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Introduction/Motivation 1.1 Nuclearity

1.1 Nuclearity

1.1 THEOREM (Elliott)
AF algebras are classified by their scaled ordered K0-groups.

1.2 CONJECTURE (Elliott)
Separable nuclear C∗-algebras are classified by K-theoretic data.

But why nuclear C∗-algebras?
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Introduction/Motivation 1.1 Nuclearity

1.3 THEOREM (Choi–Effros; Kirchberg)
A is nuclear iff A has the CPAP.

1.4 REMARKS
I Finite-dimensional approximations seem promising, but c.p.

approximations are not a natural framework to study K-theoretic
data.

I Nuclearity is a flexible concept; it can be characterized in many
different ways, which make contact with many areas of operator
algebras.
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Introduction/Motivation 1.2 Closeness

1.2 Closeness

1.5 DEFINITION (Kadison–Kastler; Christensen)
Let A,B ⊂ B(H) be C∗-algebras acting on the same Hilbert space.
We write d(A,B) < γ, if for each a ∈ A1 there is b ∈ B1 with ‖a− b‖ < γ
and vice versa.
We write A ⊂γ B, if there is 0 < γ′ < γ such that for each a ∈ A1 there
is b ∈ B1 with ‖a− b‖ < γ′.

1.6 CONJECTURE (Kadison–Kastler)
If A,B ⊂ B(H) are separable C∗-algebras and d(A,B) < γ for some
small enough γ, then A and B are unitarily isomorphic.
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Introduction/Motivation 1.2 Closeness

1.7 THEOREM (Christensen–Sinclair–Smith–White–W)
Let A,B ⊂ B(H) be C∗-algebras, with A separable and nuclear and
d(A,B) < 10−11.
Then, there is a unitary u ∈ B(H) such that A = uBu∗.

1.8 THEOREM (Christensen–Sinclair–Smith–White–W)
For n ∈ N there is γ > 0 such that the following holds:
Let A,B ⊂ B(H) be C∗-algebras, with A separable and dimnucA ≤ n, and
with A ⊂γ B.
Then, there exists an embedding A ↪→ B.

REMARK K-theoretic invariants tend to be preserved under closeness.

W. Winter (University of Nottingham) Regularity properties and classification of nuclear C∗-algebras 18.-20.11.2009 6 / 55



Introduction/Motivation 1.3 The purely infinite case

1.3 The purely infinite case

1.9 DEFINITION (Cuntz)
A simple C∗-algebra A is called purely infinite, if for any 0 6= a, b ∈ A+

there is x ∈ A such that a = x∗bx.

Being purely infinite means that positive elements can be compared (in
the sense of Murray–von Neumann subequivalence) in a strong way.
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Introduction/Motivation 1.3 The purely infinite case

1.10 THEOREM (Kirchberg)
Let A be a separable, nuclear and simple C∗-algebra.
Then, A is purely infinite iff A ∼= A⊗O∞.

1.11 THEOREM (Kirchberg)
Let A be separable and exact.
Then, A embeds into O2, A ↪→ O2.
If, moreover, A is nuclear, then there are an embedding ι : A ↪→ O2 and
a conditional expectation Φ : O2 → ι(A).
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Introduction/Motivation 1.3 The purely infinite case

1.12 THEOREM (Kirchberg; Phillips)
Kirchberg algebras with UCT are classified by their K-theory.

W. Winter (University of Nottingham) Regularity properties and classification of nuclear C∗-algebras 18.-20.11.2009 9 / 55



Introduction/Motivation 1.4 The stably finite case

1.4 The stably finite case

There are many partial results, for example:

1.13 THEOREM (Elliott–Gong–Li)
Simple AH algebras of bounded topological dimension are classified
by their Elliott invariants.
(In fact, E–G–L show that very slow dimension growth is enough.)

