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We study networks taken with mass-action kinetics and provide a Jacobian criterion that
applies to an arbitrary network to preclude the existence of multiple positive steady states
within any stoichiometric class for any choice of rate constants. We are concerned with the
characterization of injective networks, that is, networks for which the species formation
rate function is injective in the interior of the positive orthant within each stoichiometric
class. We show that a network is injective if and only if the determinant of the Jacobian of a
certain function does not vanish. The function consists of components of the species forma-
tion rate function and a maximal set of independent conservation laws. The determinant of
the function is a polynomial in the species concentrations and the rate constants (linear in
the latter) and its coefficients are fully determined. The criterion also precludes the exis-
tence of degenerate steady states. Further, we relate injectivity of a network to that of
the network obtained by adding outflow, or degradation, reactions for all species.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Dynamical systems arising from the law of mass-action kinetics are commonly used to model phenomena described by
networks of interacting species. The main examples are found in chemistry and molecular biology but instances are also
found in ecology and epidemiology (such as the Lotka-Volterra and SIR models). Typical systems found in molecular biology
are high-dimensional and contain many parameters that are unknown or poorly determined. It is therefore of interest to
determine properties of these systems that are inherent of the network structure alone and independent of the specific
choice of parameters.

Of particular relevance for applications in systems biology is the determination of network structures for which the cor-
responding dynamical systems have multiple positive steady states for some choice of parameters. Multistationarity in cel-
lular systems provides a mechanism for switching between different cellular responses and can be crucial for cellular
decision making. Even though different features, such as feedback loops, are known that facilitate multistationarity in sys-
tems, it is in general difficult to decide whether a particular system has the capacity to exhibit multiple steady states. Various
criteria have therefore been developed to preclude the existence of multiple positive steady states. These criteria typically
utilize the structure or qualitative features of the system [1–3] or properties of the class of kinetics that are allowed
[4–6]. Additionally, algorithms to positively assert multistationarity have also been developed [7,8].

It is the aim of this paper to introduce a criterion for a network taken with mass-action kinetics to preclude the existence
of multiple positive steady states within any stoichiometric class for any choice of rate constants (i.e., the parameters of the
dynamical system). The criterion is based on the species formation rate function and characterizes when this function is
injective for positive concentration vectors within each stoichiometric class. If this is the case then the network is said to
be injective (Definition 5.1) and there cannot exist multiple positive steady states within a stoichiometric class.
. All rights reserved.
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Specifically, we provide a Jacobian criterion that characterizes injectivity for any network. We consider a modified species
formation rate function (Definition 4.4) obtained by replacing some components of the species formation rate function by
equations for independent conservation laws. We show that a network is injective if and only if the determinant of the
Jacobian of this function does not vanish (Corollary 5.4). If this is the case then any positive steady state is non-degenerate
(Corollary 5.4). We show that the determinant of the Jacobian of the function is a polynomial, linear in the rate constants, and
characterize its coefficients (Theorem 7.6). All together provides a criterion that depends only on the structure of the
network and that is easy to implement using any computational algebra software.

Our work extends and embraces the previous Jacobian criterion by [4] on injectivity of networks in the context of a con-
tinuous flow stirred tank reactor (here called fully open networks). In a fully open network all species are assumed to flow out of
the system or, alternatively, all species are being degraded. This implies that the system has no conservation laws, that is, the
stoichiometric subspace has maximal dimension. Their criterion, however, is not informative for networks with conservation
laws. To circumvent this, Craciun and Feinberg lay a route to preclude the existence of multiple positive steady states in arbi-
trary networks [9,5]: it consists of first deciding whether the associated fully open network is injective and then determining if
degenerate steady states can occur. However, a network can be injective even if the associated fully open network is not.

The work presented here provides a direct path to preclude multiple steady states by avoiding the detour to fully open
networks and enlarges the class of networks for which an injectivity criterion applies. We show that injectivity of an arbi-
trary network can be assessed regardless of the injectivity of the associated fully open network. Further, if the associated
fully open network is injective, the occurrence of degenerate steady states in a network is completely characterized.

A different route to injectivity of a fully open network was taken by Banaji and co-workers [6]. A criterion is given that en-
sures that minus the Jacobian of the species formation rate function is a P-matrix (the definition is given in Section 10). It then
follows from the results of [10] that the network is injective. Our results imply that, after changing the sign of certain rows, the
Jacobian of the modified species formation rate function is a P-matrix and, hence, that the network is injective as well. Using
this approach and the notion of strongly sign-determined matrices, Banaji and co-workers extend the injectivity results of Cra-
ciun and Feinberg for fully open networks taken with mass-action kinetics to kinetics satisfying some mild conditions [6], see
also [3]. Our work is currently restricted to mass-action kinetics and the extension to general kinetics is under investigation.

The outline of the paper is as follows. In Section 2 we introduce some notation and the main definitions relating to net-
works and mass-action kinetics. In Section 3 we introduce the stoichiometric classes and the distinction between fully open
and closed networks. We proceed in Section 4 to study degenerate steady states. Injectivity of networks is discussed in Sec-
tion 5, where the definition of injectivity and the Jacobian criterion are introduced. In Section 6 and Section 7 we focus on
open and closed networks, respectively. Section 8 provides a characterization of networks with only degenerate steady
states. Finally, in Section 9 we relate injectivity of open networks to that of closed networks and in Section 10 the relation-
ship between P-matrices and injectivity is discussed. We end with a few remarks including a discussion on the effective
implementation of the criterion.

2. Networks with mass-action kinetics

2.1. Notation

Let Rþ denote the set of positive real numbers (without zero) and Rþ the set of non-negative real numbers (with zero).
Similarly, let N be the set of non-negative integers. Given a finite set E, let NE be the semi-ring of formal sums v ¼

P
E2EkEE,

with kE 2 N. If kE 2 N for all E 2 E, then we write v 2 NE . The semi-rings REþ and REþ are defined analogously.
The ring of polynomials in E is denoted R½E�. The total degree of a monomial

Q
E2EE

nE , with nE a non-negative integer for all
E, is the sum of the degrees of the variables,

P
E2EnE. The degree of a polynomial is the maximum of the total degrees of its

monomials.
If a polynomial p vanishes for all assignments a : E ! Rþ then p ¼ 0 identically. Further, if p is a non-zero polynomial in

R½E� such that the degree of each variable in each monomial is either 1 or zero, then all the coefficients of p are non-negative
if and only if pðaðEÞÞ > 0 for any assignment a : E ! Rþ.
2.2. Networks

We follow the approach to networks presented in Chemical Reaction Network Theory. See for instance [1,11] for back-
ground and extended discussions. The main concept is the definition of network, also called chemical reaction network or
reaction network in the literature.

Definition 2.1. A network consists of three finite sets:

(1) A set S of species.
(2) A set C � NS of complexes.
(3) A set R � C � C of reactions, such that ðy; yÞ R R for all y 2 C, and if y 2 C, then there exists y0 2 C such that either
ðy; y0Þ 2 R or ðy0; yÞ 2 R.
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Following the usual convention, an element r ¼ ðy; y0Þ 2 R is denoted by r : y! y0. The reactant and product (complexes)
of a reaction r : y! y0 are y and y0, respectively. By definition, any complex is either the reactant or product of some reaction.
The zero complex 0 2 C is allowed by definition. Reactions of the form y! 0 are called outflow reactions and reactions of the
form 0! y are called inflow reactions [12]. In particular, species inflow and species outflow reactions are reactions of the form
0! S and S! 0, respectively, for some S 2 S.

Let n be the cardinality of S. We fix an order in S so that S ¼ fS1; . . . ; Sng and identify NS with Nn. The species Si is iden-
tified with the ith canonical n-tuple of Nn with 1 in the ith position and zeroes elsewhere. Accordingly, a complex y 2 C is
given as y ¼

Pn
i¼1yiSi or ðy1; . . . ; ynÞ. Although Nn is not a vector space, n-tuples v 2 Nn will be called vectors.

Example 2.2. Consider the network with set of species S ¼ fS1; S2; S3; S4; S5; S6g, set of complexes fS1 þ S3; S1 þ S4; S2þ
S4; S2 þ S3; S5; S6g and reactions
S1 þ S3 ¢ S5 ! S1 þ S4 S2 þ S4 ¢ S6 ! S2 þ S3:
That is, the reactions are r1 : S1 þ S3 ! S5, r2 : S5 ! S1 þ S3, r3 : S5 ! S1 þ S4, r4 : S2 þ S4 ! S6, r5 : S6 ! S2 þ S4 and
r6 : S6 ! S2 þ S3. This network is a main building block in protein modification systems and is known as the futile cycle. It
assumes the Michaelis–Menten enzyme mechanism in which a substrate S3 is modified into a substrate S4 through the for-
mation of an intermediate complex S5. The reaction is catalyzed by an enzyme S1. The modification can be reversed via a
similar set of reactions with an intermediate complex S6 and an enzyme S2. Each reversible reaction is written as two irre-
versible reactions, e.g. the reactions r1 and r2 are considered two distinct reactions and not one reversible reaction.
2.3. Mass-action kinetics

Let N ¼ ðS; C;RÞ be a network. We denote the molar concentration of species Si at time t by ci ¼ ciðtÞ and associate with
any complex y ¼ ðy1; . . . ; ynÞ the monomial cy ¼

Qn
i¼1cyi

i 2 R½c1; . . . ; cn�. For example, if y ¼ ð2;1;0;1Þ 2 N4, then the associated
monomial is cy ¼ c2

1c2c4.
A rate vector is an element j ¼ ðky!y0 Þy!y0 2 RRþ given by the assignment of a positive rate constant ky!y0 2 Rþ to

each reaction r : y! y0 2 R. The (mass-action) species formation rate function corresponding to the rate vector j is defined
by:
Rn !fj Rn; c #
X

y!y02R
ky!y0cyðy0 � yÞ:
Let fj;iðcÞ denote the ith entry of fjðcÞ, that is fj;iðcÞ ¼
P

y!y02Rky!y0cyðy0i � yiÞ.
The set of reactions together with a rate vector give rise to a polynomial system of ordinary differential equations (ODEs):
_c ¼ fjðcÞ:
These ODEs describe the dynamics of the concentrations ci in time. The steady states of the network with rate vector j are the
solutions to the system of polynomial equations in c1; . . . ; cn obtained by setting the derivatives of the concentrations to zero:
0 ¼ fjðcÞ:
This system of equations is referred to as the steady-state equations. We are interested in the positive steady states, that is,
the solutions c to the steady-state equations such that all concentrations are positive, c 2 Rn

þ.

