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Glossary

Centrality betweenness: the fraction of shortest paths in the network going

through a node.

Classical random graph (Erdós-Renyi Random Graph): a random graph model

with a binomial or poisson degree distribution.

Clustering coefficient: probability that two nodes r and s, which are neighbours

to node I, are themselves neighbours.

Degree: number of interactions of a node or protein.

Degree distribution: function that specifies the frequency of nodes with degree

k.

Diameter: the diameter of a network is the minimum distance among all pairs

of nodes in the network.

Distance: in a network, the distance between two nodes i and j is defined as the

minimum number of edges that have to be traversed to reach j from i. If there is

no path between the nodes, then their distance is set to 1.

Graph: mathematical representation of a network in terms of its set of nodes

(proteins) and the set of edges (protein–protein interactions).

Motif: a set of nodes with a certain pattern of edges connecting them (e.g. a

closed triangle among three nodes defines one motif of size 3).

Power law: functional relationship of the form f(x) = cx�g.

Random graph: mathematical object that specifies a probability for each given

graph structure.

Scale-free network: a type of network that has a power law degree distribution.

Small-world effect: a network that has small average distance; some

definitions also require that the clustering coefficient is much larger than that

of an equivalent (same number of nodes and edges) classical random graph.
Recent work leading to new insights into the molecular
architecture underlying complex cellular phenotypes
enables researchers to investigate evolutionary pro-
cesses in unprecedented detail. Protein interaction net-
work data, which are now available for an increasing
number of species, promise new insights and there
have been many recent studies investigating evolution-
ary aspects of these interaction networks, from math-
ematical studies of growing networks to detailed
phylogenetic surveys of proteins in their interaction net-
work context. Here, we review the spectrum of such
approaches, and assess issues associated with analyzing
such data from an evolutionary perspective. Currently,
such analyses are statistically challenging, but could link
present initiatives in systems biology with results and
methodologies that have developed in evolutionary
biology over the past 60 years.

Introduction
Over the past decade, networks have taken a prominent
position in many different disciplines, from theoretical
physics [1,2] and technology to sociology and the huma-
nities [3]. In biology, they have gained particular promi-
nence [4–6] and network-based descriptions now have a
fundamental role in biology, particularly in systems
biology (the attempt to combine system-wide biological
information with predictive modelling). Their appeal
might be because not only are they based on a rigorous
mathematical framework (mostly graph theory [7] and
statistical physics [8,9]), but they also provide a convenient
graphical representation of complex processes (Figure 1).
The role of network concepts in ecology, where networks
have a longstanding history [10], and evolution has
recently been reviewed [11,12]. Here, we focus on the
evolutionary analysis of protein interaction networks
(PIN; Box 1), a field of much activity over the past few
years that also brings a distinctly evolutionary perspective
to biological systems.

Progress in experimental systems biology provides us
with data that enable interactions among molecules inside
a cell to be measured. The collection, verification and
validation of such data pose considerable statistical chal-
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lenges, and together form an active field of bioinformatics
research (e.g. Refs. [14–16]). Certainly, interactions will
not occur all the time and under all conditions. Never-
theless, PIN data has attracted much attention because of
the hope that understanding which proteins interact with
one another will give us deeper insights into the molecular
machinery underlying complex phenotypes.

It is best to consider a PIN as an averaged structure,
which contains interactions that are realized at different
times and/or under different conditions. In reality, how-
ever, our knowledge of the true PIN will be subject to
uncertainty. Here, although we do not consider the collec-
tion of the data, we discuss how issues such as data quality
can be addressed in the analysis of PIN data. From an
evolutionary perspective, the data becoming available
should enable researchers to explore the interplay between
evolutionary (population-based) and molecular processes,
particularly the extent to which molecular interactions
affect evolutionary genetics.
Subnet: a network that is part of a larger network. Subnets are obtained by

choosing a subset of the nodes in the larger network and considering it

together with the connections among this set of nodes.
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Figure 1. Example of a network and network statistics discussed in the main text. A

