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Abstract In this article we study a class of randomly grown graphs that includes
some preferential attachment and uniform attachment models, as well as some
evolving graph models that have been discussed previously in the literature. The
degree distribution is assumed to form a Markov chain; this gives a particularly
simple form for a stochastic recursion of the degree distribution. We show that for
this class of models the empirical degree distribution tends almost surely and in
norm to the expected degree distribution as the size of the graph grows to infinity
and we provide a simple asymptotic expression for the expected degree distribu-
tion. Convergence of the empirical degree distribution has consequences for sta-
tistical analysis of network data in that it allows the full data to be summarized by
the degree distribution of the nodes without losing the ability to obtain consistent
estimates of parameters describing the network.

Keywords Biological network · Network model · Markov chain · Randomly grown
graphs

1. Introduction

Randomly grown graphs (RGGs) have become increasingly popular models to de-
scribe real-world networks such as biological networks (e.g. protein and gene regu-
latory networks), ecological networks (e.g. food-webs) and technological networks
(e.g. the World-Wide Web). RGGs are stochastic graphs that grow by the suc-
cessive addition and/or deletion of nodes and addition, deletion and/or re-wiring
of edges at each time step, and an RGG is said to evolve over time by applica-
tion of rules for its generation. They mimic the real-world in being stochastic and
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dynamic, and the generating rules are often interpreted in relation to a real-world
network.

Much attention has been devoted to the degree distribution of the network. By
the degree distribution is meant the sequence that for any k ≥ 0 gives the propor-
tion of nodes of degree k in the network. Many authors, e.g. Barabási and Albert
(1999) and Cooper and Frieze (2003), have concentrated on the degree distribution
and shown that the degree distribution behaves in a certain way, e.g. that it con-
verges to a scale free distribution as the network becomes large. While this origi-
nally has been motivated by empirical studies of the World-Wide Web (Barabási
and Albert (1999); Kumar et al. (1999); Broder et al. (2000)), now also biologi-
cal systems such as metabolic pathways and protein–protein interaction networks
are routinely investigated (Barabási and Oltvai (2004); Stumpf et al. (2005) and
references therein).

However, different criteria have been applied for convergence of the degree dis-
tribution of an RGG as the size of the network becomes large. Some authors, e.g.
Barabási and Albert (1999) and Dorogovtsev and Mendes (2003) consider con-
vergence, for all k, of the expected proportion of nodes of degree k. This means
that the behaviour of a single realization of the RGG is not studied, only the aver-
age behaviour over many different realizations is considered. Other authors, e.g.
Kumar et al. (2000) and Bollobás et al. (2001) use the stronger criterion that, for
all k, the proportion of nodes of degree k in a single realization, i.e. the empiri-
cal proportions, converges in a stochastic sense (e.g., convergence in probability).
Only the second criterion makes it a priori reasonable to expect that the empirical
proportions converge and hence, a statement about convergence of the expected
proportions does not imply a similar statement about the empirical proportions. It
is possible to construct examples where the degree distribution converges in the
first sense but not in the second.

Dorogovtsev and Mendes (2003) and others (see e.g. references in Dorogovtsev
and Mendes (2003)) have constructed and used recursion equations (the socalled
master equations) for the expected degree distribution in an RGG. This gives a sim-
ple and unified approach for the study of a wide class of RGGs, but the method
suffers from the fact that the results can only be applied to an ensemble of real-
izations. In this paper, we define a class of RGGs which can be rigorously handled
by recursion equations and provide a result that guarantees that the observed de-
gree distribution converges to the expected distribution as time tends to infinity
(i.e. the size of the graph). It is seen that the uniform attachment and the prefer-
ential attachment models studied by Bollobás et al. (2001), and the linear case of
the evolving graph models, studied by Kumar et al. (2000), all belong to this class.
Due to the simplicity of the models it is easy to make non-trivial generalisations,
including a formalisation of the Barabási–Albert preferential attachment model
which is closer to the original description than that of Bollobás et al. (2001). We
also find upper limits for the rates of convergence.