Example 2.3. The ODEs system of the futile cycle taken with mass-action kinetics is:
_c1 ¼ �k1c1c3 þ ðk2 þ k3Þc5 _c4 ¼ �k4c2c4 þ k3c5 þ k6c6;

_c2 ¼ �k4c2c4 þ ðk5 þ k6Þc6 _c5 ¼ k1c1c3 � ðk2 þ k3Þc5;

_c3 ¼ �k1c1c3 þ k2c5 þ k6c6 _c6 ¼ k4c2c4 � ðk5 þ k6Þc6;
where the rate constant of reaction ri is denoted by ki.
Remark 2.4. If j 2 RRþ and/or c 2 Rn
þ are not fixed then the function fjðcÞ can be seen as a polynomial function taking values

in R½c�;R½j� or R½c [ j�.
3. Stoichiometrically compatible steady states

The dynamics of a network might preserve quantities that remain constant over time. If this is the case, the dynamics
takes place in a proper invariant subspace of Rn, fixed by the initial concentrations cið0Þ of the system. Let v � v 0 denote
the Euclidian scalar product of two vectors v ; v 0. Let v t denote the transpose of a vector v.
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Definition 3.1. The stoichiometric subspace of a network N ¼ ðS; C;RÞ is the following vector subspace of Rn:
C ¼ hy0 � yjy! y0 2 Ri:
Two vectors c; c0 2 Rn are called stoichiometrically compatible if c � c0 2 C, or equivalently, if x � c ¼ x � c0 for all x 2 C?.

We denote by s the dimension of C. Note that C is independent of the choice of rate constants and depends only
on the structure of the reactions. Being stoichiometrically compatible is an equivalence relation which partitions Rn

þ
into classes, called stoichiometric classes. In particular, the stoichiometric class of a concentration vector c 2 Rn

þ is
fc þ Cg \ Rn

þ.
For any rate vector j 2 RRþ , the image of fj is contained in C. Thus, for any choice of rate vector j; c 2 Rn, and x 2 C?, we

have that x � fjðcÞ ¼ 0 and thus x � _c ¼ 0. If x ¼ ðk1; . . . ; knÞ then
Pn

i¼1kici is independent of time and determined by the
initial concentrations of the system. These conserved quantities are generally referred to as total amounts. Since a� b 2 C
if and only if x � a ¼ x � b for all x 2 C?, total amounts are conserved within each stoichiometric class and characterize
the class.

Example 3.2. The stoichiometric subspace of the futile cycle (Example 2.2) is
C ¼ hS1 þ S3 � S5; S5 � S1 � S4; S2 þ S4 � S6i
and has dimension s ¼ 3. The dimension of the orthogonal space C? is d ¼ n� s ¼ 3 as well and a basis is C? ¼ hx1;x2;x3i
with
x1 ¼ S1 þ S5; x2 ¼ S2 þ S6; x3 ¼ S3 þ S4 þ S5 þ S6: ð3:3Þ
Indeed, we have _c1 þ _c5 ¼ _c2 þ _c6 ¼ _c3 þ _c4 þ _c5 þ _c6 ¼ 0. In this example, three total amounts determine each stoichiometric
class.
Remark 3.4. Questions like ‘‘How many steady states does a system possess?’’ refer to the number of steady states within
each stoichiometric class. If this restriction is not imposed and s ¼ dimðCÞ < n, then the steady states describe an algebraic
variety of dimension at least one over the complex numbers.
Definition 3.5. A network N ¼ ðS; C;RÞ has the capacity for multiple positive steady states if there exists a rate vector j 2 RRþ
and distinct vectors a; b 2 Rn

þ such that a� b 2 C and fjðaÞ ¼ fjðbÞ ¼ 0.
Note that in this work we focus mainly on the existence of multiple positive steady states. However, as we will

show, the methods developed can preclude the existence of a specific type of multiple steady states on the boundary
of Rn

þ.
If a basis fx1; . . . ;xdg of C? is chosen, then a networkN has the capacity for multiple positive steady states if there exists

a rate vector j 2 RRþ and distinct a; b 2 Rn
þ such that fjðaÞ ¼ fjðbÞ ¼ 0 and xi � a ¼ xi � b for all i ¼ 1; . . . ; d. In particular, if the

map f j : Rn ! Rdþn defined by f jðcÞ ¼ ðx1 � c; . . . ;xd � c; fj;1ðcÞ; . . . ; fj;nðcÞÞ is injective, then the network does not have the
capacity for multiple positive steady states. This function is the focus of study in this paper.

If species in- or outflow reactions exist for all species in a network then the stoichiometric subspace has maximal dimen-
sion n. Therefore, the requirement a� b 2 C in the previous definition is superfluous. Specifically, if there is a reaction Si ! 0
or 0! Si for some species S then there are no vectors in C? with non-zero ith entry.

Lemma 3.6. LetN ¼ ðS; C;RÞ be a network. If Si ! 0 2 R or 0! Si 2 R for some Si 2 S, then ki ¼ 0 for all x ¼ ðk1; . . . ; knÞ 2 C?.
Proof. Since �Si 2 C, we have 0 ¼ x � ð�SiÞ ¼ �ki. h
Definition 3.7. Let N ¼ ðS; C;RÞ be a network. We say that

(1) N is open if C ¼ Rn.
(2) N is fully open if the outflow reaction Si ! 0 belongs to R for all Si 2 S.
(3) N is closed if C – Rn.

If N is any network then the associated fully open network, N o ¼ ðS; Co;RoÞ, is the network with Co ¼ C [ S [ f0g and
Ro ¼ R [ fSi ! 0j i ¼ 1; . . . ;ng.

Lemma 3.6 ensures that a fully open network is also open. Fully open networks are considered by [4] in the context of
continuous flow stirred tank reactors and their results extend to arbitrary open networks. A closed network is allowed to
have outflow reactions as well, but not for all species since C – Rn.
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Remark 3.8. A closed network could also be made open by adding species inflow reactions to the set of reactions, but to be
fully open requires species outflow reactions.

Notation. Let N ¼ ðS; C;RÞ be a network and j a rate vector. At this point we have defined the species formation rate
function fj, the stoichiometric subspace C, and used n for the number of species, s for the dimension of C and d ¼ n� s
for the dimension of C?. None of these objects incorporate reference to the specific network in the notation. This notation
is used without further mentioning throughout the paper. Additionally, to ease notation, in some examples species are called
A;B; . . . and the respective concentrations cA; cB; . . .

4. Degenerate steady states

For any function f ¼ ðf1; . . . ; fpÞ : Rm ! Rp let Jcðf Þ denote the Jacobian of f at c, that is, the p�m matrix with entry ði; jÞ
being @fiðcÞ=@cj.

Definition 4.1. Let N ¼ ðS; C;RÞ be a network and j 2 RRþ a rate vector. A steady state c� 2 Rn of N is degenerate if
kerðJc� ðfjÞÞ \ C – f0g.
Remark 4.2. A steady state x� of a system of ODEs _x ¼ uðxÞ is often said to be degenerate if the Jacobian of u at x� is singular
(for example as in [13]). With this definition, the existence of conserved amounts would make all steady states degenerate in
the systems considered here (see Lemma 4.5 below). The reason is that, in this case, the dynamics is confined to a proper
affine subspace of Rn determined by the initial conditions. Consequently, the determinant of the Jacobian is zero and Jaco-
bian-based approaches to the preclusion of multistationarity cannot be used. In fact, it is very likely that multiple steady
states exist if C does not have maximal dimension. However, in biochemical applications the goal is to understand the
dynamics within each stoichiometric class and the existence of multiple steady states in each stoichiometric class is the ques-
tion of relevance. Therefore, our study restricts to stoichiometric classes and we adjust the notion of degeneracy to the sin-
gularities of the Jacobian in the stoichiometric space.

It is proven in [11, Section 5] that for any j 2 RRþ ; c 2 Rn
þ, and c 2 Rn,
JcðfjÞðcÞ ¼
X

y!y02R
ky!y0cyðy�ccÞðy0 � yÞ; where v�cw ¼

Xn

i¼1

v iwi

ci
: ð4:3Þ
It is our aim to understand kerðJc� ðfjÞÞ \ C. We find a criterion to determine whether this intersection consists of the zero
vector or is a proper subspace. The criterion does not require the computation of kerðJc� ðfjÞÞ. In particular, we find that
the existence of degenerate steady states is linked to the function f j being injective.

Since vectors of C are characterized by being orthogonal to all vectors in C?, we obtain the following proposition (stated
here for a general vector subspace F).

Proposition 4.4. Let N be a network and j 2 RRþ a rate vector. Let F be a vector subspace of Rn; fx1; . . . ;xmg a basis of F? and
define f j : Rn ! Rmþn by
f jðcÞ ¼ ðx1 � c; . . . ;xm � c; fj;1ðcÞ; . . . ; fj;nðcÞÞ:
Fix c� 2 Rn. Then, kerðJc� ðfjÞÞ \ F ¼ f0g if and only if the Jacobian Jc� ðf jÞ of f j at c� has maximal rank n.
Proof. Let Jc� ðf jÞ be the Jacobian of f jðcÞ at c�. It is an ðmþ nÞ � n matrix. The rank of Jc� ðf jÞ is maximal if and only if
kerðJc� ðf jÞÞ ¼ f0g. For i ¼ 1; . . . ;m, the ith row of Jc� ðf jÞ equals the vector xi. The lower n� n matrix of Jc� ðf jÞ (obtained
by removing the first m rows) is equal to Jc� ðfjÞ. A vector v belongs to F if and only if xi � v ¼ 0 for all i. It follows that
v 2 kerðJc� ðf jÞÞ if and only if v 2 kerðJc� ðfjÞÞ and v 2 F. Thus, kerðJc� ðfjÞÞ \ F ¼ f0g if and only if kerðJc� ðf jÞÞ ¼ f0g. h

By letting F ¼ C in the previous lemma, we have shown that a steady state c� is non-degenerate if and only if Jc� ðf jÞ has
maximal rank n. Since Jc� ðf jÞ is a ðnþ dÞ � n matrix, d rows of the matrix are linearly dependent of the remaining n. We de-
scribe now a procedure that is independent of c and j to determine d rows with this property. Removal of these d rows from
Jc� ðf jÞ provides a square matrix whose rank agrees with the rank of Jc� ðf jÞ.

Lemma 4.5. If x 2 C? then xt JcðfjÞ ¼ 0 for all c 2 Rn and all rate vectors j 2 RRþ .
Proof. If x 2 C? then x � fjðcÞ ¼ 0 for all c and hence the scalar product vanishes as a polynomial in c. It follows that

0 ¼ @ðx�fjðcÞÞ
@ci

¼ x � @fjðcÞ
@ci

for all i ¼ 1; . . . ;n and xt JcðfjÞ ¼ 0. h
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Hence, each x 2 C? provides a vanishing linear combination of the rows of JcðfjÞ.