network is generally described by a graph, G, which contains a set of nodes or

vertices, V (red) and edges, E (cyan): thus, G = (V,E). Here, we only consider

undirected graphs with binary edges; that is, interaction between two proteins is

either present or not; edges have no directions and no distinction is made between

the relative strengths of different edges. In the future, quantitative interaction data

will require straightforward extensions to the mathematical description of G. For

recent reviews, see Refs [2,8,9].
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The complexity of evolutionary analysis of biological
networks is reflected by the diversity of different
approaches used to study or model PIN evolution: from
methods taken straight from statistical physics, via studies
that involvemethods frommolecular evolution, to analyses
that are heavily influenced by structural genomics. Here,
Box 1. What are protein interaction networks?

Whereas metabolic networks and gene regulatory networks aim to

summarize the basic biochemistry and the set of regulatory interac-

tions of biological organisms, respectively, PINs lack such a

straightforward interpretation. A PIN consists of all reported pro-

tein–protein interactions in an organism. When reporting an interac-

tion between two proteins, we typically mean that some

physicochemical interaction has been detected in in vitro biochemical

assays, such as yeast-2 hybrid, immuno-precipitation and tandem-

affinity purification, using protein tags. These experimental assays

are subject to considerable noise levels, especially when used in high-

throughout settings; thus, it is generally difficult to determine the

extent to which interactions detected in vitro are relevant in vivo. Not

all of these interactions will be realized simultaneously and there is as

yet no data that would enable the analysis of protein interactions in

the same organism under different environmental or physiological

conditions. In general, the network data are also only of a qualitative

nature; that is, interactions are either present or not but their strength

is not quantified.

Finally, in reality, interactions are between different protein

domains rather than proteins. Figure I shows the structure of the

porcine pancreatic a-amylase (blue structure) in complex with a bean

lectin-like inhibitor (red and yellow structure; protein database code

1DHK) [76]. The interaction occurs solely between the blue and red

domains, although the inhibitor also has a 2nd domain, shown in

yellow; other proteins containing the red and blue domains might

also interact.
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we review these approaches as well as future challenges
surrounding the evolutionary study of PINs.

From bags of genes to networks of interacting loci
The field of evolutionary genetics has made much progress
in unravelling the molecular basis of genetic and pheno-
typic variation among individuals in a population, as well
as among species. In particular, the interplay between
theoretical analysis and experimental studies has led to
the development of statistical frameworks for the quanti-
tative analysis of genetic variation. At the level of popu-
lations of individuals belonging to the same species,
population genetics and quantitative genetics have devel-
oped sets of extensively tested models for the evolution of
systems consisting of a small and large number of genetic
loci, respectively. These models have been studied care-
fully and, given a set of suitable assumptions, are amen-
able to exact mathematical analysis.

In population genetics, most studies focus on either a
single locus or a few loci. Although for the former, our
understanding of the model is now fairly complete [13,14],
systemsof interacting loci areanactivefield of interest,with
many questions remaining. Most studies have looked either
at pairs of loci or at systems of loci with certain simplifying
limits, such as independent loci, where loci are in linkage
equilibrium and are inherited independently. One crucial
aspect of such theoreticalmodels is the preciseway inwhich
the genotype is related to the phenotype (generally sub-
sumed into some measure of darwinian fitness). The more
that loci contribute to a trait, the more difficult modelling
becomes, as additional assumptions have to bemade: gener-
ally independence of the contributions from different loci is
assumed. As the number of loci increases, however, systems
enter the realm considered by quantitative genetics: here, a
Figure I.
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large number of genes are assumed to determine pheno-
types, which, as a consequence vary continuously. The
scenario of many (but not strictly infinitely many) interact-
ing loci is largely uncharted territory and, to some extent,
little progress has been made in this area since Haldane’s
classic paper ‘In Defence of Beanbag Genetics’ [15].

The evolutionary analysis of metabolic networks has
perhaps the longest history, as metabolic networks are a
natural extension of the biochemical pathways that have
been studied for a long time. Following the pioneeringwork
of Kacser and Burns [16,17], several studies have been
published that combine models of biochemical pathways
with explicit genetic models for the enzymatic activity or
related phenotypes [18,19]. Here, the metabolic network is
used as a map between genotype and phenotype to study
the evolution of dominance and robustness.

