and Rausher,
2008). Indeed, rates of evolution of duplicate genes are sub-
stantially accelerated in the period following duplication
(Lynch, 2007¢c) and as a consequence the number of protein
interactions shared by yeast paralogs appears to decrease
rapidly as a function of their evolutionary distance (Wagner,
2001), supporting the role of models other than backup-
compensation, such as pathway redundancy, in explaining
phenotypic robustness (Kupiec et al, 2007). However,
duplication-derived protein-protein interactions are not en-
tirely reshuffled during this process (Maslov ef al., 2004; He
and Zhang, 2005; Evlampiev and Isambert, 2007), suggest-
ing that a small fraction of all paralogs may be able to com-
pensate for each other under certain conditions (Thmels ef al.,
2007).

As useful abstractions to the continued long term evolu-
tionary processes of duplication and divergence, the different
models for the fate of duplicate gene pairs (see Fig. 1) make
contrasting predictions about the interaction patterns of re-
tained paralogs over a short time. Specifically, He and Zhang
(2005) found evidence for rapid subfunctionalization among
yeast paralogs, which may drive their short-term retention
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(van Hoof, 2005). However, their observation that the num-
ber of nonoverlapping interaction partners among paralogs
increases over evolutionary time scales does not necessarily
imply a substantial role for ongoing neofunctionalization in
network evolution, as this may be explained by duplication of
the interacting partners themselves (Gibson and Goldberg,
2009a). The retention of duplicate genes by partial and/or
complementary divergence (Force ef al., 1999; Des Marais
and Rausher, 2008) is particularly relevant in the generation
of novel patterns of gene expression: evolution of the verte-
brate Hox gene family provides remarkable examples of
complementary degenerative loss of regulatory modules,
whereas their coding sequences are almost perfectly con-
served. Such patterns of decoupled evolution are also ob-
served in yeast (Maslov et al., 2004; Wagner, 2000), support-
ing further that this mode of evolution may be widespread
even beyond the higher eukaryotes (Lynch, 2007c). Finally,

recognizing that most if not all genes are multifunctional to
some degree (Hughes, 2005), the preconditions for the wide-
spread exaptation of already existing secondary functions af-
ter gene duplication are met (Conant and Wolfe, 2008).
Overall, in the context of these findings, the PPI patterns
among duplicated genes support the theory that duplicate
genes have largely been retained via mechanisms attributable
to functional divergence and innovation (Lynch, 2007c; Co-
nant and Wolfe, 2008; Nei and Rooney, 2005).

Available binary interaction networks only reflect the
outcome of evolution on the network scale to some approxi-
mation, thus limiting the insights to be gained regarding
the underlying evolutionary processes. For example, the in-
teraction divergence rates among yeast duplicates derived in
Wagner (2001) may be overestimated because the incom-
pleteness of early yeast network data (Uetz, 2000), and its
under-reporting of self-interactions (Gibson and Goldberg,

o

E o \ o o = S \ E
. . . Duplicate Duplicate Deleted Deleted New
. Protein Interaction . . . . . . . . .
' protein interaction protein interaction interaction .

- (a) Pseudogenization

> (b) Redundancy
- \oi) (c) Subfunctionalization
_—

(d) Neofunctionalization

Figure 1. Evolutionary fates of a duplicated gene pair within a protein interaction network. After a single gene duplication event, the two
duplicate genes are thought to assume one of several fates (Conant and Wolfe, 2008): (a) The most likely outcome is that one gene will be
silenced by pseudogenization; alternatively, if both genes are preserved, this may be (b) owing to selection for increased dosage (c) because
they acquire complementary deleterious mutations in independent subfunctions such that both are required to produce the full set of ancestral
function (subfunctionalization), or (d) because one gene may acquire a new function (neofunctionalization).
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Figure 2. Three generative models of network evolution. (a) In a preferential attachment step, a new node (green) is attached to one of
the existing nodes with probability proportional to their degree. (b) In a single step of the duplication-divergence model, a parent node is
randomly chosen and its edges are duplicated (blue). For each parental edge, the parental and duplicated ones are then lost with respective
probabilities p and g, though at least one link is retained to all neighboring nodes. The parent node may be attached to its child with probability
r (orange edge). (c) In the related model known as duplication-attachment, either of the duplicates may be attached to another existing node

in the simulated network with probability s (purple edge).