Definition 4.6. A basis fx1; . . . ;xdg of C? with xi ¼ ðki
1; . . . ; ki

nÞ is said to be reduced if ki
i ¼ 1 for all i and ki

j ¼ 0 for all
j ¼ 1; . . . ;bj; . . . ; d. Given a rate vector j and a reduced basis fx1; . . . ;xdg, the associated extended rate function ef j : Rn ! Rn is
the function defined by
ef jðcÞ ¼ ðx1 � c; . . . ;xd � c; fj;dþ1ðcÞ; . . . ; fj;nðcÞÞ:
For the sake of simplicity, reference to the chosen reduced basis is not indicated in the notation of ef j. After reordering the
species, such a basis of C? always exist (use for instance Gaussian elimination on any basis of C?). We assume from now on
that a reduced basis is chosen, implying that the species are ordered accordingly.
Example 4.7. The basis x1;x2;x3 of C? of the futile cycle given in (3.3) is reduced. The associated extended rate function is
ef jðcÞ ¼ ðc1 þ c5; c2 þ c6; c3 þ c4 þ c5 þ c6;�k4c2c4 þ k3c5 þ k6c6; k1c1c3 � ðk2 þ k3Þc5; k4c2c4 � ðk5 þ k6Þc6Þ:
Let Jc;iðfjÞ denote the ith row of JcðfjÞ. If fx1; . . . ;xdg is a reduced basis with xi ¼ ðki
1; . . . ; ki

nÞ, then it follows from Lemma
4.5 that
0 ¼ ðxiÞtJcðfjÞ ¼ Jc;iðfjÞ þ
Xn

j¼dþ1

ki
jJc;jðfjÞ; i ¼ 1; . . . ;d:
Thus, the rows 1; . . . ; d of JcðfjÞ are linear combinations of the rows dþ 1; . . . ;n. It follows that the rank of Jc� ðf jÞ equals the
rank of Jc� ðef jÞ. The latter is a square n� n matrix and has maximal rank if and only if its determinant does not vanish.

Corollary 4.8. Let N be a network, j 2 RRþ a rate vector, fx1; . . . ;xdg a reduced basis of C? and ef jðcÞ the associated extended
rate function. If c� 2 Rn, then kerðJc� ðfjÞÞ \ C ¼ f0g if and only if detðJc� ðef jÞÞ – 0. In particular, a steady state c� 2 Rn of N is
degenerate if and only if detðJc� ðef jÞÞ ¼ 0.
Example 4.9. The Jacobian matrix Jcðef jÞ of the futile cycle associated with the reduced basis of C? in (3.3) is
Jcðef jÞ ¼

1 0 0 0 1 0

0 1 0 0 0 1

0 0 1 1 1 1

0 �k4c4 0 �k4c2 k3 k6

k1c3 0 k1c1 0 �k2 � k3 0

0 k4c4 0 k4c2 0 �k5 � k6

0BBBBBBBBB@

1CCCCCCCCCA
:

The determinant of Jcðef jÞ is
�detðJcðef jÞÞ ¼ ðc1c2 þ c1c4Þk1k3k4 þ c1k1k3k5 þ ðc1c2 þ c2c3Þk1k4k5 þ c2k2k4k5 þ c2k3k4k5 þ c1k1k3k6: ð4:10Þ
All coefficients of �detðJcðef jÞÞ as a polynomial in c;j are positive. Thus detðJcðef jÞÞ does not vanish for any c 2 Rn
þ and j 2 RRþ

and all positive steady states of the futile cycle are non-degenerate. In this example, detðJcðef jÞÞ is linear in the rate constants.
If at least one coefficient in the polynomial was negative then we could find c;j for which detðJcðef jÞÞ ¼ 0, implying that a
degenerate steady state could occur. This observation holds for any network and will be discussed in the following sections.
Remark 4.11. The minimal space containing the image of fj is the kinetic subspace:
Kj :¼ him fji# C: ð4:12Þ

In general, the two spaces Kk and C might not agree for a fixed rate vector j. If this is the case then kerðJcðfjÞÞ \ C – f0g for
any c 2 Rn

þ: as above, if x 2 K?j then 0 ¼ x � fj ¼ x � _c. Similarly to the proof of Lemma 4.5 we have that xt JcðfjÞ ¼ 0 and
hence him JcðfjÞi# Kj. If Kj(C then h im JcðfjÞi has at most dimension s� 1 and it follows that the dimension of
kerðJcðfjÞÞ \ C is at least 1. Thus, if the stoichiometric and the kinetic spaces do not agree for some j, then all steady states
corresponding to fj are degenerate.
Example 4.13. Consider the network with reactions r1 : A! B and r2 : A! C. The species formation rate function
fj : R3 ! R3 is
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fjðcA; cB; cCÞ ¼ ð�ðk1 þ k2ÞcA; k1cA; k2cAÞ;
where ki denotes the rate constant of reaction ri. The stoichiometric subspace has dimension 2 and a basis of C? is Aþ Bþ C.
However, k2B� k1C 2 K?j n C? and thus for all j, all steady states are degenerate.
Example 4.14. The stoichiometric and the kinetic spaces of the previous example never agree. For some networks, the two
spaces do not agree only for certain rate vectors. Consider for example the network with reactions r1 : A! B; r2 : A! C and
r3 : Bþ C ! 2A. The species formation rate function fj : R3 ! R3 is
fjðcA; cB; cCÞ ¼ ð�ðk1 þ k2ÞcA þ 2k3cBcC ; k1cA � k3cBcC ; k2cA � k3cBcCÞ:
If we let x ¼ ðk1; k2; k3Þ then the equation x � fjðcÞ ¼ 0 for all c gives 2k1 ¼ k2 þ k3 and ðk2 � k3Þðk1 � k2Þ ¼ 0. If k1 – k2, then
ð1;1;1Þ is a basis of C? as well as K?j and the stoichiometric and the kinetic spaces agree. However, if k1 ¼ k2 then
ð1;2;0Þ 2 K?j n C? and the two spaces do not agree. Further, in this case all steady states are degenerate.
Remark 4.15. Note that Proposition 4.4, Lemma 4.5 and Corollary 4.8 do not depend on the kinetics being of mass-action
type, but hold for general (differentiable) kinetics with fj and ~f j changed accordingly. In particular, Corollary 4.8 character-
izes degenerate steady states in terms of the determinant of the Jacobian of ~f j.
5. Injective networks

Here we introduce the notion of injectivity: a network is injective if for all rate vectors j the function ef j is injective
over Rn

þ. The definition is an extension of the definition of injectivity for fully open networks [4, Def. 2.8] to arbitrary
networks and, together with Proposition 5.2 below, it is in line with the definition given in a recent paper on concordant
networks [14]. We show that a network is injective if and only if the Jacobian of ef j is non-singular for all positive concen-
trations c and for all j.

In [5, Def. 6.1] a definition of injectivity is given for networks with C ( Rn. It relies on the Jacobian of the species forma-
tion rate function restricted to the stoichiometric subspace. We prove in Theorem 5.6 below that our definition agrees with
their definition. The equivalence is also claimed in Remark 6.4 by [5] without a proof.

Definition 5.1. A network N is said to be injective if for all rate vector j and any distinct a; b 2 Rn
þ such that a� b 2 C, we

have fjðaÞ – f jðbÞ.
The definition of injectivity is restricted to the interior of the positive orthant. However, we show below that being injec-

tive also precludes the existence of distinct a; b such that a� b 2 C and fjðaÞ ¼ fjðbÞ, provided either that a 2 Rn
þ; b 2 Rn

þ or
that a; b 2 Rn

þ are on the boundary of Rn
þ and fulfill a certain condition. For a 2 Rn

þ, let Ia ¼ fijai ¼ 0g be the indices for which
ai is zero and let Ya ¼ fyjy! y0 2 R; Ia \ suppðyÞ – ;g, where suppðyÞ ¼ fijyi – 0g is the support of y. That is, Ya is the set of
reactant complexes involving at least one species Si for which ai ¼ 0. It follows that y belongs to Ya if and only if ay ¼ 0.

Proposition 5.2. Let N be a network. The following two statements are equivalent:

(i) N is injective.
(ii) For any distinct a; b 2 Rn

þ such that Ya \ Yb ¼ ; and a� b 2 C; f jðaÞ– f jðbÞ.

In particular, if b 2 Rn
þ, that is Ib ¼ ;, then Ya \ Yb ¼ ; is fulfilled for any a 2 Rn

þ.
Proof. (ii) obviously implies (i). To prove the reverse we assume that there are a; b 2 Rn
þ, such that Ya \ Yb ¼ ;; b� a 2 C and

fjðaÞ ¼ fjðbÞ and show that N cannot be injective. Let ci ¼ bi � ai and for a set M # f1; . . . ;ng and y 2 C define xyM ¼
Q

i2Mxyi .
Further, define I ¼ Ia [ Ib and J ¼ Ic . If I ¼ ;, then clearly N cannot be injective. Hence, assume that I – ;. We seek to define a
rate vector ~j ¼ ð~ky!y0 Þy!y0 and ~a; ~b such that ~ai ¼ ai;

~bi ¼ bi for i R I; ~ai;
~bi > 0 and ~bi � ~ai ¼ ci for i 2 I, and
X

y!y02R

~ky!y0 ð~ay � ~byÞðy0 � yÞ ¼ 0;
that is, f~jð~aÞ ¼ f~jð~bÞ. Then, since ~a; ~b 2 Rn
þ and ~b� ~a 2 C, it follows thatN is not injective. The equality fjðaÞ � fjðbÞ ¼ 0 can be

rewritten as:
0 ¼
X
y!y0

y2Yc
a\Y

c
b

ky!y0 ðay � byÞðy0 � yÞ þ
X
y!y0

y2Ya\Yc
b

ky!y0 ðay � byÞðy0 � yÞ þ
X
y!y0

y2Yc
a\Yb

ky!y0 ðay � byÞðy0 � yÞ;
Assume that we can find ~ai;
~bi > 0 with ~bi � ~ai ¼ ci for all i; ~ai ¼ ai;

~bi ¼ bi for i R I, and ay > 0 such that
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ay

ay þ 1
~by ¼ ~ay; if y 2 Ya \ Yc

b; and
ay

ay þ 1
~ay ¼ ~by; if y 2 Yc

a \ Yb: ð5:3Þ
Then, let ~ky!y0 ¼ ky!y0 for y 2 Yc
a \ Yc

b, ~ky!y0 ¼ ðay þ 1Þky!y0b
y
=~by for y 2 Ya \ Yc

b and ~ky!y0 ¼ ðay þ 1Þky!y0ay=~ay for y 2 Yc
a \ Yb.

With these definitions, if y 2 Ya \ Yc
b since ay ¼ 0 we have
~ky!y0 ð~ay � ~byÞ ¼ ky!y0 ðay þ 1Þð~ayby
=~by � byÞ ¼ ky!y0 ðayby � ðay þ 1ÞbyÞ ¼ ky!y0 ð�byÞ ¼ ky!y0 ðay � byÞ
Analogously, ~ky!y0 ð~ay � ~byÞ ¼ ky!y0 ðay � byÞ if y 2 Yc
a \ Yb, using by ¼ 0. It follows that for ~j ¼ ð~ky!y0 Þy!y0 , we have

f~jð~aÞ � f~jð~bÞ ¼ fjðaÞ � fjðbÞ ¼ 0 as desired.
All that remains is to find ~ai;

~bi > 0 for i 2 I and ay > 0 such that (5.3) is fulfilled. If y R Yb, then ~by; ~ay are independent of
the value of ~ai;

~bi for i 2 Ib. Therefore, we define first ~ai;
~bi for i 2 Ia and focus on fulfilling (5.3) for y 2 Ya \ Yc

b. Further, since
we want ~bi � ~ai ¼ ci, once ~ai is defined, we have ~bi ¼ ~ai þ ci.