A real-world network is one realization out of many possible ones, and con-
vergence of the observed degree sequence to the expected has important con-
sequences for statistical analysis of network data. The likelihood of the full
network is difficult to handle due to dependencies between nodes. Our results
show that it is sensible to summarize the data in the degree sequence and
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optimize the parameters of the model by comparing with the expected degree
distribution.

2. The model

We model an RGG as a Markov chain {Gt }∞t=t0 , where Gt is a random variable
taking values in a subspace of the space of all graphs and t denotes discrete time.
The subspace usually depends on t , e.g. it can be all graphs of size t. We assume
that the graphs have neither multiple edges nor self-loops, but we will consider
both directed and undirected graphs.

For our purposes, it suffices to study the degree distribution, {Nt }∞t=t0 , of an RGG.
This is a random process taking its values in the space of all sequences {xk}∞k=0 of
non-negative integers xk such that only a finite number of them are non-zero. We
denote by Nt (k) the kth element in the tth sequence:

Nt = {Nt (k)}∞k=0.

Depending on the RGG, Nt (k) will either be the number of nodes of degree k at
time t or the number of nodes with in-degree k. In the following assume t ≥ t0 > 0.
Assume the following.

1. Nt0 = {nt0 (k)}∞k=0 is non-random.
2. {Nt }∞t=t0 is a Markov chain. This condition implies that Nt contains all informa-

tion avaliable about Nt+1— knowledge about Gt does not add any further infor-
mation. Note that this does not follow generally from properties of Gt .

3. In every time step one node is added. This implies that there is an integer u ≥ 0,
such that

∞∑
k=0

Nt (k) = t + u.

At time t = t0 there are t0 + u nodes and at each time step the size of the graph
increases by one. It follows that Nt (k) = 0 for all k ≥ t + u.

4. There are non-negative numbers ak and ck, such that ak+1 ≥ ak and

E (Nt+1(k)|Nt ) =
(

1 − ak

t

)
Nt (k) + ak−1

t
Nt (k − 1) + ck, (1)

where it is understood that a−1 = 0. In all our examples, ak/t is a probability.
Therefore we require that Nt (k) = 0 whenever ak/t > 1.

5. The change in the number of nodes of degree k per time unit is uniformly
bounded in t and in k; i.e. there is a constant M1 such that |Nt (k) − Nt−1(k)| ≤
M1 for all t and k.
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The condition that Nt0 is non-random can be relaxed somewhat. For example, the
results hold unaffected if Nt0 is drawn among a finite number of (finite) initial
graphs.

Example 1. (Uniformly grown random graph) In step t + 1, a new node is cre-
ated, and with probability p an edge is sent out from the new node and connected
to any of the old nodes with uniform probability. If Nt (k) is the number of nodes
with degree k at time t, (1) is fulfilled with

ak = p,

and

ck = (1 − p)δk0 + pδk1.

This model has been studied in detail by Bollobás et al. (2004) and a slightly dif-
ferent version of the special case p = 1 by Bollobás et al. (2001).

Example 2. (Preferential attachment) Every node in the graph at t0 has degree
k ≥ 1. Then at time t + 1 a new node is added and attached to an old node chosen
with probability proportional to its degree. Assume that there are t edges at time t ;
then the probability of choosing a node of degree k is k/2t (the sum of all degrees
is 2t). We have

ak = k
2
,

and

ck = δk1.

Further, Nt (0) = 0 for all t. Barabási and Albert (1999) defined informally a more
general model, a fixed number m of nodes are sent out every time. Our model is
a formalisation of the case m = 1. As Bollobás et al. (2001) pointed out, it was
not obvious how to interpret m > 1. For their formalisation, they chose to allow
for self-loops and multiple edges, even this by construction was forbidden in the
Barabási–Albert model. We will return to this in Example 6.

Example 3. (Evolving copying model, the linear case) Kumar et al. (2000) start
with a directed graph in which all the nodes have out-degree one. In time step
t + 1, a node vnew is created and an old node vold is chosen uniformly amongst all
old nodes. With probablity p an edge is drawn from vnew to vold. With probability
1 − p a link is drawn to the node that vold links to. (Remember vold has out-degree
1.) The latter form of attachment is called copying, from which this model derives
its name. Here, Nt (k) is the number of nodes with in-degree k at time t. We have

ak = p + (1 − p)k,
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and

ck = δ0k.