2009a) are neglected. Moreover, the observed enrichment of
interactions between paralogs (Presser et al., 2008; Wagner,
2001) has many alternative interpretations (Presser et al.,
2008), and need not imply a substantial probability of de
novo interaction gain (Wagner, 2003a, 2003b; Berg ef al.,
2004). Nevertheless, as binary interaction maps gradually
become more accurate and complete, they will provide more
opportunities for systematic study of the functional diver-
gence of retained gene duplicates with respect to their inter-
action patterns (Hakes et al., 2007a).

PROBABILISTIC MODELING OF NETWORK
EVOLUTION

One recurrent problem in analyzing and testing theories of
network evolution is that the ancestral interaction patterns re-
main unknown. The whole-genome duplication (WGD)
event in the S. cerevisiae lineage provides a useful case
where some historical information is available: by studying
the set of WGD gene pairs (ohnologs), where both copies
have been retained, we can learn about the evolutionary pro-
cesses affecting protein interactions following gene duplica-
tion. Presser et al. (2008) jointly estimated the ancestral in-
teraction patterns of these genes just before the last whole
genome duplication and the probabilities of interaction gain
or loss after the WGD, using subgraph distributions as an
evolutionary footprint (see Box 2). They found that interac-
tion gain is almost three orders of magnitude less likely than
interaction loss, and that interactions between the ohnologs
themselves were enriched. However, their computational
analysis ignored any form of measurement error on the net-
work data and assumed that interactions are lost or gained
only once since the last WGD.
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To investigate the mechanisms of network evolution in a
general setting, it is necessary to formalize competing hy-
potheses into mathematical models. Much of statistical
reasoning then proceeds in an iterative process between
data acquisition, data analysis, and model development
(Box, 1976). Model-based approaches are particularly useful
as they increase the mathematical rigor with which it is pos-
sible to explore the consequences of basic assumptions (May,
2004) (e.g., the repeated occurrence of gene duplication
and subsequent interaction divergence). All models that are
discussed here are stochastic, that is to say that many out-
comes are possible. Repeated simulations based on these
models provide statistical ensembles that can often be mean-
ingfully compared to the empirical data (Levin et al., 1997).
Such comparisons, potentially in an approximate form (Mar-
joram and Tavaré¢, 20006) (see Fig. 3), may help to sharpen our
intuitions about the true, complex processes of network evo-
lution and add to a quantitative understanding of the origins
of the data, for example, in terms of rates of link deletion and
addition (Presser et al., 2008; Pinney et al., 2007). Model-
based approaches have been enormously successful in the
analysis of molecular genetic data (Marjoram and Tavaré,
2006; Rosenberg and Nordborg, 2002); researchers are now
starting to develop analogous models for the evolution of
biochemical networks in such a way that they can be tested
directly against the available data.

Many of the early approaches to modeling protein net-
work evolution may be described as generative, as they are
framed in terms of incremental network growth, node-by-
node, on an abstract, discrete timeline, and neglect the actual
evolutionary history of the proteome (Wiuf and Ratmann,
2009). For example, Barabasi and Albert (1999) recognized
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that networks with power-law degree distributions may
emerge by repeated preferential attachment [see Fig. 2(a)],
providing the crucial insight that such networks have grown
to be what they are, i.e., that topological complexity may
have emerged gradually over time.

Given the importance of gene duplication, as discussed
above, basic preferential attachment and other models ignor-
ing genetic factors are no longer generally seen as plausible
mechanisms for protein network evolution. One class of
model that does invoke gene duplication is the general
duplication-divergence mechanism outlined in Fig. 2(b).
Models in this class often appear very similar, but caution is
warranted because the large-scale properties of the networks
generated may differ significantly, depending on the param-
eters chosen. Importantly, models in which one of the dupli-
cates retains all interactions to its partners (Pastor-Satorras
et al., 2003) cannot reproduce observed network topologies
(Wiuf et al., 2006), whereas those models in which both du-
plicates may lose any of their links (Vazquez et al., 2003;
Evlampiev and Isambert, 2008) can explain any network to-
pology with a positive, albeit potentially very small, prob-
ability (Ratmann et al., 2007). The simplest models consider
a single gene duplication per time step and symmetric inter-
action divergence probabilities on both proteins in a dupli-
cate pair (Vazquez et al., 2003). More complex models allow
for a subsequent attachment stage representing neofunction-
alization [Fig. 2(c)] (Pastor-Satorras et al., 2003), the seg-
mental duplication of several proteins and hence more com-
plex interaction turnover or asymmetric divergence
probabilities (Evlampiev and Isambert, 2008).