TASK Find stably finite versions of O∞ (and maybe also of O2) to shed
new light on existing classification results in the stably finite case, and
also to (hopefully) unify the purely infinite and the stably finite cases.
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Introduction/Motivation 1.5 Towards a structural conjecture

1.5 Towards a structural conjecture

1.14 QUESTION In what way, and under which conditions, are finite
topological dimension, Murray–von Neumann comparison of positive
elements, D-stability (for D = O∞,O2, . . .) and classifiability related?
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Topological dimension 2.1 Order zero maps

2.1 Order zero maps

2.1 DEFINITION A c.p.c. map ϕ : A→ B has order zero, if it respects
orthogonality, i.e.

(e ⊥ f ∈ A+ ⇒ ϕ(e) ⊥ ϕ(f ) ∈ B+).

CPC⊥(A,B) := {c.p.c. order zero maps A→ B}.

2.2 THEOREM (W–Zacharias; using results of Wolff)
Let ϕ : A→ B be a c.p.c. order zero map.
Then, there are a ∗-homomorphism

πϕ : A→M(C∗(ϕ(A))) ⊂ B∗∗

and
0 ≤ hϕ ∈M(C∗(ϕ(A))) ∩ πϕ(A)′

such that
ϕ(a) = hϕπϕ(a) for a ∈ A.
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Topological dimension 2.1 Order zero maps

2.3 COROLLARY Let ϕ : A→ B be a c.p.c. order zero map.
Then,

I ϕ(n) has order zero for all n
I there is an induced map W(ϕ) : W(A)→ W(B)
I for 0 ≤ f ∈ C0((0, 1]), we may define a c.p. order zero map

f (ϕ)( . ) := f (hϕ)πϕ( . ) : A→ B

(functional calculus for order zero maps).

Moreover, there is a 1-1 correspondence

CPC⊥(A,B)←→ Hom(C0((0, 1])⊗ A,B).
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Topological dimension 2.1 Order zero maps

2.4 THEOREM (Loring)
C.p.c. order zero maps with finite-dimensional domains are given by
weakly stable relations.

More precisely: Let F be a finite-dimensional C∗-algebra and let ε > 0.
Then, there is δ > 0 such that the following holds:
If ϕ : F → A is c.p.c. δ-order zero, then there is a c.p.c. order zero map
ϕ̄ : F → A such that ‖ϕ− ϕ̄‖ < ε.
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Topological dimension 2.2 Decomposition rank

2.2 Decomposition rank

2.5 DEFINITION (Kirchberg–W)
Let A be a C∗-algebra, n ∈ N. We say A has decomposition rank at
most n, dr A ≤ n, if the following holds:

For any F ⊂ A finite and any ε > 0 there is a finite-dimensional c.p.c.
approximation

A
ψ−→ F

ϕ−→ A

with
ϕ ◦ ψ =F ,ε idA

and such that F can be written as

F = F(0) ⊕ . . .⊕ F(n)

with
ϕ(i) := ϕ|F(i)

having order zero.
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Topological dimension 2.2 Decomposition rank

2.6 PROPOSITION For X a locally compact metrizable space,
dr C0(X) = dim X.

PROOF Use partitions of unity and barycentric subdivision.

2.7 PROPOSITION dr A = 0 iff A is AF.

PROOF If A is unital, consider A→ F → A and note that almost unital
order zero maps are almost ∗-homomorphisms.

In the nonunital case, use an idempotent approximate unit for A.
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Topological dimension 2.2 Decomposition rank

2.8 PROPOSITION dr behaves well w.r.t. quotients, limits, tensor
products, hereditary subalgebras, Morita equivalence.

2.9 COROLLARY If A has continuous trace, then dr A = dim Â.

2.10 THEOREM If A is l-subhomogeneous, then
dr A = maxk=1,...,l dim(PrimkA).

2.11 COROLLARY dr A ≤ dimASH A ≤ dimAH A.
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Topological dimension 2.2 Decomposition rank

2.12 DEFINITION A has locally finite decomposition rank, if for any
finite F ⊂ A and ε > 0 there is B ⊂ A such that dr B <∞ and F ⊂ε B.
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Topological dimension 2.3 Quasidiagonality

2.3 Quasidiagonality

2.13 LEMMA Let ϕ : B→ A be a c.p.c. map between C∗-algebras.
Then, for any x, y ∈ B we have

‖ϕ(xy)− ϕ(x)ϕ(y)‖ ≤ ‖ϕ(xx∗)− ϕ(x)ϕ(x∗)‖
1
2 ‖y‖.

