Spectra of C* algebras, classification.

Eberhard Kirchberg

HU Berlin

Lect.1, Copenhagen, 09

Eberhard Kirchberg (HU Berlin)

Spectra of C* algebras, classification.

A B F A B F

< 6 b

Contents

Spectra of C* algebras

- Strategies for partial results
- Some Pimsner-Toeplitz algebras
- Passage to sober spaces
- Regular Abelian subalgebras

- A - TH

a

Contents

Spectra of C* algebras

- Strategies for partial results
- Some Pimsner-Toeplitz algebras
- Passage to sober spaces
- Regular Abelian subalgebras

Contents

Spectra of C* algebras

- Strategies for partial results
- Some Pimsner-Toeplitz algebras
- Passage to sober spaces
- Regular Abelian subalgebras
- 2 Characterization of Prim(A) for nuclear A
- 3 The case of coherent I.q-compact spaces

Conventions and Notations

- Considered C*-algebras A, B, ... are separable, ...
- ... except multiplier algebras $\mathcal{M}(B)$, and ideals of corona algebras $Q(B) := \mathcal{M}(B)/B$, ...
 - as e.g., $\mathsf{Q}(\mathbb{R}_+, B) := \mathsf{C}_\mathsf{b}(\mathbb{R}_+, B) / \mathsf{C}_\mathsf{0}(\mathbb{R}_+, B) \subset \mathsf{Q}(SB).$
- T_0 spaces X, Y, \ldots are second countable.
- \[
 \begin{subarray}{c}
 X, X \end{subarray}
 denote the (distributive) lattices of open and of closed subsets of X.
- Prim(A) is the T₀ space of primitive ideals with kernel-hull topology (Jacobson topology).
- *I*(*A*) means the lattice of closed ideals of *A* (It is naturally isomorphic to O(Prim(*A*))).
- Q denotes the Hilbert cube (with its coordinate-wise order).

Let A denote a separable C^* -algebra, X := Prim(A).

 X ≅ Prim(A ⊗ B) (naturally) for every simple exact B (e.g. B ∈ {O₂, O_∞, U, Z, K, C^{*}_{reg}(F₂)}).

3

Let A denote a separable C^* -algebra, X := Prim(A).

- X ≅ Prim(A ⊗ B) (naturally) for every simple exact B (e.g. B ∈ {O₂, O_∞, U, Z, K, C^{*}_{reg}(F₂)}).
- If A is purely infinite then (W(A), ≤, +) is naturally isomophic to (I(A), ⊂, +) ≅ (𝔅(X), ⊂, ∪).
- In general the Cuntz semi-group can not detect whether p.i. A tensorially absorbs O_∞ or not (by "exact" counter-examples).

Let A denote a separable C^* -algebra, X := Prim(A).

- X ≅ Prim(A ⊗ B) (naturally) for every simple exact B (e.g. B ∈ {O₂, O_∞, U, Z, K, C^{*}_{reg}(F₂)}).
- If A is purely infinite then (W(A), ≤, +) is naturally isomophic to (I(A), ⊂, +) ≅ (𝔅(X), ⊂, ∪).
- In general the Cuntz semi-group can not detect whether p.i. A tensorially absorbs \mathcal{O}_{∞} or not (by "exact" counter-examples).
- No p.i. amenable counter-example A has been found until now.

Let A denote a separable C^* -algebra, X := Prim(A).

- X ≅ Prim(A ⊗ B) (naturally) for every simple exact B (e.g. B ∈ {O₂, O_∞, U, Z, K, C^{*}_{reg}(F₂)}).
- If A is purely infinite then $(W(A), \leq, +)$ is naturally isomophic to $(\mathcal{I}(A), \subset, +) \cong (\mathbb{O}(X), \subset, \cup).$
- In general the Cuntz semi-group can not detect whether p.i. A tensorially absorbs O_∞ or not (by "exact" counter-examples).
- No p.i. amenable counter-example A has been found until now.
- X is T₀, sober (i.e., is point-complete), locally quasi-compact and is second countable (by separability of *A*).