Lacking a rigorous statistical framework with which
to address the particularities of available data sets, early
simulation studies indicated that simple duplication-
divergence models numerically reproduce more network
summaries than the preferential attachment model in terms
of ensemble averages (Aloy and Russell, 2004). Conversely,
it is much harder to demonstrate that duplication-divergence
models adequately explain all features of observed binary
interaction networks. Subgraph distributions have been
successfully used as comprehensive surrogate measures
(Middendorf ef al., 2005, 2004; Kuo ef al., 2006; Ratmann
et al.,2009; Przulj, 2007). Specifically, Fig. 4 in Middendorf
et al. (2005) indicates that the subgraph distributions ex-
pected under duplication-divergence and preferential attach-
ment models are complementary and suggests that mixture
models combining duplication-divergence with preferential
attachment may explain current network data in terms of
subgraph distributions, an observation that has been further
corroborated (Ratmann et al., 2009). However, it is relatively
straightforward to produce networks with approximately
power-law degree distributions (Doyle et al., 2005; Han
et al., 2005) and, more generally, we would expect many
variations in such mixture models of network growth to re-
produce a comprehensive set of topological features.
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Crucially, the above studies fall short of fitting the para-
metric models of network evolution in a statistically coherent
manner and can account for neither network incompleteness
nor bias, therefore, substantially weakening the derived ob-
servations. Concentrating on the degree distribution, Stumpf
and Thorne (2007) provided the first maximum likelihood
scheme that explicitly accounts for the incompleteness of
network data in terms of random node sampling. Recent ad-
vances in Bayesian inference, termed approximate Bayesian
computation (ABC) (Marjoram and Tavaré, 2006), are par-
ticularly well suited to the application of network data, as
they can be used to compare a large set of evolutionary mod-
els against the observed data in an efficient way, while also
paying close attention to measurement error and missing
data (Ratmann et al., 2007) (see Fig. 3). By scrutinizing sev-
eral models of incompleteness in terms of summary errors,
Ratmann et al. (2009) emphasized that evolutionary inter-
pretations may be extremely fragile under different assump-
tions about network incompleteness, suggesting that, for the
analysis of binary interaction data, the various forms of mea-
surement error need to be explicitly modeled from the outset.

The incorporation of phylogenetic information repre-
sents a natural progression from generative models toward
more detailed models of network evolution (Fig. 4). Phylo-
genetic models first construct a history of gene duplication
and speciation events by reconciling trees for each homolo-
gous gene family with a species phylogeny (Durand ef al.,
20006), then attempt to find plausible scenarios of interaction
loss and gain that agree with the observed network data. Im-
portantly, this approach allows observed networks from mul-
tiple species to be integrated in order to reconstruct the net-
works of their common ancestors. Placing each network onto
the species tree in this way provides an evolutionary context
for the inferred losses and gains of interactions and hence
considerable advantages over network alignment methods
(e.g., Kelley et al., 2004) as a framework for the comparative
study of interactomes.

As yet, phylogenetic models for the evolution of
proteome-scale networks have only been specified in broad
terms, using general probabilities for interaction retention
and divergence following the duplication of each gene
(Dutkowski and Tiuryn, 2007; Gibson and Goldberg,
2009b). This approach can be thought of as a more detailed
version of the duplication-divergence model discussed
above: ignoring any uncertainties involved, the identity of the
duplicating gene is specified at each step. The explicit con-
sideration of the history of each gene family can be shown to
produce qualitatively different results to the equivalent ran-
dom duplication-divergence model in terms of the changes
over time of global network properties such as mean degree
and clustering coefficient (Gibson and Goldberg, 2009b).
This suggests that the intermediate level of detail introduced
by the inclusion of phylogenetic information offers an im-
provement over previous approaches, in agreement with the
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simulation of network growth under specified model parameters
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Figure 3. Repeated simulations under qualitative models of network growth can provide a starting point to explore plausible
genome-wide modes of network evolution. Networks are grown to the number of known proteins of a given organism, and binary
interaction data sets are subsequently obtained under explicit assumptions of measurement error (Wiuf and Ratmann, 2009). These simu-
lations are compared to the observed data in terms of summary statistics, such as those in Box 2: for methods that help in choosing
summaries, we refer to (Ratmann et al., 2007; Joyce and Marjoram, 2008). ABC under model uncertainty (Ratmann et al., 2009) provides a
Bayesian framework for these comparisons, and enables the inference of posterior distributions of the model parameters and summary errors.
Crucially, the latter may provide information on model adequacy and the interpretability of the model parameters.