PROOF Use Stinespring’s Theorem.
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Topological dimension 2.3 Quasidiagonality

2.14 LEMMA Let A,B be C∗-algebras, a ∈ A+ with ‖a‖ ≤ 1 and η > 0.
If

A
ψ−→ B

ϕ−→ A

are c.p.c. maps satisfying

‖ϕψ(a)− a‖, ‖ϕψ(a2)− a2‖ ≤ η,

then, for all b ∈ B,

‖ϕ(ψ(a)b)− ϕψ(a)ϕ(b)‖ ≤ 3
1
2 η

1
2 ‖b‖.

PROOF We have

‖ϕ(ψ(a)2)− (ϕψ(a))2‖ ≤ ‖ϕ(ψ(a)2)− (ϕψ(a2))‖ ≤ 3η,

so
‖ϕ(ψ(a)b)− ϕψ(a)ϕ(b)‖ ≤ (3η)

1
2 ‖b‖

for all b ∈ B by Lemma 2.13.
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Topological dimension 2.3 Quasidiagonality

2.15 PROPOSITION (Kirchberg–W)
If dr A ≤ n <∞, then there is a system

(A
ψλ−→ Fλ

ϕλ−→ A)λ∈Λ

of c.p.c. approximations for A with finite-dimensional Fλ,
n-decomposable c.p.c. maps ϕλ and approximately multiplicative c.p.c.
maps ψλ.

In particular, A embeds into
∏

Λ Fλ/
⊕

Λ Fλ.

2.16 COROLLARY If dr A <∞, then A is quasidiagonal (and hence
stably finite).

2.17 EXAMPLES The Toeplitz algebra T and the Cuntz algebras On

have infinite decomposition rank.
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Topological dimension 2.4 Nuclear dimension

2.4 Nuclear dimension

What do we do when A is not necessarily finite?

2.18 DEFINITION (W–Zacharias)
nuclear dimension, dimnucA ≤ n:
defined as decomposition rank, but in

(F = F(0) ⊕ . . .⊕ F(n), ψ, ϕ = ϕ(0) + . . .+ ϕ(n))

only asking the ϕ(i) to be contractions (instead of ϕ).

2.19 PROPOSITION (W–Zacharias)
Nuclear dimension agrees with decomposition rank in the commutative
and in the zero-dimensional case; it behaves well w.r.t. quotients,
limits, tensor products, hereditary subalgebras, Morita equivalence,
and even extensions.
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Topological dimension 2.4 Nuclear dimension

2.20 PROPOSITION (W–Zacharias)
If dimnucA ≤ n <∞, then there is a system

(A
ψλ−→ Fλ

ϕλ−→ A)λ∈Λ

of c.p. approximations for A with finite-dimensional Fλ, n-decomposable
c.p. maps ϕλ and approximately order zero c.p.c. maps ψλ.

In particular, there is a c.p.c. order zero embedding of A into∏
Λ Fλ/

⊕
Λ Fλ.

2.21 COROLLARY If A is unital with finite nuclear dimension and no
nontrivial trace, then A is (weakly) purely infinite.

(Using the previous proposition in connection with results of
Kirchberg.)
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Topological dimension 2.5 Kirchberg algebras

2.5 Kirchberg algebras

2.22 THEOREM (W–Zacharias)
For n = 2, 3, . . ., we have dimnucOn ≤ 2.

2.23 COROLLARY Let A be a UCT Kirchberg algebra.
Then, dimnucA ≤ 5.
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Strongly self-absorbing C∗-algebras 3.1 Being strongly self-absorbing

3.1 Being strongly self-absorbing

3.1 DEFINITION (Toms–W)
A unital C∗-algebra D is strongly self-absorbing, if D 6= C and there is a
∗-isomorphism

ϕ : D
∼=−→ D ⊗D

such that
ϕ ≈a.u. idD ⊗ 1D.