Let Ia ¼ fi1; . . . ; img; Ik ¼ fi1; . . . ; ikg (k 6 m) with I0 ¼ ; and Jk ¼ J [ Ik. Further, recursively define Yk ¼
fy 2 Yaj Ia \ suppðyÞ# Ikg n Yk�1 with Y0 ¼ ;. It follows that

Sm
k¼1Yk ¼ Y such that any complex in Y is in precisely one

Yk. That is, if y 2 Yk then ik is the largest index in Ia in the support of y. We define ~aik
; ~bik recursively. Note that ci > 0 for all

i 2 Ia. Assume that ~ai1 ; . . . ; ~aik�1
and ~bi1 ; . . . ; ~bik�1

are defined and hence the products ~byJk�1 ; ~ayJk�1 are fixed. For ik do the
following: if Yk ¼ ;, let ~aik ¼ 1 and ~bik ¼ 1þ cik

. If Yk – ;, observe that for y 2 Yk (for which yik – 0), the equality (5.3) can we
written as
~a
yik
ik

ð~aik þ cik
Þyik
¼ ay

ay þ 1

~byJk�1

~ayJk�1
; that is; ay ¼

rik ð~aik ; yik
Þ

~b
yJk�1

~a
yJk�1
� rik ð~aik ; yik

Þ
; ð5:4Þ
with rik ð~aik ; yik
Þ :¼ ~a

yik
ik
=ð~aik þ cik

Þyik > 0. The function rik is increasing in aik and rik ð0; yik
Þ ¼ 0 for all yik

. By defining ~aik > 0 arbi-
trarily such that
rik ð~aik ; yik
Þ < min

~byJk�1

~ayJk�1

�����y 2 Yk

 !

for all y 2 Yk (which is a finite set), we obtain ay > 0 fulfilling (5.4) as desired.

The same procedure is applied to define ~ai;
~bi for i 2 Ib, with the roles of a and b reversed. In this case, however, bi ¼ 0

implies that ci < 0 and ~ai ¼ ~bi � ci for i 2 Ib. Therefore, rik
ð~bik

; yik Þ becomes ~b
yik
ik
=ð~bik � cik

Þyik , which also is increasing. h

The assumption Ya \ Yb ¼ ; in Proposition 5.2(ii) cannot be relaxed. Consider the network with S ¼ fA;Bg; C ¼
fAþ B;Aþ 2B;0g and reactions Aþ B! 0;Aþ 2B! 0. This network is injective and open. If a ¼ ð1;0Þ and b ¼ ð0;1Þ then
Ya \ Yb ¼ fAþ B;Aþ 2Bg– ; and for any rate vector j we have fjðaÞ ¼ fjðbÞ.

Remark 5.5. In [14], a network N with arbitrary kinetics is said to be injective if fjðaÞ– f jðbÞ for any pair of
stoichiometrically compatible concentration vectors a; b, at least one of which is positive. The condition given in Proposition
5.2(ii) is slightly more general in that both a and b can be non-negative.

IfN is injective, then for any choice of rate vector j at most one positive steady state can exist within each stoichiometric
class, i.e., for every c0 2 Rn

þ there exists at most one c 2 fc0 þ Cg \ Rn
þ such that fjðcÞ ¼ 0. In other words, if N is

injective
then N does not have the capacity for multiple positive steady states. However, the reverse might not be true: non-injective
networks exist that do not have the capacity for multiple positive steady states. An example is provided in Example 7.11.

The proof of the following theorem is adapted from the proof of [4, Th 3.1].

Theorem 5.6. Let N ¼ ðS; C;RÞ be a network. Then, N is injective if and only if kerðJcðfjÞÞ \ C ¼ f0g for all c 2 Rn
þ and j 2 RRþ .
Proof. N is not injective if and only if there exists j 2 RRþ and distinct a; b 2 Rn
þ such that a� b 2 C and fjðaÞ ¼ fjðbÞ. Further,

kerðJcðfgÞÞ \ C – f0g for some c 2 Rn
þ and g 2 RRþ if and only if there exists c 2 C such that JcðfgÞðcÞ ¼ 0. By definition and

using (4.3),
fjðaÞ � fjðbÞ ¼ 0()
X

y!y02R
ky!y0 ðay � byÞðy0 � yÞ ¼ 0;

JcðfgÞðcÞ ¼ 0()
X

y!y02R
gy!y0c

yðy�ccÞðy0 � yÞ ¼ 0:
We will show that given distinct a; b 2 Rn
þ such that c :¼ a� b 2 C and some rate vector j, there exist c 2 Rn

þ and g 2 RRþ such
that
ky!y0 ðay � byÞ ¼ gy!y0c
yðy�ccÞ ð5:7Þ
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and vice versa. Consider distinct a; b 2 Rn
þ such that c :¼ a� b 2 C; c – 0. If ai � bi – 0 define ci :¼ ai�bi

log ai=bi
> 0 and let ci ¼ 1

otherwise. Since ci ¼ 0 if ai ¼ bi, we have ay ¼ byey�cc. Note that the signs of ay � by ¼ byðey�cc � 1Þ and y�cc agree. If

y�cc ¼ 0, let gy!y0 ¼ 1. Otherwise, we let gy!y0 ¼
ky!y0 ðay�byÞ

cyðy�ccÞ > 0 and (5.7) is fulfilled. Reciprocally, given c 2 C; c – 0; c 2 Rn
þ

and g 2 RRþ , define a; b 2 Rn
þ by bi ¼ ai ¼ 1 if ci ¼ 0 and bi ¼ ci=ðeci=ci � 1Þ > 0; ai ¼ bieci=ci > 0 otherwise. Then a� b ¼ c 2 C

and ay � by ¼ byðey�cc � 1Þ has the same sign as y�cc. If ay � by ¼ 0, define ky!y0 ¼ 1. Otherwise, define ky!y0 ¼
gy!y0 ðy�ccÞ
cyðay�byÞ > 0 and

equality (5.7)is fulfilled. h
Remark 5.8. The summand in fj corresponding to an inflow reaction 0! y0 in R takes the form k0!y0y0 and thus is indepen-
dent of the concentration vector c. It follows that JcðfjÞ is independent of the presence or absence of inflow reactions inR and
so is the property of being injective.

We have thus obtained a characterization of injective networks in terms of the Jacobian associated with the species for-
mation rate function. Together with Corollary 4.8 we obtain:

Corollary 5.9. Let N be a network, fx1; . . . ;xdg a reduced basis of C? and ef jðcÞ the associated extended rate function. N is
injective if and only if detðJcðef jÞÞ– 0 for all j 2 RRþ and c 2 Rn

þ.
Remark 5.10. Statements similar to Theorem 5.6 and Corollary 5.9 cannot be stated for individual j, since j and g generally
are different in the proof of Theorem 5.6. However, if the total degree of each of polynomials in the components in ~f j is at
most two then ~f j is an injective function if and only if the Jacobian is non-singular [15].

Note that N is injective if and only if the extended rate function ef j associated with a reduced basis is injective over Rn
þ.

Further, as is observed in (4.10) for the futile cycle, detðJcðef jÞÞ is a homogeneous polynomial in the entries of j with total
degree s, because the rows 1; . . . ; d of Jcðef jÞ are constant (that is, independent of c and j).

Remark 5.11. A general version of the corollary above has recently been formulated in [16] for a certain class of polynomial
maps, without the restriction to species formation rate functions and conservation laws associated to networks.

From Definition 4.1 and Theorem 5.6 we obtain the following corollary.

Corollary 5.12. Let N be a network. If N is injective then there exist no degenerate positive steady states.
Remark 5.13. It follows from Theorem 5.6 and Remark 4.11 that if the two spaces C and Kj are not identical for some rate
vector j then the network cannot be injective.

As noticed in Example 4.10, the determinant of the Jacobian of the extended species rate formation function of the
futile cycle can never vanish. Thus, the futile cycle is injective and does not have the capacity for multiple positive steady
states.

The coefficients of the determinant of the Jacobian of fully open networks are characterized by Craciun and Feinberg
in [4] and this characterization easily generalizes to open networks. Thus, in order to characterize the coefficients of the
determinant of the Jacobian of an arbitrary network N , we consider the associated fully open network, N o, and ‘‘match’’
the terms of the respective determinants. This is done in Section 7 after we discuss some results about open networks in
the next section.

6. Injective open networks

Recall that a network is open if its stoichiometric subspace is Rn. If this is the case then ef j ¼ fj. By Theorem 5.6, an open
network N is injective if and only if the Jacobian JcðfjÞ is non-singular, i.e., detðJcðfjÞÞ– 0 for all rate vectors j 2 RRþ and all
c 2 Rn

þ. Hidden in the proof of Theorem 3.1 in [4] and Theorem 5.6 above we find a simplification of the characterization of
injective open networks: for a network to be injective it suffices to fix any concentration vector c 2 Rn

þ and show that
detðJcðfjÞÞ– 0, for all rate vectors j 2 RRþ .

Proposition 6.1. An open network N is injective if and only if detðJcðfjÞÞ– 0 for all rate vectors j 2 RRþ and a fixed positive
c 2 Rn

þ.
Proof. By Theorem 5.6, it is enough to prove that detðJcðfjÞÞ– 0 for all rate vectors j 2 RRþ and all c 2 Rn
þ if and only if the

statement holds for a fixed c 2 Rn
þ. The forward implication is obvious. To see the reverse, assume that detðJxðfjÞÞ ¼ 0 for

some rate vector j 2 RRþ and x 2 Rn
þ, that is, there exists a non-zero vector c 2 Rn such that 0 ¼ JxðfjÞðcÞ. Define
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g ¼ ðgy!y0 Þy!y0 2 RRþ with gy!y0 ¼ ky!y0xy=cy > 0, and d ¼ ðd1; . . . ; dnÞ with di ¼ cici=xi. With these definitions, we have
ky!y0xy ¼ gy!y0c

y and y�xc ¼ y�cd. Then, using (4.3), we have
JcðfgÞðdÞ ¼
X

y!y02R
gy!y0c

yðy�cdÞðy0 � yÞ ¼ JxðfjÞðcÞ ¼ 0;
which implies that detðJcðfgÞÞ ¼ 0 and we have reached a contradiction. h

The simplification presented here applies to any open network, independently of whether it contains outflow reactions or
not. We have proved that injectivity of an open network can be checked using the Jacobian criterion with the concentration
vector fixed to 1 :¼ ð1; . . . ;1Þ. In this case the determinant of the Jacobian is a polynomial depending only on the rate con-
stants and this reduces the number of variables substantially. Further, the polynomial is homogeneous of total degree n.

In [4, Rk. 2.9] a different simplification is performed where the rate constants of all species outflow reactions are fixed to
1. We state this result as a proposition below and give the proof for completeness.