Remark 1. It should be noted that also Kumar et al. (2000) allow a fixed number
of edges to be sent out every time. They do this by saying that each node has
m out-links, which they carefully keep track of. In step t + 1 the ith out-link is
uniformly attached by probability p, and with probability 1 − p, the ith out-link of
the chosen node is “copied” as above. Such a model can be created by generating
m independent parallel random graphs as in Example 3 and then lumping all the
nodes created a time t together. We refrain from studying this extra complexity,
since it is easy to accomplish but rather obscures than sheds light on the structure
of the model.

Example 4. Suppose the graph is grown as follows. We let t be the size of the
graph at time t. At time t + 1, a node is added. Consider two “tentative” edges e1

and e2 from the new node connected to old nodes, which are chosen uniformly at
random without replacement. The edge e1 is added with probability p1 and e2 is
added independently with probability p2. This model fits into our framework with

ak = p1 + p2,

ck = (1 − p1 − p2 + p1 p2) δ0k + (p1 + p2 − 2p1 p2) δ1k + p1 p2δ2k.

Example 5. In every time step, a new node is created and m tentative edges are
sent out to nodes which are chosen uniformly without replacement from the old
nodes. Keep them independently with probability p. We must start with a graph
of at least size m, and further

ak = mp,

ck =
m∑

j=0

(
m
j

)
pj (1 − p)m− jδ jk.

Example 6. (Preferential attachment of m edges) In the preferential attachment
model by Barabási and Albert (1999), multiple edges and self-loops were not
allowed. Bollobás et al. (2001) found themselves forced to allow for both in or-
der to prove convergence of the degree distribution. This is not necessary in our
formalism.

What makes this model special is that we choose m edges. Contrary to the other
models we have studied, there are constraints on the initial graph. Denote the
nodes at some time step by v1, . . . , vt . Without replacement, we choose m such
that if vi has degree ki , its probability, pi , of being chosen is proportional to ki . We
have

m = p1 + · · · + pt ,
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and hence

pi = m
ki

k1 + · · · + kt
.

Therefore, a necessary condition for preferential attachment without replacement
(PAWo) is that

mki

k1 + · · · + kt
≤ 1. (2)

It seems to be non-trivial that condition 2 is also sufficient for a rule of preferential
attachment without replacement to exist; henceforth called a PAWo rule. We pro-
vide a proof in the Appendix that it is possible to choose m nodes with the given
marginal probabilities, but stresses that it can be achieved in several ways.

We also need to know that if the graph at time t fulfills the conditions for a
PAWo rule then so does the graph at time t + 1 irrespectively of which nodes have
been chosen. Thus suppose (2) is true in step t , and apply the PAWo rule to get a
new graph with degrees k′

1, . . . , k′
t , k′

t+1, where k′
t+1 = m. Then

k′
1 + · · · + k′

t + k′
t+1 = k1 + · · · + kt + 2m.

The only possible values for k′
i are ki and ki + 1. Thus if (2) is satisfied, we have

mk′
i ≤ k′

1 + · · · + k′
t + k′

t+1

for i = 1, 2, . . . , t. For this to be true even if i = t + 1, we must have

k′
1 + · · · + k′

t+1 ≥ m2,

but this is naturally satisfied if we demand that all nodes in the initial graph have
degree m.

We assume this is the case and that the total number of edges is a multiple of
m. Since the graph grows by the successive addition of m nodes, this is reasonable
assumption. If so, the sum of all degrees is 2mt, and if an edge is selected according
to a PAWo rule, we have ak = k/2 and ck = δmk.

3. The recursion for the expected degree distribution

Denote nt (k) = ENt (k). Equation (1) yields

nt+1(k) =
(

1 − ak

t

)
nt (k) + ak−1

t
nt (k − 1) + ck.

A solution is found by substitution of αkt for nk(t) and solving for αk:

αk = ak−1

1 + ak
αk−1 + ck

1 + ak
.
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Then

αk =
k∑

j=0

c j

1 + a j

k∏
i= j+1

ai−1

1 + ai
.