Let A denote a separable C^* -algebra, X := Prim(A).

- X ≅ Prim(A ⊗ B) (naturally) for every simple exact B (e.g. B ∈ {O₂, O_∞, U, Z, K, C^{*}_{reg}(F₂)}).
- If A is purely infinite then (W(A), ≤, +) is naturally isomophic to (I(A), ⊂, +) ≅ (𝔅(X), ⊂, ∪).
- In general the Cuntz semi-group can not detect whether p.i. A tensorially absorbs O_∞ or not (by "exact" counter-examples).
- No p.i. amenable counter-example A has been found until now.
- X is T₀, sober (i.e., is point-complete), locally quasi-compact and is second countable (by separability of A).
 (The sobriety comes from the fact that X has the Baire property, as an open and continuous image of a Polish space the space of pure states on A —.)

The supports of the *Dini functions f*: X → [0,∞) (satisfying the conclusion of the Dini Lemma) build a base of the topology.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- The supports of the *Dini functions f*: X → [0,∞) (satisfying the conclusion of the Dini Lemma) build a base of the topology.
- The generalized Gelfand transforms a ∈ A → â ∈ ℓ_∞(X) maps A onto the set of all Dini functions on X. (Here â(J) := ||a + J|| for J ∈ Prim(A).)

All locally quasi-compact sober T_0 space X have also the above metioned topol. properties. We get **three basic questions**:

- The supports of the *Dini functions f*: X → [0,∞) (satisfying the conclusion of the Dini Lemma) build a base of the topology.
- The generalized Gelfand transforms a ∈ A → â ∈ ℓ_∞(X) maps A onto the set of all Dini functions on X. (Here â(J) := ||a + J|| for J ∈ Prim(A).)

All locally quasi-compact sober T_0 space *X* have also the above metioned topol. properties. We get **three basic questions:** 1) Is every (second-countable) locally quasi-compact sober T_0 space *X* homeomorphic to the primitive ideal spaces Prim(A) of some (separable) *A*?

- The supports of the *Dini functions f*: X → [0,∞) (satisfying the conclusion of the Dini Lemma) build a base of the topology.
- The generalized Gelfand transforms a ∈ A → â ∈ ℓ_∞(X) maps A onto the set of all Dini functions on X. (Here â(J) := ||a + J|| for J ∈ Prim(A).)

All locally quasi-compact sober T_0 space *X* have also the above metioned topol. properties. We get **three basic questions:** 1) Is every (second-countable) locally quasi-compact sober T_0 space *X* homeomorphic to the primitive ideal spaces Prim(A) of some (separable) *A*?

2) Is there a topological characterization of the Spectra Prim(A) of *amenable A* (up to homeomorphisms)?

- The supports of the *Dini functions f*: X → [0,∞) (satisfying the conclusion of the Dini Lemma) build a base of the topology.
- The generalized Gelfand transforms a ∈ A → â ∈ ℓ_∞(X) maps A onto the set of all Dini functions on X. (Here â(J) := ||a + J|| for J ∈ Prim(A).)

All locally quasi-compact sober T_0 space X have also the above metioned topol. properties. We get **three basic questions:** 1) Is every (second-countable) locally quasi-compact sober T_0 space X homeomorphic to the primitive ideal spaces Prim(A) of some (separable) A?

2) Is there a topological characterization of the Spectra Prim(A) of *amenable A* (up to homeomorphisms)?

3) Is there some uniqueness for the corresponding algebra A with $Prim(A) \cong X$ (coming from 2), e.g. if we tensor A with \mathcal{O}_2 ?

Strategies and partial results (1)

Lemma

If $R \subset P \times P$ is a (partial) order relation ($y \leq x$ iff $(x, y) \in R$) on a locally compact Polish space P such that the map $\pi_1 : (x, y) \in R \mapsto x \in P$ is open and $\overline{x}^R := \{y \in P; (x, y) \in R\}$ is closed for all $x \in P$, then there is non-degenerate *-monomorphism $H_0 : C_0(P, \mathbb{K}) \to \mathcal{M}(C_0(P, \mathbb{K}))$, such that $\delta_{\infty} \circ H_0$ is unitarily equivalent to H_0 , and $(x, y) \in R$ if and only if the irreducible representation $\nu_y \otimes id$ is weakly contained in $\mathcal{M}(\nu_x \otimes id) \circ H_0$.