fact that genes are known to be retained in highly nonrandom
patterns following duplication (Hakes et al. 2007b).
Ultimately, however, the relationship between gene se-
quence evolution and network rewiring is mediated by the
actual interacting residues of each protein (Keskin et al.,
2008), which may be only a tiny proportion of the entire pro-
tein sequence. Methods that relate whole-sequence phylog-
enies to protein interactions are therefore questionable, as
demonstrated in a slightly different context regarding the
prediction of interacting gene families from their coevolu-
tion (Hakes et al. 2007b). Although accurate ab initio identi-
fication of interface residues is a challenging problem, in
cases for which we have known structures for interacting
protein pairs, a more explicit treatment of interaction gain
and loss with respect to evolutionary distance is feasible. As
a proof of principle, Pinney and co-workers modeled the evo-
lution of the basic-leucine zipper (bZIP) transcription factor
dimerization network in chordates, considering the probabil-
ity of interaction gain or loss between gene duplications as a
function of the evolutionary distances traveled by the resi-
dues comprising the leucine zipper interface region (Pinney
et al., 2007). The ancestral states of the network were recon-
structed using Bayesian inference over a probabilistic
graphical model representing the evolution and measure-
ment of each potential interaction. By comparison with di-
rect sequence-based predictions of ancestral interactions
(which can be computed for pairs of leucine zipper se-
quences (Fong et al., 2004), the authors showed this Baye-
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sian methodology to be more robust to the presence of ex-
perimental error than a parsimony-based method. As
discussed above, similar considerations of noise and incom-
pleteness in observed networks will be essential ingredients
of future efforts to extract meaningful biology from protein
interaction data sets.

POPULATION DYNAMICS OF EVOLVING NETWORKS

The types of models considered in the previous section leave
aside the intermediate population dynamics between differ-
ent competing networks that necessarily occur in any bio-
logical system. The importance of these effects to the result-
ing structure of protein interaction networks remains largely
unexplored, though they may be expected to be significant
(Lynch, 2007a). One important open question regarding the
modeling of network evolution at this resolution is how the
fitness of an individual network should be calculated. The
relationship between a large-scale protein interaction net-
work and its phenotype is particularly difficult to define, al-
though several studies have addressed this issue in the con-
text of evolving metabolic (Pfeiffer et al., 2005), gene
regulation (Ciliberti et al., 2007), and signal transduction
(Soyer and Bonhoeffer, 2006) networks. In each case, the rel-
evant phenotypic properties of the networks studied are
rooted in their dynamics, hinting that our abstract genome-
scale protein networks may need to be resolved at the fine
grain of their spatial and temporal patterns of interactions
before they can be treated with similar techniques. To under-
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Figure 4. Gene-species tree reconciliation (Durand et al., 2006) forms the basis for a more detailed approach to modeling network
evolution of gene families, focusing on the reconstruction of ancestral network states (Dutkowski and Tiuryn, 2007; Pinney et al.,
2007; Gibson and Goldberg, 2009b). Using probabilistic models for both the evolution and measurement of the true unknown network,
observed interaction data (boxes with dashed coloured borders) may be integrated across different species in a statistically coherent way,
allowing the true states of both ancestral (boxes with solid black borders) and present-day networks (boxes with solid coloured borders) to be

inferred.

stand better how networks give rise to cellular and/or organ-
ismal phenotypes, one potentially very rewarding endeavor
might be based around the mapping of patterns of variation
onto protein interaction networks (Kim et al., 2007; Goh
et al., 2007), as well as to perturbations of such networks
(Benfey and Mitchell-Olds, 2008).