However, it follows from (1) that there has to be a k0 such that ck = 0 if k > k0. For
k ≥ k0, the solution can be simplified

αk = αk0

k∏
j=k0+1

a j−1

1 + a j
.

The values nt (k), k = 0, 1 . . . depend on the initial values nt0 (k), k = 0, 1, . . . , but
the next lemma shows the difference between nt (k)/t and αk tends to zero for all k
as t → ∞.

The following lemma provides a stronger result than required to prove our
claim. However, it will be useful in Section 5.

Lemma 1. Let k and t1 be given such that t1 ≥ k. Then, for all t ≥ t1,

max
0≤ j≤k

∣∣nt ( j) − α j t
∣∣ ≤ max

0≤ j≤k

∣∣nt1 ( j) − α j t1
∣∣ .

Proof: Let t > t1, and suppose 0 ≤ i ≤ k. Then

|nt (i) − αi t | ≤
(

1 − ai

t − 1

)
|nt−1(i) − αi (t − 1)| + ai−1

t − 1
|nt−1(i − 1)

−αi−1(t − 1)| ≤ max
0≤ j≤k

|nt−1( j) − α j (t − 1)|,

and the lemma follows by induction.

Example 1. (continued, uniformly grown random graph) We find

α0 = 1 − p
1 + p

, (3)

and

αk = 2pk

(1 + p)k+1
(4)

for k = 1, 2, 3, . . . . In consequence the distribution is a modified geometric distri-
bution. For p = 1, this coincides with the result by Bollobás et al. (2001).

Example 2. (continued, preferential attachment) We find α0 = 0 and

αk = 4
k(k + 1)(k + 2)
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for k = 1, 2, . . . . To get the simple form (1), we assumed that time t is the number
of edges – not the number of nodes, which is n0 + t. Here n0 denotes the number of
nodes at time t0. Therefore nt (k)/(n0 + t), not nt (k)/t is the expected proportion
of nodes of degree k at time t. However, we could anyway use Lemma 1 to see that

lim
t→∞

nt (k)
n0 + t

= αk.

Example 3. (continued, The copying model) We find α0 = 1/(1 − p) and

αk = 1
1 − p

k∏
j=1

2p − 1 + (1 − p) j
1 + p + (1 − p) j

for k = 1, 2, . . .. It is not as obvious as in Example 2 that ak has “scale-free tail,” but
it can be seen as follows. Define bp = (1 + p)/(1 − p) and ap = (2p − 1)/(1 − p).
Note that −1 < ap < bp and use the “mean value theorem” to see that

log αk = − log(1 − p) +
k∑

j=1

[
log

(
1 + ap

j

)
− log

(
1 + bp

j

)]

= − log(1 − p) − 2 − p
1 − p

k∑
j=1

1
(1 + ξ j ) j

for ap/j < ξ j < bp/j. Hence also

k∑
j=1

1
j + bp

<

k∑
j=1

1
(1 + ξ j ) j

<

k∑
j=1

1
j + ap

and

αk = �
(
k−γp

)
as k → ∞, where γp = (2 − p)/(1 + p). This is exactly the result of Kumar et al.
(2000). For nonnegative gk = �( fk) we mean that there are non-negative c, C such
that c fk ≤ gk ≤ C fk for all k large.

Example 4. (continued) We get

α0 = c0

1 + p1 + p2
,

α1 = (p1 + p2)c0

(1 + p1 + p2)2
+ c1

(1 + p1 + p2)
,

α2 = (p1 + p2)2c0

(1 + p1 + p2)3
+ (p1 + p2)c1

(1 + p1 + p2)2
+ c2

1 + p1 + p2
,
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and

αk = α2

(
p1 + p2

1 + p1 + p2

)k−2

for k = 3, 4, . . . .

Example 5. (continued) Also in this case we find that αk decreases exponentially
as k → ∞. However, the expression for αk is quite involved and is left out.

Example 6. (continued, Preferential attachment of m edges) Here αm+ j = 0 for
j < 0 and

αm+ j = 2m(m + 1)
(m + j)(m + 1 + j)(m + 2 + j)

for j = 0, 1, . . . .