A C∗-algebra A is D-stable, if A ∼= A⊗D.
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Strongly self-absorbing C∗-algebras 3.1 Being strongly self-absorbing

3.2 THEOREM (Effros–Rosenberg; Kirchberg)
If D is strongly self-absorbing, then D is simple and nuclear,
and D either has a unique tracial state or is purely infinite.
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Strongly self-absorbing C∗-algebras 3.1 Being strongly self-absorbing

3.3 EXAMPLES
(i) UHF algebras of infinite type; M2∞ = M⊗∞2 ,M3∞ , . . .

(ii) O2 = C∗(s1, s2 | s∗i si = 1 =
∑

i=1,2 sis∗i )
(iii) O∞ = C∗(s1, s2, . . . | s∗i si = 1 ≥

∑
i∈N sis∗i )

(iv) O∞ ⊗M2∞ , . . .

(v) Z the Jiang–Su algebra, a finite analogue of O∞. Z can be written
as a stationary inductive limit

lim
→

(Z2∞,3∞ , α),

where

Z2∞,3∞ = {f ∈ C([0, 1],M2∞⊗M3∞) | f (0) ∈ M2∞⊗1, f (1) ∈ 1⊗M3∞}

and α is a trace-collapsing endomorphism of Z2∞,3∞ (Rørdam–W).
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Strongly self-absorbing C∗-algebras 3.1 Being strongly self-absorbing

3.4 THEOREM (Dadarlat–Rørdam; W)
If D is strongly self-absorbing, then D ∼= D ⊗Z.

REMARKS
I Any strongly self-absorbing C∗-algebra is K1-injective (using

Gong–Jiang–Su); respective hypotheses in earlier papers are
obsolete.

I The known strongly self-absorbing examples form a hierarchy,
with O2 at the top and Z at the bottom.
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Strongly self-absorbing C∗-algebras 3.2D-stability

3.2 D-stability

3.5 THEOREM (Rørdam; Toms–W)
Let A be separable and D strongly self-absorbing. Then, A is D-stable
iff there is a ∗-homomorphism

ϕ : A⊗D →
∏

N A/
⊕

N A

such that ϕ ◦ idA ⊗ 1D = ιA.

If A is unital and D = lim→Di, then A is D-stable iff for each i there is a
unital ∗-homomorphism

%i : Di → (
∏

N A/
⊕

N A) ∩ A′.
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Strongly self-absorbing C∗-algebras 3.2D-stability

3.6 THEOREM (Toms–W)
For any strongly self-absorbing D, D-stability passes to limits,
quotients, hereditary subalgebras, and extensions.

REMARK There are results on the structure of C(X)-algebras with
strongly self-absorbing fibres or D-stable fibres.
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Strongly self-absorbing C∗-algebras 3.3 Z-stability

3.3 Z-stability

3.7 PROPOSITION (Toms–W)
Approximate divisibility implies Z-stability.

3.8 THEOREM (Toms–W)
– as far as we know –
All C∗-algebras classified to date are Z-stable.
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Pure finiteness andZ-stability 4.1 Strict comparison

4.1 Strict comparison

4.1 DEFINITION A simple C∗-algebra A has strict comparison of
positive elements, if

dτ (a) < dτ (b) ∀ τ ∈ T(A) =⇒ 〈a〉 ≤ 〈b〉

for all 0 6= a, b ∈ A+.
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Pure finiteness andZ-stability 4.1 Strict comparison

4.2 THEOREM (Rørdam)
If A is exact, unital and Z-stable, then A has strict comparison.

4.3 LEMMA (Toms–W)
Suppose A is a unital C∗-algebra with dr A ≤ n.
Given a, d(0), . . . , d(n) ∈ A+ such that

dτ (a) < dτ (d(i)) for i = 0, . . . , n and all τ ∈ T(A),

then, 〈a〉 ≤ 〈d(0)〉+ . . .+ 〈d(n)〉 in W(A).

4.4 REMARK One can show directly that if dr A <∞, then quasitraces
are traces.
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Pure finiteness andZ-stability 4.2 The conjecture

4.2 The conjecture

4.5 CONJECTURE (Toms–W)
For a nuclear, separable, simple, finite, unital and nonelementary
C∗-algebra A, t.f.a.e.:

(i) A has finite decomposition rank
(ii) A is Z-stable

(iii) A has strict comparison of positive elements

REMARKS
(a) (ii) =⇒ (iii) has been shown by Rørdam
(b) (ii) =⇒ (i) is known in many cases, using classification results
(c) the conjecture can also be formulated in the nonunital and

nonsimple case
d) in the simple, but not necessarily finite case, replace

‘decomposition rank’ by ‘nuclear dimension’ in (i).
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Pure finiteness andZ-stability 4.3 Finite decomposition rank and Z-stability