As far as PINS are concerned, the available data are
qualitatively different from what are typically modelled in
population genetics: generally, a range of alleles at each
locus and fitness schemes for collections of alleles are
considered (e.g. Ref. [13]). In the analysis of PINs and
Box 2. Models of evolving networks

Models of growing random graphs aim to model the evolution of

networks and three examples are illustrated in Figure I. Random

growth by mechanisms such as attachment or duplication of nodes

yields network structures that are different from those generated

by an ensemble of networks [1] with the same number of nodes

and edges but where the M edges are randomly distributed among

the N nodes. This occurs even if the mechanism is subject to

Figure I. Network growth models. Different mechanisms for network growth result

(a) corresponds to the preferential attachment model (at each time point, a new node is a

degree); (b) illustrates the duplication divergence model (at each time point, either an e

interaction is rewired); (c) corresponds to the duplication attachment models (only dup

occur).
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metabolic networks, many studies refer solely to the via-
bility of knockout mutants. The effects of mutations on the
ability of proteins to interact and the resulting (epistatic)
fitness effects have received relatively little attention.

Models of evolving networks
Much of the early theoretical work [20] used simple ran-
dom graph structures as models of evolving networks.
However, it became apparent that real networks have
different properties. Notably, the degree of nodes in real
biological, technological and social networks varies more
than in classical random networks, with some nodes hav-
ing very large degrees (so-called ‘hubs’) whereas most
nodes have only a few interacting partners. This broad-
tailed degree distribution cannot be achieved in classical
random graphs (see Glossary), but several graph theoreti-
cal approaches have been developed that result in valid
descriptions of such networks. Particularly interesting
from the perspective of evolutionary and theoretical biol-
ogists are models of growing networks, which give rise to
networks that have some of the desired properties of real
the constraint that the two resulting networks have the same

degree distribution [77]. The process of growing networks by

such processes introduces correlations among the nodes, and

affects, for example, measures such as the clustering coefficient,

which is higher than the expected clustering coefficient of a

network with the same degree sequence but otherwise random

connectivities.

in characteristic structures (new edges are shown in pink, new nodes in cyan).

dded and connected to two existing nodes, which are chosen in proportion to their

xisting node is duplicated and a random set of its interactions are inherited, or an

lication with random inheritance of interactions or preferential attachment events



Figure 2. Pr(k) denotes the probabity of a node having k interactions. Network

growth by the preferential attachment model (Box 2) up to the size of the observed

network data results in a power-law degree distribution (blue); the degree

distribution corresponding to the infinite network is shown in green. The

attachment-duplication model (using maximum likelihood fits for the two free

model parameters) results in the red curve; the observed degree distribution of

Saccharomyces cerevisiae is given by the black circles. The model-based approach

has the advantage that finite size is build into the model explicitly and that we can

interpret the parameters biologically (duplication probability, p, and edge

inheritance probability after duplication, p): the node duplication probability, for

example, can be interpreted as a measure for the evidence for historical gene

duplication, and can be compared with phylogenetic estimates.
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networks (e.g. broad degree distribution) and are based on
models that might reflect or mimic some biological process
of network evolution [21,22] (Box 2).

In the simplest case, such networks grow by adding a
new node at each time-step and attaching it to randomly
chosen nodes in the network. Such an approach will ulti-
mately give rise to a degree distribution that decays expo-
nentially with degree, k, for large degrees. The degree
distribution of many real PINs, however, decays more
slowly than exponentially. Attaching a new node to exist-
ing nodes with a probability proportional to their degree
gives rise to networks with a much broader degree distri-
bution. In fact, as the number of nodes n approaches
infinity, the degree distribution of such networks will take
on the shape of a power law, where the probability of a node
having degree k is given by Pr(k) / k�3 [23].