Proposition 6.2. Let N be an open network and fix a subset O# f1; . . . ; ng. The following statements are equivalent:

(1) N is injective.
(2) detðJcðfjÞÞ– 0 for all c 2 Rn

þ and all rate vectors j satisfying kSi!0 ¼ 1 for all i 2 O.
(3) For any distinct a; b 2 Rn

þ; fjðaÞ – f jðbÞ for all rate vectors j satisfying kSi!0 ¼ 1 for all i 2 O.
Proof. (i) implies (ii) and (iii) by Definition 5.1 and Theorem 5.6. We now prove that (ii) and (iii) separately imply (i). For any
j 2 RRþ and z 2 Rn define ej ¼ ðeky!y0 Þy!y0 2 RRþ and ez 2 Rn by:
ezi ¼
zikSi!0; i 2 O
zi i R O

� eky!y0 ¼
ky!y0Q
i2Okyi

Si!0

:

Clearly ekSi!0 ¼ 1 for all i 2 O, ejy!y0 ðeaÞy ¼ ky!y0ay, and further y�ac ¼ y�eaec for any c 2 Rn. It follows that fejðeaÞ ¼ fjðaÞ, and,

similarly, for any c 2 Rn, JeaðfejÞðecÞ ¼ JaðfjÞðcÞ. Therefore, if N is not injective, then (1) there exists a rate vector j 2 RRþ and

distinct a; b 2 Rn
þ such that fjðaÞ ¼ fjðbÞ and the construction of ej 2 RRþ and ea; eb 2 Rn

þ as above implies that (iii) does not hold,
and (2) there exist a rate vector j 2 RRþ ; a 2 Rn

þ and c 2 Rn; c – 0, such that JaðfjÞðcÞ ¼ 0 and thus a rate vector ej 2 RRþ ; ea 2 Rn
þ

and ec 2 Rn contradicting (ii). It follows that (ii) and (iii) both imply (i) and the proof is completed. h

The simplifications in Propositions 6.1 and 6.2 cannot be performed at the same time because it would constrain the
choice of the free variables j and c too much.

The next proposition is an extension of [4, Eq. (3.15)] where the statement is made for a specific class of open networks.
However, the proof works line by line for the class of all open networks. In fact it does not depend on whether the network is
open or not, but all terms in the proposition are zero unless the network is open. Notice however that our statement differs
from the statement by [4] in the sign ð�1Þn, because they establish the Jacobian criterion on the Jacobian of �fj.

Recall that n is the number of species and note that detðJcðfjÞÞ is a homogeneous polynomial of degree n in the rate con-
stants. To simplify the notation we introduce the following: for any set of m reactions, R ¼ fy1 ! y01; . . . ; ym ! y0mg, let

	 YðRÞ be the n�m matrix whose ith column is yi.
	 CðRÞ be the n�m matrix whose ith column is yi � y0i.
	 rðRÞ ¼ ð�1Þn detðYðRÞÞdetðCðRÞÞ if m ¼ n.

Proposition 6.3 [4]. Let N be an open network and let R ¼ fy1 ! y01; . . . ; yn ! y0ng be a set of n reactions. Viewed as a polyno-
mial in the rate vector j, the coefficient of the monomial

Qn
i¼1kyi!y0i in detðJcðfjÞÞ with c 2 Rn

þ is
aðRÞ :¼ rðRÞc�1þ
Pn

i¼1
yi
:

In particular, the coefficient of the monomial
Qn

i¼1kyi!y0i in detðJ1ðfjÞÞ is rðRÞ.

Remark 6.4. The term aðRÞ is a monomial in c: if
Pn

i¼1yi
j ¼ 0, then Sj has zero coefficient in yi for all i and thus

0 ¼ detðy1; . . . ; ynÞ ¼ rðRÞ. If a reaction yi ! y0i appears twice in a set R then rðRÞ ¼ 0. Therefore the degree of each ky!y0

in the polynomial detðJcðfjÞÞ is either zero or one.

Remark 6.5. Proposition 6.3 is proven by [4] following a direct approach. It also follows from the Cauchy-Binet formula.
Given an n�m matrix A and an m� n matrix B with m P n, the formula expresses the determinant of the product of the
matrices, detðABÞ, as the sum of the products of the corresponding n� n minors of A and B. Assume thatR is ordered, so that
R ¼ fy1 ! y01; . . . ; ym ! y0mg. The species formation rate function can be written in matrix form as fjðcÞ ¼ �CðRÞV , where V
is the m� 1 matrix (i.e., a vector) whose jth entry is kyj!y0j cyj . It then follows that JcðfjÞ decomposes as the product of two
matrices:
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JcðfjÞ ¼ �CðRÞJcðVÞ:
The n� n minors of CðRÞ are obtained by the choice of n columns, that is, n reactions R in R, and hence they are the terms
detð�CðRÞÞ ¼ ð�1Þn detðCðRÞÞ in Proposition 6.3. The n� n minors of JcðVÞ correspond to the choice of n rows and are pre-
cisely given by
c�1þ
Pn

i¼1
yi Yn

i¼1

kyi!y0i

 !
detðYðRÞtÞ:
Proposition 6.6. An open network N is injective if and only if the non-zero coefficients rðRÞ have the same sign for all sets R of n
reactions and there exists at least one set for which rðRÞ – 0.

Proof. The reverse implication follows from Corollary 5.9. For the forward implication, assume that N is injective. Clearly,
detðJ1ðfjÞÞ – 0 and thus there exists at least one set R for which rðRÞ– 0. Note that detðJ1ðfjÞÞ is a polynomial in j with total
degree n and degree at most one in each variable ky!y0 . Assume that there exist two coefficients R1;R2 satisfying rðR1Þ > 0
and rðR2Þ < 0. Set ky!y0 ¼ 1 if y! y0 R R1 and ky!y0 ¼ k if y! y0 2 R1, where k is a positive parameter. After this transforma-
tion, the monomials corresponding to sets of reactions R – R1 have degree in k strictly lower than n. Then detðJ1ðfjÞÞ is a poly-
nomial of degree n in k, with positive leading coefficient. It follows that if k tends to þ1, then detðJ1ðfjÞÞ > 0. Symmetrically,
using R2 we can find rate constants for which detðJ1ðfjÞÞ < 0. Since detðJ1ðfjÞÞ is continuous in a connected domain, there
exists a rate vector for which detðJ1ðfjÞÞ ¼ 0, contradicting Proposition 6.1. h

The criterion in Proposition 6.6 is independent of the rate vector j. The requirement that there exists at least one set R for
which rðRÞ – 0 cannot be removed. Consider for example the network N with set of reactions fA! B;A! 0g. The stoichi-
ometric subspace has dimension 2 and thusN is open. However, detðJcðfjÞÞ ¼ 0 for all j; c, since cB is not a variable of fj. This
requirement is not imposed in [4, Th. 3.3] because it holds automatically for fully open networks: in fact, the set of reactions
fS1 ! 0; . . . ; Sn ! 0g provides the non-zero coefficient ð�1Þn in the determinant expansion of the Jacobian. It is mentioned in
[4, Rk 3.5] that the requirement is necessary if the network is not fully open.
7. Injective closed networks

We would like to have a characterization of the coefficients of the polynomial detðJcðef jÞÞ for closed networksN similar to
that of Proposition 6.3 and a characterization of injectivity similar to that of Proposition 6.6. To this end, we relate the terms
of the polynomial detðJcðef jÞÞ to the terms of the determinant of the Jacobian of a function gj. This function is the species
formation rate function of the fully open network, with rate constants of added outflow reactions set to 1.

Before getting into technicalities we illustrate the idea with the futile cycle. Define the function gj : R6 ! R6 by
gj ¼ fj � id, that is
gjðcÞ ¼ ð�k1c1c3 þ ðk2 þ k3Þc5 � c1;�k4c2c4 þ ðk5 þ k6Þc6 � c2;�k1c1c3 þ k2c5 þ k6c6 � c3;�k4c2c4 þ k3c5 þ k6c6

� c4; k1c1c3 � ðk2 þ k3Þc5 � c5; k4c2c4 � ðk5 þ k6Þc6 � c6Þ:
The Jacobian JcðgjÞ of gj is
�k1c3 � 1 0 �k1c1 0 k2 þ k3 0

0 �k4c4 � 1 0 �k4c2 0 k5 þ k6

�k1c3 0 �k1c1 � 1 0 k2 k6

0 �k4c4 0 �k4c2 � 1 k3 k6

k1c3 0 k1c1 0 �k2 � k3 � 1 0

0 k4c4 0 k4c2 0 �k5 � k6 � 1

0BBBBBBBBBB@

1CCCCCCCCCCA
:

The determinant of JcðgjÞ does not change if the fifth row is added to the first, the sixth row to the second, and the fourth,
fifth and sixth to the third. Thus,
detðJcðgjÞÞ ¼ �

1 0 0 0 1 0

0 1 0 0 0 1

0 0 1 1 1 1

0 �k4c4 0 �k4c2 � 1 k3 k6

k1c3 0 k1c1 0 �k2 � k3 � 1 0

0 k4c4 0 k4c2 0 �k5 � k6 � 1

����������������

����������������
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where the sign � in front corresponds to changing the sign of the first three rows. This determinant is almost equal to the
determinant of Jcðef jÞ as one can see from Example 4.9. The difference between the two determinants arises from the �1 in
the diagonal entries of the matrix for the rows 4;5;6. Therefore, by splitting column 4 using ð0; 0;1;�k4c2�
1;0; k4c2Þ ¼ ð0;0;1;�k4c2;0; k4c2Þ þ ð0;0;0;�1;0;0Þ, and similarly for columns 5;6, we have
detðJcðgjÞÞ ¼ �detðJcðef jÞÞ þmonomials of total degree at most 2 in k1; . . . ; k6: ð4:8Þ
The determinant detðJcðef jÞÞ is a homogeneous polynomial in k1; . . . ; k6 of degree s ¼ 3. Thus, it agrees with the terms in
�detðJcðgjÞÞ of total degree 3. As we will show, the terms of detðJcðgjÞÞ have already been characterized by Proposition
6.3. Thus, using (4.8) we can derive a description of the coefficients of the determinant expansion for closed networks.

In the example, the row modifications done prior to the computation of the determinant were based on the fact that the
futile cycle has conservation laws. This principle holds generally for any closed network. Let
OðNÞ :¼ fij Si ! 0 R Rg
be the set of indices for which species outflow reactions do not belong to R. For example, if N is the futile cycle then
OðNÞ ¼ f1;2;3;4;5;6g. If fx1; . . . ;xdg is a reduced basis of C? then by Lemma 3.6 we have that i 2 OðN Þ for i ¼ 1; . . . ; d.
Thus, the cardinality of OðN Þ is at least d.