4. Convergence to the expected values

To show that Nt (k)/t converges to the expected value (Theorem 2), we use the fol-
lowing version of Hoeffding’s inequality. (See, e.g. Grimmet and Stirzaker (1992))

Theorem 1. Let {Ys}t
s=t0 be a martingale (with respect to some filtration) such that

for all s with t0 < s ≤ t |Ys − Ys−1| ≤ M for some M (a.s.), then, for ε > 0,

P(|Yt − Yt0 | > ε) ≤ 2 exp
(

− ε2

2(t − t0)M2

)
.

Define Ys,t (k) = E (Nt (k)|Ns) . Since {Nt }∞t=t0 is a Markov chain, for fixed t and k,

the sequence {Ys,t }t
s=t0 is a Martingale with respect to {Ns}t

s=t0 . (This is the so-called
Doob’s martingale; see, again, Grimmet and Stirzaker (1992)).

Lemma 2. Let M(k) = M1 + ak + u + |ck|. Then

|Ys,t (k) − Ys−1,t (k)| ≤ M(k) (5)

for all s, t with t0 < s ≤ t .

Proof: We use induction in the difference d = t − s. If d = 0, consider Yt,t (k) −
Yt−1,t (k). We have Yt,t (k) = Nt (k) and

Yt−1,t (k) =
(

1 − ak

t − 1

)
Nt−1(k) + ak−1

t − 1
Nt−1(k − 1) + ck. (6)
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Hence,

|Yt,t (k) − Yt−1,t (k)| ≤ |Nt (k) − Nt−1(k)| + ak

t − 1

{
Nt−1(k) + Nt−1(k − 1)

}
+ |ck| ≤ M1 + ak + u + |ck| = M(k).

Now fix a d > 0 and suppose (5) is true for all s, with t − s = d − 1. By condi-
tioning on Ns in relation (6), we get

E (Nt (k)|Ns) =
(

1 − ak

t − 1

)
E (Nt−1(k)|Ns) + ak−1

t − 1
E (Nt−1(k − 1)|Ns) + ck.

This is true also if s is replaced by s − 1, and we have

E (Nt (k)|Ns) − E (Nt (k)|Ns−1) =
(

1 − ak

t − 1

) {
E (Nt−1(k)|Ns)

− E (Nt−1(k)|Ns−1)
}

+ ak−1

t − 1

{
E (Nt−1(k − 1)|Ns) − E (Nt−1(k − 1)|Ns−1)

}
.

If ak/(t − 1) > 1, then Nt−1(k − 1) = Nt−1(k) = 0 almost surely. If not,

|E(Nt (k)|Ns) − E(Nt (k)|Ns−1)| ≤
(

1 − ak

t − 1

)
|E(Nt−1(k)|Ns)

−E(Nt−1(k)|Ns−1)| + ak−1

t − 1
|E(Nt−1(k − 1)|Ns)

−E(Nt−1(k − 1)|Ns−1)| ≤ M(k),

since the inductive assumption is valid for t − 1 and s, whose difference is d − 1.

The lemma follows.

The following theorem shows that for fixed k, Nt (k)/t tends to αk in probability
as t increases.

Theorem 2. Let k and ε > 0 be fixed. If t > t0 is so large such that

|nt (k)/t − αk| < ε/2, (7)

then

P
(∣∣∣∣ Nt (k)

t
− αt

∣∣∣∣ > ε

)
≤ 2 exp

(
− t2ε2

8(t − t0)M(k)2

)
.

Proof: We know that Yt0 = nt0 (k) and Yt = Nt (k). Thus Theorem 1 gives for η > 0

P
(∣∣∣∣ Nt (k)

t
− nt (k)

t

∣∣∣∣ > η

)
= P(|Yt − Yt0 | > tη) ≤ 2 exp

(
− t2η2

2(t − t0)M(k)2

)
.
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Then

P
(∣∣∣∣ Nt (k)

t
− αk

∣∣∣∣ > ε

)
≤ P

(∣∣∣∣ Nt (k)
t

− nt (k)
t

∣∣∣∣ > ε/2
)

≤ 2 exp
(

− t2ε2

8(t − t0)M(k)2

)

and the theorem is proven.