4.3 Finite decomposition rank and Z-stability

4.6 THEOREM (W)
Let A be separable, simple, unital with finite decomposition rank.
Then, A is Z-stable.
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Pure finiteness andZ-stability 4.3 Finite decomposition rank and Z-stability

Ingredients of the proof:

1. An approximately central sequence of unital ∗-homomorphisms

Zp,p+1 = {f ∈ C0([0, 1],Mp⊗Mp+1 | f (0) ∈ Mp⊗1, f (1) ∈ 1⊗Mp+1)→ A

for any p ∈ N will do.
2. By Rørdam–W, we need to find x ∈ W(A) such that

px ≤ 〈1A〉 ≤ (p + 1)x

(in an approximately central way).
3. Finite decomposition rank implies ‘enough’ comparison (by

Lemma 4.3) to find x as above.
4. n-decomposable approximations allow to do things in an

approximately central way.
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Pure finiteness andZ-stability 4.4 Pure finiteness

4.4 Pure finiteness

4.7 DEFINITION We say a separable, simple, nuclear C∗-algebra A is
purely finite if it is finite, if it has strict comparison and if W(A) is almost
divisible.

QUESTION Is almost divisibility implied by strict comparison?

4.8 THEOREM (W; in progress)
Let A be simple, separable, unital, with locally finite decomposition
rank.
If A is purely finite, then A is Z-stable.
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Pure finiteness andZ-stability 4.4 Pure finiteness

Ingredients of the proof:

As in the proof of Theorem 4.6, an approximately central sequence of
unital ∗-homomorphisms

Zp,p+1 → A

for any p ∈ N will do.

By Rørdam–W, we need to find a c.p.c. order zero map

Φ : Mp → A

and v ∈ A such that

vv∗ = 1A − Φ(1Mp) and v∗v ≤ Φ(e11)

and such that Φ(Mp) and v are approximately central.
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Pure finiteness andZ-stability 4.4 Pure finiteness

The following is the key result for constructing both Φ and v.

LEMMA For m ∈ N, there is αm > 0 such that the following holds:
Let A be separable, simple, unital, purely finite.
Let 1A ∈ B ⊂ A be a C∗-subalgebra with dr B ≤ m, and let k, l ∈ N.
If

ϕ : Ml → A∞ ∩ B′

is c.p.c. order zero, then there is a c.p.c. order zero map

ψ : Mk → A∞ ∩ B′ ∩ ϕ(Ml)′

such that
τ(ψ(1k)ϕ(1l)b) ≥ αm · τ(ϕ(1l)b)

for all b ∈ B+ and τ ∈ T∞(A).
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Classification up toZ-stability 5.1 TAS algebras

5.1 TAS-algebras

5.1 DEFINITION Let S be a class of separable unital C∗-algebras.
Let A be simple, separable and unital.
We say A is TAS, if the following holds:
Given 0 6= e ∈ A+, F ⊂ A finite and ε > 0, there is B ⊂ A with B ∈ S and

(i) ‖[1B, a]‖ < ε for a ∈ F
(ii) 1BF1B ⊂ε B

(iii) (1A − 1B) ≺ e.
If S is the class of finite-dimensional C∗-algebras (or tensor products of
such with closed intervals), we write TAF (or TAI, respectively).

5.2 THEOREM (Lin)
The class of UCT TAI algebras satisfies the Elliott conjecture.
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Classification up toZ-stability 5.2 The lfdr, rr0, Z-stable case

5.2 The lfdr, rr0, Z-stable case

5.3 THEOREM Let A be separable, simple, unital and Z-stable, with
locally finite decomposition rank and real rank zero.
Then, A is TAF.
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Classification up toZ-stability 5.3 Localizing at Z

5.3 Localizing at Z

5.4 THEOREM (W)
Let A be a class of separable, simple, nuclear, unital C∗-algebras such
that, for any A,B ∈ A and any isomorphism of invariants

Λ : Inv(A)→ Inv(B),

there are prime integers p, q such that Λ can be lifted along Zp∞,q∞ .