The attachment process does not, however, correspond to
a biological process (horizontal gene transfer is the only
process that comes to mind, but is essentially limited to
prokaryotes).Chungand co-workers [22] consideredamodel
where, at each step, a node is chosen at random and dupli-
cated. The new copy can either inherit all of the connections
of the original, or it can inherit each edge with probability
0 < p < 1. This, the authors argue, also gives rise to scale-
freebehaviourandapower law-likedegreedistributionwith
exponents 2 < g < 3, which would be in much better agree-
ment with the observed power law exponents.

Statistically, however, the shape of the degree distri-
bution is better described in terms of even simpler distri-
butions (such as the log-normal) [24–28]. Some authors
[29] have looked at network models that combine the
processes of node duplication [22] with the potential for
the properties of duplicated nodes to diverge from each
other; these are sometimes referred to as duplication–
divergence (DD) models. Related to this are models that
consider network evolution by (preferential) attachment
and duplication (with incomplete inheritance of edges)
[30]. These attachment–duplication (AD) models and the
DD models can also be analyzed in a quantitative manner,
and fit the data equally well as the best phenomenological
models (i.e. log-normal or stretched exponential distri-
butions) and are based on a mechanistic model of network
evolution that can be loosely (and perhaps simplistically)
related to biological characteristics, such as rates of gene
duplication. They do not, however, give rise to scale-free
degree distributions [9,29] (Figure 2).

Although such models of network growth will offer over-
simplified descriptions of the true process of network evol-
ution, they can provide insights into general properties of
evolving networks [4]. When combined with suitable stat-
istical tools [27,30], it is possible to parameterize these
models to obtain more realistic descriptions of evolving
networks [6,31]. These models set out to achieve the same
objective as models of sequence evolution [32,33].

Evolutionary analysis of networks
The relationship between the models mentioned above and
actual PINs has been discussed in a largely qualitative
fashion, although some approaches are informed by phylo-
genetic inferences [31]. With the wealth of available
sequence data, however, it has become possible to study
www.sciencedirect.com
the effects of the network structure on the evolutionary
properties of the constituent proteins. Before continuing,
however, twonotes of caution are needed, both ofwhich pose
immense statistical challenges to evolutionary analysis
(even at the micro evolutionary level considered here):
(i) T
he evolution of proteins is known to be influenced by
many factors; studying the effects of network structure
on the rate of protein evolution without accounting for
these potentially confounding factors could be mis-
leading.
(ii) P
resent protein–protein interaction data are noisy
and incomplete; failure to account for this might also
introduce bias.
Protein interaction data quality

The poor quality of high-throughput protein interaction
data and the fact that the networks are incomplete (sub-
nets generally have different properties from the true
network) have been stressed repeatedly [34–39]. Simu-
lation studies and comparative analysis of different data
sets also show that the type of experimental approach
underlying a data set influences the analysis [40]. There
appears to be a genuine tradeoff between data quality and
quantity that can be generated in medium–high through-
put protein interaction assays. Nevertheless, many recent
studies use only one data set from a single experiment or
interaction database.
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Given the uncertainty in the interaction data and the
frequently weak statistical signal from evolutionary data,
this is surprising and analyses might benefit from consid-
ering more than one data set; the new, extensively curated
and validated data of Reguly et al. [41] should be a valuable
addition. These authors collected 33 311 genetic and
protein interactions from >31 000 print and online publi-
cations in yeast. These interactions were determined over-
whelmingly in low-throughput and highly focused studies.
We would therefore expect that the interactions are more
reliable and less plagued by false-positive and false-nega-
tive results. Nevertheless, they still only capture a partial
representation of the ‘true’ yeast PIN.

PINs and protein evolutionary rate
Several studies investigate the effect of network structure
on the evolutionary rate of a protein [42–45], increasingly
in connection with other factors such as expression level,
biological annotations [e.g. those contained in the gene
ontology (GO) resource, http://www.geneontology.org],
lethality (of knockout mutants) and other factors [46–
51]. Most of these studies have focused on the Sacchar-
omyces cerevisiae PIN data, as it is the earliest and most
comprehensive network. Comparing these studies is diffi-
cult because the measures for the evolutionary rate (e.g.
inferred amino-acid substitution rates, numbers of synon-
ymous and non-synonymous nucleotide changes or their
ratio), the species used in the phylogenetic or comparative
analysis, the PIN data sets and the statistical tools used
differ (Table 1). The problem of making straightforward
comparisons between different studies is further exacer-
bated by the fact that many of these characteristics are not
independent and, similar to most evolutionary obser-
vations, show high variance.