The Borel–Cantelli lemma provides the stronger result that Nt (k)/t converges
a.s. It is shown in the following corollary.

Corollary 1. For fixed k,

Nt (k)
t

→ αk a.s.

as t → ∞.

Proof: Fix k and t1 such that ak ≤ t1. If max0≤ j≤k |nt1 ( j) − α j t1| > 0, let

εt = 2t−1/4 max
0≤ j≤k

|nt1 ( j) − α j t1|1/4.

Choose t2 ≥ t1 large such that εt < 2 when t ≥ t2. Then, for all t ≥ t2,

|nt (k) − αkt | ≤
(εt

2

)4
<

εt

2
,

where the first inequality comes from Lemma 1. Thus (7) is satisfied for t ≥ t2 if
ε = εt .

If max0≤ j≤k |nt1 ( j) − α j | = 0, let εt = t−1/4. Then Lemma 1 shows that |nt (k) −
αk| = 0, and (7) is trivially satisfied with ε = εt .

In both cases, we use Theorem 2 to conclude that

∞∑
t=t2

P
(∣∣∣∣ Nt (k)

t
− αk

∣∣∣∣ > εt

)
< ∞,

and the Borel–Cantelli lemma (see. e.g. Shiryaev (1996) ) gives a.s. convergence.

For completeness, we add the following two corollaries; the first is proven by
noting that |Nt (k)/t − αk| ≤ u + 1 + αk, and that if a sequence of uniformly lim-
ited random variables converges in probability, then it also coverges in p-norm for
all p.

Corollary 2. For all k,

Nt (k)
t

→ αk in Lp

for any 0 ≤ p < ∞.
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Corollary 3. The process (Nt (0)/t, Nt (1)/t, . . .) converges weakly as t → ∞ to the
constant process (α0, α1, . . .).

Proof: It follows from Corollary 2 that (Nt (0)/t, . . . , Nt (k)/t) converges in
probability (L0) for any k; hence the process (Nt (0)/t, Nt (1)/t, . . .) converges
weakly.

5. Range of convergence

Since the process starts with a finite number of nodes and grows by one node being
added in every time step, it follows for all t ≥ t0 that there is k such that Nt ( j) = 0
for all j ≥ k. Hence the convergence is non-uniform in the sense that

min
k

P
(

(1 − ε) αk ≤ Nt (k)
t

≤ (1 + ε) αk

)
= 0

for all ε with 0 < ε < 1. However, as we will see, if we fix a number C between 0
and 1, for every t ≥ t0, there is a κC(t) such that

min
0≤ j≤κC(t)

P
(

(1 − ε) α j ≤ Nt ( j)
t

≤ (1 + ε) α j

)
≥ C. (8)

It will be seen that we can choose κC(t) such that it tends to infinity as t tends to
infinity, and the rate at which κC(t) tends to infinity will be a measure of the range
of convergence of the process. The inequality (8) can also be written

max
0≤ j≤κC(t)

P
(∣∣∣∣ Nt ( j)

t
− α j

∣∣∣∣ > α jε

)
< 1 − C.

Looking at Theorem 2, we see that κC(t) can be chosen as the largest k fulfilling

∣∣∣∣nt ( j)
t

− α j

∣∣∣∣ < εα j/2, (9)

and

2 exp

(
− t2ε2α2

j

8(t − t0)M( j)2

)
< 1 − C (10)

for all j ≤ k. If there is no such k, we let κC(t) = −1.

Example 1. (continued, Uniformly grown random graph) For the uniform attach-
ment model, α j = p, and we can use Lemma 1 with t1 = t0:

∣∣∣∣nt ( j)
t

− α j

∣∣∣∣ ≤ 1
t
|nt0 ( j) − α j |.
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Hence inequality (9) is true if

1
t
|nt0 ( j) − α j | < εα j/2.

From (4):

1
t
|nt0 ( j) − α j |(1 − p) < ε

(
p

1 + p

) j

.

Solving this inequality, we can let k grow as O(log(t)) and make (9) true for all
j ≤ k. For the uniformly grown random graph, M(k) is constant. Hence (10) is
true if we let k grow as O (log(k)). In summary we can choose

κC(t) = O (log t) .