Then,
AZ := {A⊗Z | A ∈ A}

satisfies the Elliott conjecture.
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Classification up toZ-stability 5.3 Localizing at Z

5.5 THEOREM (Lin–Niu)
Let B denote the class of separable, simple, nuclear, unital C∗-algebras
with UCT, and such that tensor products with UHF algebras are TAI.

Then,
BZ := {B⊗Z | B ∈ B}

satisfies the Elliott conjecture.

5.6 COROLLARY (Using Q.Lin–Phillips)
C∗-algebras associated to minimal, uniquely ergodic, smooth
dynamical systems are classified by their ordered K-theory.

5.7 COROLLARY (Using Gong and Theorems 4.8 and 5.5)
Simple, unital AH algebras with slow dimension growth are classified.

REMARK The elements of B have rationally Riesz K0-groups.
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Minimal dynamical systems 6.1 The setup

6.1 The setup

Let X be a compact, metrizable, infinite space and α : X → X a
homeomorphism.

The crossed product is given by

C(X) oα Z := C∗(C(X), u | uf ( . )u∗ = f (α−1( . ))).

6.1 PROPOSITION If α is minimal, then C(X) oα Z is simple, unital,
nuclear, with a tracial state.
If α is uniquely ergodic, then the tracial state is unique.
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Minimal dynamical systems 6.1 The setup

6.2 PROBLEM
(i) Determine the structure of such crossed products.

(ii) Classify them.
(iii) Draw conclusions about the underlying dynamical systems.

I Will focus on (i) and (ii) with minimal actions.
I Will solve (ii) in the finite dimensional, minimal, uniquely ergodic

case.
(There is little hope for a complete solution in the infinite
dimensional case.)

I This is joint work with A. Toms, and with K. Strung.
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Minimal dynamical systems 6.2 Classification up to Z-stability

6.2 Classification up to Z-stability

6.3 THEOREM (Strung–W; based on work of Lin and Phillips)
Let X be compact, metrizable, infinite. Let α : X → X be a minimal
homeomorphism.
Let S be a class of separable, unital C∗-algebras which is closed under
taking hereditary unital C∗-subalgebras.
Let U be a UHF algebra and y ∈ X.
Set

A{y} := C∗(C(X), C0(X \ {y})u).

If A{y} ⊗ U is TAS, then (C(X) oα Z)⊗ U is TAS.

REMARKS
I In the above situation, A{y} is simple, ASH, with dr A{y} ≤ dim X.
I A{y} ⊗ U is TAF if projections separate traces (by Theorem 5.3).
I A{y} has the same ordered K0-group and the same trace space as

the crossed product. (Lin–Phillips)
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Minimal dynamical systems 6.2 Classification up to Z-stability

6.4 COROLLARY Let X be compact, metrizable, infinite. Let α : X → X
be a minimal, uniquely ergodic homeomorphism.
Then, (C(X) oα Z)⊗ U is TAF for any UHF algebra U .

6.5 COROLLARY The result yields classification up to Z-stability,
without any dimension restriction on X.
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Minimal dynamical systems 6.3 Z-stability

6.3 Z-stability

6.6 THEOREM (Toms–W)
Let X be compact, metrizable, infinite, with finite topological dimension.
Let α : X → X be a minimal homeomorphism.
Then, C(X) oα Z is Z-stable.

REMARK Note that α is not asked to be uniquely ergodic.
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Minimal dynamical systems 6.3 Z-stability

6.7 COROLLARY The class

E = {C(X) oα Z | X compact, metrizable, infinite, finite dimensional,
α a uniquely ergodic, minimal homeomorphism }

is classified by ordered K-theory.

W. Winter (University of Nottingham) Regularity properties and classification of nuclear C∗-algebras 18.-20.11.2009 54 / 55



Minimal dynamical systems 6.3 Z-stability

In the remainder, let us focus on the proof of the

THEOREM Let X be compact, metrizable, infinite, with finite
topological dimension. Let α : X → X be minimal.
Then, C(X) oα Z is Z-stable.

REMARK This is doubly instructive, since one proves

dimnuc(C(X) oα Z) ≤ 2 dim X + 1

in a similar fashion.
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