Let di ¼ 1 if i 2 OðN Þ and di ¼ 0 otherwise, and let En
m be the n� n matrix with zeroes everywhere but di in the diagonal

entries ði; iÞ for i ¼ m; . . . ; n. We define gjðcÞ as
gjðcÞ :¼ fjðcÞ � ðd1c1; . . . ; dncnÞ: ð4:9Þ
Proposition 7.3. Let N be a closed network, fx1; . . . ;xdg a reduced basis of C? and ef jðcÞ the associated extended rate function.
For a rate vector j 2 RRþ , let gjðcÞ; En

m and di be defined as above. Then,
detðJcðgjÞÞ ¼ ð�1Þd detðJcðef jÞ � En
dþ1Þ:
Proof. Since gjðcÞ ¼ fjðcÞ � ðd1c1; . . . ; dncnÞ, we have that JcðgjÞ ¼ JcðfjÞ � En
1. We let xi ¼ ðki

1; . . . ; ki
nÞ. If dj ¼ 0, then

Sj ! 0 2 R and it follows from Lemma 3.6 that ki
j ¼ 0 for all i. Thus, ðxiÞtEn

1 ¼ ðd1k
i
1; . . . ; dnk

i
nÞ ¼ xi and from Lemma 4.5
ðxiÞt JcðgjÞ ¼ ðxiÞtJcðfjÞ � ðxiÞtEn
1 ¼ �xi; for i ¼ 1; . . . ;d:
Let P be the n� n matrix whose ith row is �xi for i ¼ 1; . . . ; d and the ith canonical vector ei for i ¼ dþ 1; . . . ;n. By the choice
of xi;detðPÞ ¼ ð�1Þd. Further, PJcðgjÞ ¼ Jcðef jÞ � En

dþ1 and hence,
ð�1Þd detðJcðgjÞÞ ¼ detðPJcðgjÞÞ ¼ detðJcðef jÞ � En
dþ1Þ: �
Corollary 7.4. The determinant expansion of Jcðef jÞ as a polynomial in j agrees with the terms in the determinant expansion of
ð�1Þd detðJcðgjÞÞ of total degree s.
Proof. For any non-empty set I # fdþ 1; . . . ;ng, let JI
cðef jÞ be the matrix whose ith column equals that of Jcðef jÞ for i R I and is

the vector �diei for i 2 I. Then, by the column multilinear expansion of the determinant, we have
ð�1Þd detðJcðgjÞÞ ¼ detðJcðef jÞÞ þ
X

;–I # fdþ1;...;ng
detðJI

cðef jÞÞ:
If c is fixed then detðJcðef jÞÞ is a homogeneous polynomial in j of total degree s, while the terms detðJI
cðef jÞÞ are polynomials in

j of total degree strictly lower than s. h
Remark 7.5. Let N o be the fully open network associated with N such that
Ro ¼ R [ fSi ! 0j i 2 OðN Þg:
Define the rate vector jo ¼ ðko
y!y0 Þy!y0 2 RR

o

þ by setting ko
Si!0 ¼ 1 if i 2 OðN Þ and ko

y!y0 ¼ ky!y0 for y! y0 2 R. Then, the func-
tion gjðcÞ is exactly the species formation rate function of N o with rate vector jo.

Let N be a network. Let Rs be the set of all sets of n reactions formed by the union of a set R containing s reactions in R
and d ¼ n� s outflow reactions Si ! 0 with i 2 OðN Þ. That is,
Rs ¼ fR [ fSi1 ! 0; . . . ; Sin�s ! 0g j R ¼ fr1; . . . ; rsg#R; and ij 2 OðNÞg:
Since the cardinality of OðNÞ is at least d;Rs – ;. Let R0 2 Rs and let ij; j ¼ 1; . . . ; d, be the indices for which outflow reactions
Sij ! 0 belong to R0. Then detðYðR0ÞÞ and detðCðR0ÞÞ are simply the minors of YðR0Þ and CðR0Þ with the ijth rows and columns
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removed. Equivalently, detðYðR0ÞÞ and detðCðR0ÞÞ are the minors obtained by removing the ijth rows from YðRÞ and CðRÞ,
respectively, for R ¼ R0 \ R. The matrices YðRÞ and CðRÞ are introduced above.

Let OdðN Þ be the set of subsets of OðN Þ of cardinality d. If M is any n� s matrix and I 2 OdðN Þ, let MI denote the s� s
submatrix of M obtained by removing the jth row for all j 2 I.

The following theorem relies on Proposition 6.3 and the fact that gj is the species formation rate function of the fully open
network N o associated with N for rate vectors of a specific form.

Theorem 7.6. Let N be a network and s be the dimension of the stoichiometric subspace. The terms in the expansion of the
determinant detðJcðef jÞÞ are monomials in j of total degree s and linear in each rate constant. Further, let R ¼
fy1 ! y01; . . . ; ys ! y0sg be a set of s reactions from N . The coefficient of the monomial

Qs
i¼1kyi!y0i in detðJcðef jÞÞ for c 2 Rn

þ is
ð�1Þsc�1þ
Ps

i¼1
yi X

I2OdðN Þ
detðYðRÞIÞdetðCðRÞIÞ

Y
i2I

ci:
Alternatively, the coefficient of
Qs

i¼1kyi!y0i can be written as
ð�1Þsc�1þ
Ps

i¼1
yi X

R02Rs ;R¼R0\R

rðR0Þ
Y

Si!02R0nR

ci:
Proof. Define the rate vector jo ¼ ðko
y!y0 Þy!y0 2 RR

o

þ by setting ko
Si!0 ¼ 1 if i 2 OðN Þ and ko

y!y0 ¼ ky!y0 for y! y0 2 R. As
pointed in Remark 7.5, the function gjðcÞ is exactly the species formation rate function of N o with rate vector jo. If j is kept
as a variable, by Corollary 7.4, the terms in the expansion of detðJcðef jÞÞ correspond to the terms in the expansion of
detðJcðgjÞÞ of total degree s in j. These terms are obtained from the determinant expansion of the species formation rate
function of N o after setting the rate constant of each added outflow reaction to 1. Hence, by Proposition 6.3 and Remark
6.4, detðJcðef jÞÞ is linear in each rate constant. Every set R0 obtained as the union of R and d outflow reactions in OðNÞ such
that rðR0Þ – 0 provides a summand that is multiple of

Qs
i¼1kyi!y0i in the polynomial detðJcðgjÞÞ. The form of the coefficients

follow from Proposition 6.3 together with the discussion above the statement of this theorem. h

Observe that the vector
Ps

i¼1yi is simply the row sum of the matrix YðRÞ. The corollary reduces to Proposition 6.3 if N is
open.

Example 7.7. Consider the futile cycle and (4.10). The coefficient of k1k3k4 in �detðJcðef jÞÞ is c1c2 þ c1c4. It corresponds to
the reactions R ¼ fr1; r3; r4g and the matrices YðRÞ and CðRÞ are:
YðRÞ ¼

1 0 0
0 0 1
1 0 0
0 0 1
0 1 0
0 0 0

0BBBBBBBB@

1CCCCCCCCA
; CðRÞ ¼

1 �1 0
0 0 1
1 0 0
0 �1 1
�1 1 0
0 0 1

0BBBBBBBB@

1CCCCCCCCA
:

The only sets of indices I 2 O3ðN Þ for which the product detðYðRÞIÞdetðCðRÞIÞ is non-zero are I ¼ f1;2;6g and I ¼ f1;4;6g.
These sets give the coefficient c1c2 þ c1c4. Since the last row of YðRÞ is zero, the index 6 belongs to all index sets I for which
detðYðRÞIÞdetðCðRÞIÞ – 0.
Remark 7.8. The results above actually show that if the rank of JcðfjÞ is s, then the product of the non-zero eigenvalues of
JcðfjÞ is exactly detðJcðef jÞÞ. Since the rank of JcðfjÞ is at most s, then the characteristic polynomial of JcðfjÞ is of the form
pðxÞ ¼ ð�1Þnxn þ an�1xn�1 þ � � � þ adxd:
The constant ad is non-zero only if zero has multiplicity d as an eigenvalue. In this case, ad is exactly ð�1Þd times the product
of the non-zero eigenvalues of JcðfjÞ. By the form of JcðfjÞ, each non-zero coefficient ai of pðxÞ is a homogeneous polynomial of
degree n� i in j. Therefore, ai coincides with the sum of the terms of pð1Þ of degree n� i in j. We claim that ð�1Þdad is pre-
cisely detðJcðef jÞÞ. To see this, it suffices to show that ad agrees with the terms in the determinant expansion of detðJcðgjÞÞ of
total degree s in j (Corollary 7.4). If the network has no outflows, this is straightforward because detðJcðgjÞÞ ¼ pð1Þ. If the
network has some outflow reactions, we argue in the following way. The coefficient ad is ð�1Þd times the sum of the minors
of size s of JcðfjÞ. The difference between the terms of degree s in j of detðJcðgjÞÞ and of pð1Þ is the following: the determinant
detðJcðgjÞÞ ignores the minors of size s of JcðfjÞwhere some row and column indices in f1; . . . ;ng n OðN Þ are removed, that is,
the indices for which outflow reactions exist. However, these minors are always zero. Indeed, if there were a non-zero minor
of JcðfjÞ not involving an index i, and Si ! 0 is an outflow reaction of the network, then there would be a non-zero minor of
size s in C not involving the reaction Si ! 0 (and hence not involving the ith row). The reactions corresponding to the s
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columns of this minor together with Si ! 0 provide sþ 1 independent reactions, contradicting that the rank of C is s. There-
fore, the terms of degree s in j of detðJcðgjÞÞ and of pð1Þ agree and the claim is proven.

The same argument shows that the coefficients stated in Theorem 7.6 can be simply written as sums over all subsets
I # f1; . . . ;ng of cardinality d, because if I R OdðN Þ then the corresponding summand is zero.
Corollary 7.9. Let N ¼ ðS; C;RÞ be a network. The following are equivalent:

(i) N is injective.
(ii) The non-zero coefficients rðR0Þ have the same sign for all sets R0 2 Rs, and rðR0Þ– 0 for at least one set R0.

(iii) The non-zero products detðYðRÞIÞdetðCðRÞIÞ have the same sign for all sets R of s reactions in R and I 2 OdðN Þ, and further
detðYðRÞIÞdetðCðRÞIÞ– 0 for at least one set R and some I 2 OdðN Þ.
Proof. The equivalence between (ii) and (iii) is a consequence of Theorem 7.6. If (ii) holds then (i) is a consequence of
Theorem 7.6 and Corollary 5.9. To show that (i) implies (ii), we use the same argument as in the proof of Proposition 6.6.
Using Theorem 7.6 and Corollary 5.9 it suffices to show that for any set R0 2 Rs we can find a concentration vector c and
a rate vector j for which the sign of detðJcðef jÞÞ agrees with the sign of ð�1ÞsrðR0Þ. Let k be a positive parameter and let m
be an integer. Let R ¼ R0 \ R. Define ky!y0 ¼ k if y! y0 2 R, and ky!y0 ¼ 1=km if y! y0 R R. Define cl ¼ k if Sl ! 0 2 R and
cl ¼ 1 otherwise. Then the monomial corresponding to the set R0 2 Rs is the only monomial that tends to �1 when k tends
to infinity for m large enough. h
Example 7.10. We consider the extension of the futile cycle to incorporate two modification sites instead of one. The net-
work consists of the reactions
S1 þ S3 ���! ���k1

k2

S5 ���!k3 S1 þ S4 ���! ���k4

k5

S7 ���!k6 S1 þ S8

S2 þ S8 ���! ���k7

k8

S9 ���!k9 S2 þ S4 ���! ���k10

k11

S6 ���!k12 S2 þ S3
with rate constants indicated next to each reaction. The enzyme S1 catalyzes the modification of S3 to S4 and subsequently to
S8 via the formation of the intermediates S5; S7. Similarly, the enzyme S2 catalyzes the demodification of S8 to S4 and then to
S3 via the intermediates S9 and S6. A reduced basis of C? of this network is given by the vectors S1 þ S5 þ S7; S2 þ S6 þ S9, and
S3 þ S4 þ S5 þ S6 þ S7 þ S8 þ S9. The extended rate function is obtained by substituting the components of fj with indices 1;2,
and 3 by c1 þ c5 þ c7; c2 þ c6 þ c9, and c3 þ c4 þ c5 þ c6 þ c7 þ c8 þ c9, respectively.