Example 2. (continued, Preferential attachment) Here Lemma 1 can be used with
t1 = k, and thus

max
0≤ j≤k

∣∣∣∣nt ( j)
t

− α j

∣∣∣∣ ≤ 1
t

max
0≤ j≤k

∣∣∣∣nt1 ( j)
t

− α j

∣∣∣∣ ≤ nt0 + k
t

.

Since αk = O(1/k3), we can let k grow as O(t1/4) to make (9) true. However, we
also know that M( j) = O( j). Hence, to make inequality (10) true, we cannot let k
grow faster than t1/8. In summary, we can define κC(t) such that κC(t) = O(t1/8).

Example 3. (continued, The copying model) Repeating the argument in the pre-
vious example, we find that κC(t) can be chosen such that

κC(t) = O
(

t
1

2γp+2

)
.

6. Discussion

This paper demonstrates a simplified and uniform formalism, which combines
some already known results about the degree distribution into a larger framework,
from which we easily derive almost sure convergence and convergence in norm, in-
cluding a general asymptotic expression as t → ∞ for the degree distribution, and
a description of the range of convergence.

In earlier papers, like Kumar et al. (2000) and Bollobás et al. (2001), when a
fixed number m > 1 of new edges have been added in every time step, it has been
a problem that sampling nodes without replacement introduces dependence be-
tween the choices, a problem that has been solved by accepting multiple edges.
We show here a solution without multiple edges.

We have studied a very simple class of models. Extensions include letting ck

and/or ak depend on t or allowing for terms of order j < k − 1 in Equation 1.
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However, it is clear that the key features of the model are that 1) the degree dis-
tribution as a process is Markovian and 2) the change in the number of nodes of a
certain degree is bounded in t . Also, more complicated models would fulfil these
requirements and consequently similar results to those presented here could be
proven. We have chosen to stick to the simple models in order to make the pre-
sentation clear.

In our construction, the asymptotic independence of the initial graph stands out
clear. For applications this is important, since it is not reasonable to assume that
the generating process has been going on all the time since a very small initial
graph. Rather, it seems more appropriate to ignore the first period of evolution
and start the process with some intermediate graph, which is chosen such that the
generating process has already stabilised. Our result shows that how the graph was
generated before this time is asymptotically unimportant, at least with respect to
the degree distribution.

Growth, copying and preferential attachments are biological mechanisms by
which biological systems, such as protein interaction networks, metabolic path-
ways and transcriptional networks, evolve (see e.g. Barabási and Oltvai (2004) for
a review of biological networks). Gene duplication or copying produce genes that
share some of the interaction partners with the duplicated gene and highly con-
nected genes are more likely to become partners in new processes and interactions
than nodes with few connections (preferential attachment). The models discussed
in this paper reflect these biological mechanisms for network growth (Barabási and
Oltvai (2004)).

It has been argued Burda et al. (2001) that the mechanistic process underlying
network evolution is less important than the ability to qualitatively describe the
data. It is for example well known, that protein interaction networks do not grow
according to the simple preferential attachment model. For example, millions of
years ago, a whole genome duplication occurred in the lineage ancestral to S. cere-
visiae and other related yeast species. Such exceedingly rare events—even though
they are of fundamental biological importance—cannot be easily incorporated into
a probability model. But even if the model is oversimplified it still allows us to gain
new insights. It is for example possible to estimate the parameters of the models;
e.g. a copying probability would be interpreted in relation to duplication activity
in the network.

With the abundance of biological network data that are becoming available
probabilistic models for its analysis are in demand. The apparatus for statistical
analysis of such data is however still lacking behind. In particularly, findings on
scale free networks have been debated and are not generally agreed upon (e.g.
Stumpf et al. (2005)). It has also become clear that many other aspects and fea-
tures (such as small-scale structures) of a network are important in the study of
the evolution and dynamics of real-world networks (e.g. Milo et al. (2004) and
Rice et al. (2005)). For correct interpretation and analysis of network data, a sound
mathematical and statistical methodology is important. One such methodology is
likelihood theory. However, computation of the likelihood of Gt can be a huge bur-
den computationally (see Wiuf et al. (2005)) that renders application of likelihood
methods difficult. Our results demonstrate that at least for a large class of RGGs
it is sound to summarize the network data into the degree sequence and optimize
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parameters of the model by comparing the emipircal degree sequence to the ex-
pected degree sequence. The empirical degree sequence is very easy to calculate
and a reduction of the network data to the emiprical degree sequence is thus likely
to reduce the computational burden of the statistical analysis without making it
invalid or untrustworthy.