All reported correlations between the evolutionary rate
and protein degree have been relatively small (e.g. Fraser
[42] found correlations of the order of 10%), and it has been
Table 1. Examples of studies that have analyzed the correlation b

Evolutionary analysis Network da

Saccharomyces cerevisiae

Evolutionary rate estimated between 309 (164 having

interactions) ‘well conserved’ orthologues (350% identity)

in S. cerevisiae and C. elegans

3541 interac

2445 protein

dN rates from 1879 orthologous proteins between

S. cerevisiae and S. pombe

1004 protein

orthologous

dN/dS calculated from four species from Saccharomyces

genus

555 proteins

data

Average evolutionary rate among sets of orthologous

proteins between S. cerevisiae and six other yeast species

15461 intera

4773 protein

Caenorhabditis elegans

Average evolutionary rate from pairs orthologous proteins

between C. elegans and C. briggsae

7221 interac

2386 protein

Drosophila melanogaster

dN rates of 8748 gene pairs, obtained using PAML,

between D. melanogaster and D. pseudoobscura and

1255 gene pairs between D. melanogaster and Anopheles

gambiae

4625 high-co

interactions

aAbbreviations: DIP, Database of Interacting Proteins [81]; dN, rate of non-synonymous

Munich Information Centre for Protein Sequences [82]; r, Spearman Rank correlation

coefficient.
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claimed that, when correcting for expression level, this
correlation is diminished further [47]. Recent and more
extensive studies [49,50] confirmed this, and have found
that measures for the expression level explain most of the
variation in the evolutionary rate among proteins in yeast
(as well as in Caenorhabditis elegans [49]). A recent study
[50], which attempts to account for interdependency be-
tween different explanatory factors, demonstrates the pre-
dominance of gene expression measures over network
statistics (e.g. degree and centrality). Perhaps the most
reliable PIN data set available appears to exhibit no
appreciable correlation between protein degree and evol-
utionary rate [41].

Interacting proteins, motifs and modules
The question of whether pairs of interacting proteins have
more similar characteristics than do non-interacting
proteins has also attracted interest [42,49,52–54]. Present
data have the potential to open up a window on coevolution
at the molecular level, but perhaps of more immediate
importance is the possibility of using protein interaction
data to annotate genes and their protein products (e.g. if a
protein of unknown function interacts with one or more
proteins of identical known function, it is a reasonable
assumption that the ‘new’ protein will also have that
function [55]). Quite rightly, such inferences are generally
treated with caution, and are highlighted in the relevant
ontologies to reflect the differences between inferences and
(ideally) experimental knowledge.

From an evolutionary perspective, however, there is
some evidence that properties of interacting proteins, such
as their evolutionary rate [42], expression level [53] and
regulatory elements [52], are more similar than would be
expected by chance, although the correlation can often be
weak [49]. The statistical significance of such results is
assessed in the following way: (i) a measure of pairwise
similarity (e.g. the correlation) of some property among
etween protein evolutionary rate and protein degreea

ta Results Refs

tions among

s

r = �0.21, P = 0.007 [42,78,79]

s from

set (MIPS)

r2 = 0.0065, P = 0.009 (1004 proteins),

r2 = 0.0003, P = 0.70 (465 proteins

with 340% identity)

[47]

in network r = �0.403, P = 5 � 10�23 (whole data

set), r = �0.277, P = 3 � 10�11

(conditional on expression)

[80]

ctions among

s (DIP)

Kendall’s rank correlation: t = �0.06

(reduced when taking partial correlation

corrected for expression level)

[49]

tions among

s (DIP)

t = �0.03, P <10�10 (reduced when

taking partial correlation corrected

for codon adaptation bias)