The determinant of the extended rate function has the monomials
k1k3k4k7k9k12c1c2c3 and � k2k4k6k7k10k12c1c2c4:
The two terms have different signs. Therefore, this network is not injective. Note that the degree of the monomials in the rate
constant is s ¼ 6.

It is well known that this network can exhibit multistationarity for some choices of rate constants and total amounts [17].
More generally, Feliu and Wiuf [18] analyzed the occurrence of multistationarity in different smalls motifs accounting for
enzyme sharing in protein modification, including the futile cycle and the two-site modification cycle. In their examples, all
motifs that admit exactly one positive steady state for any total amounts are in fact injective. The motifs that can admit
multiple positive steady states are obviously not injective.
Example 7.11. Being injective is not a necessary condition for the existence of at most one positive steady state within each
stoichiometric class. Consider the network with reactions
r1 : Aþ B! C; r2 : C ! Aþ B; r5 : A! Aþ E; r7 : B! 0;
r3 : Dþ E! F; r4 : F ! Dþ E; r6 : D! Bþ D; r8 : E! 0:
For R1 ¼ fr2; r4; r7; r8g, we have rðR1Þ ¼ 1, while for R2 ¼ fr1; r3; r5; r6g, we have rðR2Þ ¼ �1. It follows that the network is not
injective. However, by solving the steady-state equations together with the equations for the conservation laws, it is easily
seen that there is exactly one positive steady state in each stoichiometric class.
8. Networks with all steady states degenerate

If detðJcðef jÞÞ is not identically zero then there exist s linearly independent reaction vectors y1 � y01; . . . ; ys � y0s such that
y1; . . . ; ys are also linearly independent. Therefore, if the dimension of the vector space
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Y :¼ hy 2 Cjy is the reactant complex of some reaction y! y0i# Rn
is strictly smaller than s then detðJcðef jÞÞ ¼ 0. For example, if the reactant complexes of a network involve at most s� 1 spe-
cies, then all steady states of the network are degenerate. The network with reactions fA! B;A! 0g satisfies dimY ¼ 1 < 2,
consistent with our computation that detðJcðef jÞÞ ¼ detðJcðfjÞÞ ¼ 0.

Let I 2 OdðN Þ and let SI ¼ fSi 2 Sj i R Ig be the set of species with indices not in I. Note that SI has cardinality s. We con-
sider the projection of the network N to the set of species SI;N I , induced by the projection pI : Rn ! Rs on the coordinates
not in I. For example, the projection of the futile cycle with I ¼ f1;2;6g is the network with species SI ¼ fS3; S4; S5g and
reactions
S3���! ���S5 ! S4; S4���! ���0! S3:
If 0! 0 occurs then the reaction is discarded and like-wise redundant reactions are removed. The matrix CðRÞI varies over all
sets of s reactions inN I as R varies. Similarly, YðRÞI varies over all sets of s reactant complexes inN I as R varies. Therefore, the
requirement detðYðRÞIÞdetðCðRÞIÞ– 0 for some R is equivalent to the existence of s independent reactions inN I such that the
corresponding reactant vectors also are independent. Since N I has s species, a necessary condition is that N I is open, that is,
the stoichiometric subspace has dimension s. In the example above, the set of reactions fS3 ! S5; S5 ! S4; S4 ! 0g are inde-
pendent and so are the reactant complexes. This implies (as also shown in Example 4.9) that the steady states of the futile
cycle are not degenerate.

The following corollary is a consequence of Theorem 7.6, Corollary 4.8 and the preceding discussion.

Corollary 8.1. Let N ¼ ðS; C;RÞ be a network. The following statements are equivalent:

(i) kerðJcðfjÞÞ \ C – f0g for all j 2 RRþ and c 2 Rn
þ.

(ii) detðYðRÞIÞdetðCðRÞIÞ ¼ 0 for all sets R of s reactions in R and I 2 OdðN Þ.
(iii) For all I 2 OdðN Þ and for any set of s reactions y1 ! y01; . . . ; ys ! y0s in the projected network N I , if the vectors

y1 � y01; . . . ; ys � y0s are linearly independent then the complexes y1; . . . ; ys are linearly dependent.

If any of these hold then N is not injective and any steady state is degenerate.

If N is open, then d ¼ 0 and the only projection to consider is the identity. Therefore, condition (iii) reduces to the condition
of the following corollary.

Corollary 8.2. Let N ¼ ðS; C;RÞ be an open network. Then kerðJcðfjÞÞ \ C – f0g for all j 2 RRþ and c 2 Rn
þ if and only if for any

set of n reactions y1 ! y01; . . . ; yn ! y0n such that the vectors y1 � y01; . . . ; yn � y0n are linearly independent, the complexes
y1; . . . ; yn are linearly dependent.

IfN is fully open then the set of species outflow reactions provides a set of independent reaction vectors and independent
reactant complexes. Therefore, fully open networks cannot fulfill that kerðJcðfjÞÞ \ C – f0g for all j 2 RRþ and c 2 Rn

þ.
However, open networks that are not fully open might fulfill the condition. For example, consider the network with
reactions
r1 : S1 ! S3; r2 : S3 ! S1; r3 : S1 þ S2 ! S3; r4 : 2S1 þ 2S2 ! S3:
The dimension of Y and C agree (s ¼ 3) and the network is open. The network has no outflow reactions. Reactions r1; r2 are
linearly dependent and thus any set of 3 independent reactions must contain r3 and r4. In that case, however, the reactant
complexes are linearly dependent. It follows that Corollary 8.2(ii) is fulfilled and hence all steady states of the network are
degenerate.

Remark 8.3. If Y ( C, in which case dimðYÞ < s and Corollary 8.1(ii) is fulfilled, then all stoichiometric classes have either
none or infinitely many positive steady states: let a 2 Rn

þ be a steady state. Then there is a vector c 2 C such that c � y ¼ 0 for
all y 2 Y. Consequently, for all t 2 R and l 2 C?#Y? we have ey�ðtcþlÞ ¼ 1 and hence ct;l ¼ aetcþl is a steady state. Further,
ct;l 2 Gt ¼ fc 2 Rn

þj logðcÞ � logðaetcÞ 2 C?g which intersects each stoichiometric class in exactly one point for each t [11]. It
is easy to prove that Gt \ Gt0 ¼ ; if t – t0 and hence there are infinitely many positive steady states in each stoichiometric
class. h
Remark 8.4. In [5], a related determinant criterion is given to decide whether or not a closed network can admit degenerate
steady states. Fix a determinant function detC on the stoichiometric subspace C. For each choice of scalar product �c in Eq.
(4.3) (that is, for each choice of c 2 Rn

þ) non-singularity of JcðfjÞ restricted to C is related to a polynomial expansion in j of
detCðJcðfjÞÞ. Each term in the determinant expansion takes the form in Corollary 7.9 with ‘det’ replaced by detC and y 2 YðRÞI
replaced by pcðyÞ, where pc is the projection onto C as defined by the scalar product �c. The criterion requires the coefficients
of the terms in the determinant expansion to be of the same sign or zero for each choice of c 2 Rn

þ [5] [Prop. 10.3]. It is not
obvious how to check whether this criterion is fulfilled using computational algebra software, in contrast to the criterion in
Corollary 7.9.
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Remark 8.5. For fully open networks, an algorithm is provided Joshi and Shiu in [19] to simplify the search for coefficients of
the determinant of the Jacobian that have the ‘‘wrong’’ sign. The algorithm can be applied in the present setting, that is, to
closed networks, to restrict the sets of s reactions to consider.
Remark 8.6. The projected networks are embedded networks as defined by Joshi and Shiu in [20]. We have shown that for an
injective network all embedded networks obtained by selecting sets of s species as above are either injective or have all
steady states degenerate. Consequently, if a network is injective then the embedded networks with s species do not have
the capacity to admit multiple non-degenerate steady states.
9. Open and closed networks and injectivity

Craciun and Feinberg [9] preclude multistationarity in closed networks provided that (1) the fully open network is injec-
tive and (2) the closed network does not have degenerate steady states. In a later paper [5] [Th. 8.2], the authors provide a
sufficient condition (namely that the entrapped-species projection is a normal reaction network) for (2) to hold provided (1)
holds as well. All weakly reversible networks fulfill this condition.

Using the results of the previous sections we now relate injectivity of a network N and injectivity of the associated fully
open networkN o. Recall that the function gj was defined in (4.9) and that it is the species formation rate function ofN o for a
specific choice of rate vector, namely, jo ¼ ðko

y!y0 Þy!y0 2 RR
o

þ defined by setting ko
Si!0 ¼ 1 if i 2 OðN Þ and ko

y!y0 ¼ ky!y0 for
y! y0 2 R.

Theorem 9.1. Let N ¼ ðS; C;RÞ be a closed network. If N o is injective then the following statements are equivalent:

(i) N is injective.
(ii) As a polynomial in j;detðJcðgjÞÞ has at least one monomial of total degree s.

(iii) kerðJcðfjÞÞ \ C ¼ f0g for some fixed j 2 RRþ and c 2 Rn
þ.