Appendix The existence of a PAWo rule

To be able to construct the PAWo rule, we need the following theorem, which has
been known a long time (see e.g. Fellegi, I.P. (1963)). However, we are not aware
of a simple proof and provide one here for completeness.

Theorem 3. Let p1, . . . , pt be probabilities with

p1 + · · · + pt = m

for an integer m. Then there is (at least) one procedure to choose m values out of
{1, 2, . . . , t} such that the marginal probability of choosing i is pi .

Proof: We suppose without loss of generality that

p1 ≤ p2 ≤ . . . ≤ pt .

We will use induction in t. If t = 1, 2 or if m = 1 the statement is trivially true.
Fix t0 ≥ 3 and assume the statement is true for t < t0 and m ≤ t . Now let t = t0. If
m = t we are done. Otherwise it is sufficient to prove it for m ≥ t/2, since when we
know there is such a procedure for this case, if m < t/2, we can use it to choose the
t − m elements which are not chosen with probabilities 1 − pi .

Thus assume m ≥ t/2. Choose t with probability pt . If t is not chosen, choose
t − 1, . . . , t − m always. If t is chosen, we define probabilities p̃1, . . . , p̃t−1 with sum
m − 1 such that

p̃i pt = pi , i = 1, 2, . . . , t − m − 1

p̃i pt + (1 − pt ) = pi , i = t − m, . . . , t − 1.

Then we use the inductive hypothesis to conclude that there is a procedure to
choose m − 1 elements without replacement from {1, . . . , t − 1} with probabilities
p̃1, . . . , p̃t−1 and hence also to choose m out of t To convince ourselves that the
p̃1, . . . , p̃t−1 fulfill the requirements, solve the equations to obtain:

p̃i = pi

pt
i = 1, 2, . . . , t − m − 1

p̃i = pt + pi − 1
pt

i = t − m, . . . , t − 1.
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The p̃i sum to m − 1 and p̃i ≤ 1. We are done if we can show that the nominator in
the last equation is non-negative. To show this, consider, for i = t − m, . . . , t − 1,

m(pt + pi − 1) = mpt + mpi − (p1 + · · · + pt )

= mpt − (pt + · · · + pt−m+1) + mpi − (pt−m + · · · + p1).

By assumption m ≥ t/2 and therefore there are at most m terms in the last paren-
thesis. Since i ≥ t − m they are all less than or equal to pi . Hence the expression is
non-negative.

This proof guarantees the existence of a PAWo rule. If node t is chosen the
construction requires a non-stochastic choice of the remaining m − 1 nodes, which
introduce strong dependencies between some nodes.

Looking at the proof, it is reasonable to assume that there are other procedures
fulfilling the theorem. This is also the case. Just as in the proof, let m ≤ t/2 and
make the same assumption of induction. If t is not chosen, choose m elements out
of 1, . . . , t such that i is chosen with probability q̂i . If t is chosen, choose m − 1 such
that i is in the sample with probability p̂i . From

p̂i pt + q̂i (1 − pt ) = pi

follows

p̂i = pi − (1 − pt )q̂i

pt
.

For i = 1, 2, . . . , t − m − 1 we can choose q̂i arbitrary except for the condition

0 ≤ q̂i ≤ min
(

1,
pi

1 − pt

)
,

which is interpreted as 1 if pt = 1. Note that the sum of q̂i with i = 1, 2, . . . , t −
m − 1 is less than or equal to m − 1. Then we can choose q̂i for i = t − m, . . . , t − 1
arbitrary except that

t−1∑
i=t−m

q̂i = m − 1 −
t−m−1∑

i=1

q̂i .
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