[49]

nfidence r = �0.10, P = 0.01 [83]

substitutions; dN/dS, ratio of non-synonymous:synonymous substitutions; MIPS,

coefficient; r2, least square’s regression coefficient; t, Kendall’s rank correlation

http://www.geneontology.org/


Figure 3. Correlation (measured by Kendall’s t rank correlation coefficient) of the

evolutionary rates of interacting proteins (blue line) [49]. The two histograms

represent the distributions of expected values for this correlation under null models

of network organization, which condition only on the degree sequence of the

network (black) and degree sequence and patterns of interactions among proteins

with different GO annotations (red). Including the available annotations into the

statistical null model results in a distribution that covers the experimentally observed

average correlation among the evolutionary rates of interacting proteins.
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pairs of interacting proteins is evaluated; (ii) the edges in
the network are randomly rewired (the degree of each
protein is kept fixed); and (iii) the statistic is calculated
for the rewired network. Repeating the rewiring enough
times results in a distribution that corresponds to a null
model of the network, in which correlations among
nodes have been removed. The distribution of expected
correlations under this null model is thus symmetrically
centred around zero (e.g. the black histogram in Figure 3)
and this model can typically be rejected by the observed
levels of correlation. Interestingly, however, when this
rewiring approach is conditioned on other available data,
such as the observed pattern of within and between GO,
we end up with a different, improved (in the sense that
they reflect the available biological information) null
model. For yeast, the observed value lies within the
distribution of the new null model. This observation
reflects the hierarchical and modular organization that
is inherent to biological networks [56–59]: averaged over
the whole PIN, proteins are more likely to interact with
proteins of a similar type thanwith proteins with different
properties.

Modularity has attracted great interest in evolutionary
and systems biology; it leads to networks that are no longer
homogeneous and for which simple notions of network
ensembles from theoretical physics might be inadequate.
Studies of evolutionary properties in terms of network
motifs, however, are complicated by the fact that motifs
are generally defined statistically [60,61]. Therefore the
same node might occur in many different instances of the
same motif and simply counting the motif occurrences will
www.sciencedirect.com
result in enormous numbers [44] of some motif instances.
Other definitions ofmotifs exist [62], which aremore closely
related to network communities [63] and their evolutionary
behaviour can perhaps be analyzed more straightforwardly
[64]. Certainly, for Escherichia coli, motifs in signalling
networks appear to have evolved to balance performance
with the cost of providing the molecular machinery necess-
ary to guarantee accurate signalling [65].

A structural perspective on the evolution of PINs
The studies discussed so far have considered evolution in
terms of amino acid or nucleotide sequences. There is,
however, much evolutionary work from a structural
(especially protein structure) perspective [66,67]. Strictly
speaking, interactions are not between proteins but be-
tween protein domains [68]. Thus, it will be preferable to
consider domains and structural properties directly. In
particular, the detailed analysis of protein complexes
[69] is aided by structural genomics and bioinformatics
approaches; considering domains might also elucidate
whether protein complexes are formed by pairwise inter-
actions among their constituent proteins, or if they are due
to collective interactions.

Caveats
In addition to the issues related to quality and complete-
ness of protein interaction data already discussed, there
are several other problems that need to be consideredwhen
analyzing PIN data in an evolutionary framework. First,
generally in evolutionary biology, the variance of most
estimators exceeds the mean and assessing the variation
of an estimate is imperative. Second, many of the
quantities that have been used to explain the variation
in evolutionary rate among proteins are closely related [50]
and the dependencies have to be accounted for; this is, for
example, the case for different measures of protein abun-
dance.

Many protein characteristics are also context depend-
ent: essentiality of a gene depends on the environment and
it is unclear to what extent knockout studies in laboratory
strains are meaningful as these organisms live in artificial
and stable environments. For expression levels, we also
have to take into account the conditions under which they
were collected: only those conditions that will be encoun-
tered in the wild will have contributed to the natural
selection shaping the genome of an organism. In multi-
cellular organisms, this problem is further exacerbated by
expression-level changes during development and in differ-
ent tissues.