(iv) There exists I 2 OdðN Þ and a set of s reactions y1 ! y01; . . . ; ys ! y0s in the projected network N I such that the two sets of
vectors y1 � y01; . . . ; ys � y0s and y1; . . . ; ys are both linearly independent.
Proof. Let fx1; . . . ;xdg be a reduced basis of C? and ef j the associated extended rate function for j 2 RRþ . Since N o is injec-
tive, then JcðgjÞ is non-singular for all j 2 RRþ and for any c 2 Rn

þ (Proposition 6.2). Equivalently, detðJcðgjÞÞ is a polynomial in
j, with all non-zero coefficients having the same sign and thus all non-zero coefficients of detðJcðef jÞÞ have the same sign. It
follows that either (1) detðJcðef jÞÞ ¼ 0 as a polynomial in j or (2) detðJcðef jÞÞ– 0 for all values of j 2 RRþ and c 2 Rn

þ. The equiv-
alence of the four statements follows from this observation, Theorem 5.6, Corollary 5.9 and Corollary 8.1. h
Example 9.2. Consider the open network N with reactions r1 : Aþ B! D; r2 : A! C; r3 : B! D. The dimension of the stoi-
chiometric subspace is 3. Let ki denote the rate constant of reaction ri. The associated fully open network is injective, since
detðJcðgjÞÞ ¼ 1þ k2 þ k3 þ k1cA þ k1cB þ k2k3 þ k1k2cA þ k1k3cB:
However, the determinant has no monomial involving k1; k2; k3. It follows that N is not injective and all steady states are
degenerate. Alternatively, note that Y ¼ hA;Bi has dimension 2 < s ¼ 3.
Corollary 9.3. Let N ¼ ðS; C;RÞ be a closed network, N o ¼ ðS; Co;RoÞ the associated fully open network, and f o
j the species for-

mation rate function of N o. Assume that N o is injective. Then N is injective if and only if as a polynomial in
j ¼ ðky!y0 Þy!y02Ro ;detðJ1ðf o

jÞÞ has at least one monomial in ky1!y01 ; . . . ; kyn!y0n with s reactions inR. If this is the case, then all steady
states of N are non-degenerate.

In view of these results, there might exist injective networks such that their open network counterparts are not injective.
This can only occur if some monomials with less than s rate constants from the true reactions have the wrong sign. We pro-
vide two examples.

Example 9.4. Consider the network N given by the reactions:
r1 : Aþ C ! 2Aþ B; r2 : Bþ C ! Aþ C; r3 : Aþ Bþ C ! 2B:
The stoichiometric subspace of N has maximal dimension 3 and thus it is open. Let ki denote the rate constant of reaction ri,
and kA; kB; kC the rate constants of the outflow reactions. Then, for j ¼ ðk1; k2; k3; kA; kB; kCÞ,
detðJ1ðf o
jÞÞ ¼ �2k1k2k3 � k1k2kA � k1k2kB � k2k3kB � k1kAkB � k3kAkB þ 2k1k2kC � 2k1k3kC � k2kAkC þ k3kAkC þ k1kBkC

� k3kBkC � kAkBkC :
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Since the sign of the coefficients of detðJ1ðf o
j ÞÞ as a polynomial in j differ, the fully open network, N o, is not injective. How-

ever, there is one monomial only in k1; k2; k3, which implies that N is injective and has no degenerate steady states. This net-
work, however, does not have positive steady states either.
Example 9.5. Consider the network N given by the reactions:
r1 : Aþ Bþ C ! 2Aþ Bþ 2C; r2 : Aþ C ! Aþ Bþ C; r3 : C ! Aþ Bþ 2C:
The stoichiometric subspace of this network has dimension 2 and thus it is closed. Let ki be the rate constant of reaction ri.
Then
detðJcðgjÞÞ ¼ k1k3cAcC þ k1k2c2
AcC þ k1k2cAc2

C þ k3 þ k1cAcB þ k1cBcC � 1:
We see that N o is not injective but since all monomials in k1; k2; k3 of total degree 2 have the same sign, it follows from
Corollaries 7.4, 7.9, and Theorem 7.6 that N is injective and there are no degenerate steady states.
Remark 9.6. The open network given in [9, Section 6] to illustrate that degenerate steady states can occur is not injective.
Therefore the results of this work do not apply.
Remark 9.7. This remark is for the readers familiar with [5] and the terminology introduced in that paper. Let N be a net-
work such that N o is injective. We have provided a sufficient and necessary condition for N to be injective as well, namely,
that there exists I 2 OdðN Þ, and a set of s reactions y1 ! y01; . . . ; ys ! y0s in the projected network N I such that the set of vec-
tors y1 � y01; . . . ; ys � y0s and y1; . . . ; ys are both linearly independent. Since it is a sufficient and necessary condition, any net-
work fulfilling the condition in [5, Th. 8.2] forN to be injective, that is, the entrapped-species projection is a normal reaction
network, also fulfills our condition. In particular, weakly reversible networks are normal and hence they also fulfill our
condition.
10. Weakly sign determined (WSD) networks

A square matrix is said to be a P-matrix if all principle minors are positive. If the principle minors are non-negative the
matrix is said to be a P0-matrix. [6] introduced a criterion (namely that the stoichiometric matrix is WSD) that relates to injec-
tivity of a network N . They restrict the class of networks to non-autocatalytic networks (NAC), which implies that the same
species cannot both be a reactant and a product in the same reaction. We impose the same constraint in this section.

In our notation the criterion states that ð�Þ detðYðRÞIÞdetðCðRÞIÞP 0 for any set I of n� k distinct indices in f1; . . . ;ng and
any set R ¼ fy1 ! y01; . . . ; yk ! y0kg of k reactions from N if and only if �JcðfjÞ (minus the Jacobian) is a P0-matrix [6] [Th. 4.1,
Th. 4.3]. IfN is fully open then (⁄) (with inflow and outflow reactions excluded from the sets R) is equivalent to �JcðfjÞ being a
P-matrix [6][Cor. 4.2, Th. 4.4]. Using the results of [10], it follows that N is injective.

If N is closed and injective then JcðfjÞ is not a P-matrix as the rank is less than n. Our criterion for injectivity states that if
there exists r 2 f0;1g such that (⁄⁄) ð�1Þr detðYðRÞIÞdetðCðRÞIÞP 0 for any set I of n� s distinct indices in f1; . . . ;ng and any
set R ¼ fy1 ! y01; . . . ; ys ! y0sg of s reactions from N , and at least one of them is non-zero, then detðJcðef jÞÞ is non-zero and N
is injective. Assume that (⁄⁄) holds. If all species inN appear in some reactant complex then the NAC assumption guarantees
that the diagonal entries of Jcðef jÞ in rows dþ 1; . . . ; n are non-zero and negative. Since the diagonal entries in rows 1; . . . ; d
are all equal to one, it follows that the product of the diagonal entries is a term in the expansion of detðJcðef jÞÞ and has sign
ð�1Þs. Consider the matrix J�cðef jÞ obtained from Jcðef jÞ by multiplying the lower s rows by minus one. The matrix has full rank
and is a P-matrix: if N fulfills (⁄⁄) then all non-zero terms in the determinant expansion of J�cðef jÞ have sign ð�1Þs. Each prin-
ciple minor can be obtained as a sum of terms in the determinant expansion of J�cðef jÞ divided by the (positive) diagonal en-
tries of the rows not taken in the minor. Since this sum contains at least the non-zero diagonal product term, all principle
minors are positive. Consequently, J�cðef jÞ is a P-matrix. Note that if N has full rank (for example if it is fully open) then
J�cðef jÞ ¼ �Jcðef jÞ.

If Si is a species that is only in product complexes ofN then the lower s rows of Jcðef jÞ are zero in the ith position. If Si is not
involved in any conservation law, then the ith column of Jcðef jÞ is zero, detðJcðef jÞÞ ¼ 0, and (⁄⁄) does not hold. Generally, let
Si1 ; . . . ; Sim be the species of N that are only in reactant complexes such that the lower s rows of Jcðef jÞ are zero in entries
i1; . . . ; im. If (⁄⁄) holds and detðJcðef jÞÞ– 0 then the columns i1; . . . ; im of Jcðef jÞ are linearly independent. Since the lower
s�m submatrix is identically zero, it follows that the upper d�m matrix has rank m (and in particular m 6 d). As a conse-
quence, we can reorder the species in S such that Si1 ; . . . ; Sim are the first m species and we are guaranteed that there exists a
reduced basis of C? with that order. Because m 6 d, with this order the diagonal entries of Jcðef jÞ are non-zero and we can
proceed as above.

To sum up, if (⁄⁄) holds, then there exists an order of the species of N such that the matrix obtained from Jcðef jÞ by chang-
ing the sign of the last s rows is a P-matrix. Using the results of [10] we conclude that ef j is an injective function and hence
that N is injective.



1466 E. Feliu, C. Wiuf / Applied Mathematics and Computation 219 (2012) 1449–1467
11. Concluding remarks

In this paper we have provided a Jacobian criterion for the characterization of injective networks taken with mass-action
kinetics. Injective networks have the important property that multiple positive steady states within any stoichiometric class
cannot occur for any choice of rate constants. Further, the existence of multiple boundary solutions of a certain type is also
precluded. Importantly, if an injective network has a positive steady state, then it cannot have any other non-negative steady
state.

Since injective networks are characterized by a non-singular Jacobian of the species formation rate function (when re-
stricted to the stoichiometric subspace), other interesting properties of this class of networks are expected. For instance,
in [21] it is shown that their steady-state fluxes exhibit a certain degree of robustness against variation in rate constants.

The main novelty of this work is that injectivity of a network can be assessed directly. Previous work derived the non-
existence of multiple steady states from the injectivity of the associated fully open network [4,9,5]. Since a network can
be injective even if the associated fully open network is not, the method presented here can preclude multistationarity
for a bigger class of networks. Further, the path to determine the existence of degenerate steady states in closed networks
with injective associated fully open networks provided by [5] is also simplified.

The Jacobian criterion presented here can be effectively implemented using any symbolic computation software like
Mathematica. Suggested steps for its implementation are the following (using pseudo-Mathematica commands):

	 Definitions:

n: number of species, A: stoichiometric matrix C,
c = c[1],. . .,c[n]: Concentration vector, v: rate vector (with concentrations) ðky!y0cyÞy!y02R,
F = A.v: species formation rate function fj.
	 Conservation laws and associated extended rate function:

P = RowReduce[NullSpace[Transpose[A]]]: find a reduced basis of C?,
ind: vector of the indices of the first entry of each vector in P,
Ftilde: remove entries ind of F and add the entries P.c.

	 Compute the determinant of the Jacobian of Ftilde:

J = Table[D[Ftilde[[i]],c[j]], {i,1,n},{j,1,n}],
D = Det[J].

	 Determine the signs of the coefficients of D:

m = MonomialList[D]: monomials of D,
coeffs = DeleteDuplicates[m/.{k!1,c!1}]:
coefficient of each of the monomials (in the rate constants and c), and delete duplicates,
Pos = Select[coeffs, Positive], Neg = Select[coeffs, Negative]: select the positive and the negative coefficients,
If Length[Pos]>0 and Length[Neg]=0: N is injective,
If Length[Pos]=0 and Length[Neg]>0: N is injective,
Otherwise: N is not injective.
In our experience, this procedure works fast and reliably for not-so-big networks (at least up to around 15–20 species).
For bigger networks, the computational cost in finding the determinant might be too high for a standard computer. In that
case, one might construct the lists Pos and Neg above by computing one by one the signs of detðYðRÞIÞdetðCðRÞIÞ for all sets R
of s reactions and indices I 2 OdðN Þ. If two conflicting (different) signs are found, the algorithm should stop and the network
is not injective. In Mathematica, the command Subsets[list,{s}] provides the subsets of a list containing exactly s elements.
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