In the spirit of established population genetic frame-
works for the statistical analysis of molecular genetic data
(Rosenberg and Nordborg, 2002), more theoretical develop-
ments will also be required toward the formulation of neutral
models of network evolution. Such models would provide
the basis for the estimation of evolutionary rates of link turn-
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over, as well as an analysis of the selective forces operating
on network structure, bearing in mind that evolutionary rates
are unlikely to be homogeneous in time and across gene
families (Davidson and Erwin, 2006; Wagner, 2008). One
example of such a stochastic neutral model of network evo-
lution is given by Cordero and Hogeweg (2006), who simu-
lated the duplication, deletion, and mutation of genes
and transcription factor binding sites in a genome, showing
that the over-representation of feed-forward loops in gene
regulatory networks can be a product of this neutral evolu-
tionary process, whereas other trends in the data are not re-
produced (Teichmann and Babu, 2004). In this review, our
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concern has been to retrieve the fact that the evolution of
a protein interaction network must ultimately be rooted in
the molecular genetic mechanisms and population genetic
forces that mold the architecture of the genome (Aloy
and Russell, 2004; Lynch, 2007c), highlighting the need
for a greater understanding of the relationship between
amino acid changes and the gain and loss of protein interac-
tions.

CONCLUSION

Binary interaction networks provide a convenient framework
for understanding the complex features of cellular systems
(Barabasi and Oltvai, 2004). Experimental data on protein-
protein interactions continue to increase and are now avail-
able for a number of organisms from both the prokaryotic
and eukaryotic domains. Part of the current challenge for
systems biology is to develop new concepts and statistical
tools to analyze and interpret these data to provide a better
and more comprehensive understanding of cellular function
(Hartwell et al., 1999). Exciting recent developments to
identify interactions between proteins and other biomol-
ecules on a large scale and to derive more accurate stoichio-
metric models of protein complexes will further fuel the need
for such tools; see Wodak et al. (2009) and Russell and Aloy
(2008), and references therein. However, an evolutionary
line of thinking is essential to guard against overinterpreta-
tion of seemingly unexpected features of these networks and
to evaluate more precisely the plausible explanations of the
data (Monica, 2005; Lynch, 2007b). More attention must
also be given to methods for handling the various forms of
measurement error associated with the different interaction
assays (Gentleman and Huber, 2007).

Topological summary statistics (Mason and Verwoerd,
2007) capture the characteristics of binary interaction net-
work data sets in a tractable way, and are as such useful
tools for describing, analyzing, and comparing networks.
They are, however, affected by different types of sampling
and bias in different, sometimes unpredictable, ways, which
implies that any biological interpretations of network statis-
tics must always be considered with great caution. We antici-
pate that more accurate estimations of topological summary
statistics in the face of measurement error (Scholtens et al.,
2007) and their generalization to networks of weighted in-
teractions (Jensen et al., 2008; Barrat et al., 2004; Onnela
et al.,2005), as well as composite networks (Yu et al., 20006),
will help to reflect more realistically the properties of the true
interactome.

The evolutionary analysis of network data presents a
formidable challenge, as any representation of the natural
history of a biochemical network may be expected to be
significantly more complex than that of the genome within
which it is encoded. Probabilistic models that formalize
our hypotheses about network evolution are an essential tool
for this task. Given the prevalence of gene duplication
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(Lynch, 2007¢) and its importance to the evolution of com-
plex features (Lynch, 2007c; Conant and Wolfe, 2008; Nei,
2007), we have focused here on qualitative generative mod-
els of duplication and divergence (Wiuf and Ratmann, 2009;
Stumpf et al., 2007) to illustrate how advances in stochastic
computation (Marjoram and Tavaré, 2006) may facilitate the
analysis of protein network data. To make further progress in
this area, the development of probabilistic methods incorpo-
rating phylogenetic inference (Gibson and Goldberg, 2009b;
Pinney et al., 2007), neutral models for network evolution
(Lynch, 2007a; Wagner, 2008), and an improved understand-
ing of the relationship between network structure and func-
tion (Benfey and Mitchell-Olds, 2008; Davidson and Erwin,
2006) will be necessary to achieve a more accurate recon-
struction of the evolutionary history of a given network.
Such approaches may in the future help us to dissect specific
trends and patterns in the evolution of biological systems in
order to separate those features of the network that arose by
neutral evolution from those that were truly shaped by selec-
tive forces (Wagner, 2003a, 2003b).
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