Finally, the PIN structure also changes with time and in
response to developmental and external stimuli: the net-
work analyzed is therefore a highly averaged and idealized
structure. Not all interactions will be present at all times
and the strengths of interactions will also change over
time. Current experimental methodologies do not enable
us to quantify interaction strengths in a medium or high-
throughput fashion.

Comparative analysis of PINs
Ultimately, researchers would like to be able to compare
networks, analogously to sequence comparison [32].
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Although the formal comparison of networks or graphs is
fraught with computational challenges [70], successful
approaches for the alignment and comparison of biological
networks are likely to use strategies similar to those used
in sequence analysis. There are two essential quantities to
consider: the similarity of the nodes (generally in terms of
primary sequence); and the similarity of subgraphs. Taken
together, these will enable researchers to infer how the
network changes over evolutionary timescales between
species, which could help studies of the effects of selection
and drift at the system level.

Several approaches have been developed that seek to
align biological networks [70–74], which use different heur-
istics. In essence, this always involves a relative weighting
between network information and sequence similarity.
Inferences will thus usually differ among approaches but
there is already some preliminary evidence that such
approaches can give novel insights. For example, a recent
analysis of the malarial parasite Plasmodium falciparum
PIN data and comparison withS. cerevisiae has highlighted
differences in the molecular organization of P. falciparum
compared with yeast [75].

A direct comparison between networks of distantly
related organisms is unlikely to uncover more than the
most basic evolutionary conserved interactions [6,75] and
it is worth keeping in mind lessons learned in comparative
genomics: our understanding of features of the genome,
such as exon–intron boundaries and promoter regions has
increased with the rapidly growing availability of whole-
genome sequences of closely related species. In light of this,
it is probably necessary to map PINs systematically in
species related more closely to the model organisms for
which we already have extensive PIN data. For S. cerevi-
siae, for example, having PIN data for Candida glabrata,
Candida albicans and/or fission yeast, Schizosaccharo-
myces pombe, would give us a better handle to understand
the evolution of PINS in yeast.

Conclusion
There are several aspects of protein interaction data that
we could not review here that are also related to evolution-
ary biology: for example, evolutionary arguments are used
to predict protein interaction data in other species based on
homology arguments. Similar arguments can also be used
to validate protein interaction data [35] and these have
gained prominence in bioinformatics. Here, we have
focused on modelling and analyzing the evolution of PINs,
starting from an abstract mathematical level and proceed-
ing to discussing recent advances in the evolutionary
analysis and comparison of PIN data.

Evolutionary biologists are dealing with ever increasing
amounts of biological data to elucidate the processes that
gave rise to the species observed, and which have shaped
their phenotypes. Systems biology promises to produce
even more data and will provide molecular descriptions
of many cellular and molecular phenotypes that can be
used to augment the sequence data that has been the main
resource for evolutionary biologists over the past few years.

Although the analysis of these data are challenging
because of the quality and the complexity of such system-
level data sets, the benefits can be substantial. Presently, as
www.sciencedirect.com
discussed above and partially summarized in Table 1, how-
ever, simple answers are likely to be contentious. Pooling
and comparing protein interaction information (preferably
increasing the quality of the experimental data) of different
sources enables us to get at least some glimpses into the
evolutionary history of PINs.

In addition to issues surrounding quality and complete-
ness of interaction and phenotypic data, there is also con-
siderable need for improving models of network evolution.
In population and evolutionary genetics, the arguments for
models, however simplified, are well rehearsed and widely
accepted: models force researchers to specify hypotheses
explicitly and enable them to be tested against real data.
As shown in Figure 2, good agreement betweenmodels and
data can already be achieved for relatively parameter-
sparsemodels (with two or three parameters) once the finite
nature of the network has been accounted for and no
extraneous asymptotic assumptions are being made. Such
mathematical models can: (i) provide better understanding
of the generic features of evolving network structures; (ii)
model qualitatively real data [31]; and (iii) serve as evol-
utionary models in biologically motivated network align-
ment procedures [74] similar to models of sequence
evolution used in sequence alignment procedures. Ulti-
mately, thesemodels andanalyzeswill alsohelpus tobridge
the gap between population and quantitative genetics.
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