Idea of proof: Bounded *-weakly cont. maps $x \in P \to \gamma(x) \in B_+^*$ and c.p. maps $V: B \to C_b(P)$, are 1-1-related by $\nu_x \circ V = \gamma(x)$. If $x \in P \to F(x) \in \mathcal{F}(\operatorname{Prim}(B))$ is lower semi-cont. (e.g. $F(x) := \overline{x}^R$, $B := C_0(P)$), then supports of the $\gamma(x)$ can be chosen in F(x) and $\gamma(x_0) = f$ for $f \in B_+^*$ supported in $F(x_0)$ (by Michael selection).

6/13

If such a partial order relation $(x, y) \in R \Leftrightarrow y \leq x$ on P is given, then one can introduce a (not necessarily separated) topology $\mathbb{O}_R(P)$

A B F A B F

If such a partial order relation $(x, y) \in R \Leftrightarrow y \leq x$ on P is given, then one can introduce a (not necessarily separated) topology $\mathbb{O}_R(P)$ — (a "continuous" variant of the so called D. Scott topology, or "way below" topology) — that is given by the family of those *open* subsets of P that are upward hereditary. I.e., $U \in \mathbb{O}_R(P)$, iff, $U = \uparrow U$, iff, $U \in \mathbb{O}(P)$ and, $\forall (y \in U), (x, y) \in R$ implies $x \in U$.

If such a partial order relation $(x, y) \in R \Leftrightarrow y \leq x$ on P is given, then one can introduce a (not necessarily separated) topology $\mathbb{O}_R(P)$ — (a "continuous" variant of the so called D. Scott topology, or "way below" topology) — that is given by the family of those *open* subsets of P that are upward hereditary. I.e., $U \in \mathbb{O}_R(P)$, iff, $U = \uparrow U$, iff, $U \in \mathbb{O}(P)$ and, $\forall (y \in U), (x, y) \in R$ implies $x \in U$. The interior $(\bigcap_n U_n)^\circ$ in $\mathbb{O}(P)$ of the intersection $\bigcap_n U_n$ of a sequence $U_1, U_2, \ldots \in \mathbb{O}_R(P)$ is again in $\mathbb{O}_R(P)$, i.e.,

If such a partial order relation $(x, y) \in R \Leftrightarrow y \leq x$ on P is given, then one can introduce a (not necessarily separated) topology $\mathbb{O}_R(P)$ — (a "continuous" variant of the so called D. Scott topology, or "way below" topology) — that is given by the family of those *open* subsets of P that are upward hereditary. I.e., $U \in \mathbb{O}_R(P)$, iff, $U = \uparrow U$, iff, $U \in \mathbb{O}(P)$ and, $\forall (y \in U), (x, y) \in R$ implies $x \in U$. The interior $(\bigcap_n U_n)^\circ$ in $\mathbb{O}(P)$ of the intersection $\bigcap_n U_n$ of a sequence $U_1, U_2, \ldots \in \mathbb{O}_R(P)$ is again in $\mathbb{O}_R(P)$, i.e., $\mathbb{O}_R(P)$ is a sup-inf-*closed sub-lattice* of $\mathbb{O}(P)$.

If such a partial order relation $(x, y) \in R \Leftrightarrow y \leq x$ on P is given, then one can introduce a (not necessarily separated) topology $\mathbb{O}_{R}(P)$ — (a "continuous" variant of the so called D. Scott topology, or "way below" topology) — that is given by the family of those open subsets of P that are upward hereditary. I.e., $U \in \mathbb{O}_{R}(P)$, iff, $U = \uparrow U$, iff, $U \in \mathbb{O}(P)$ and, $\forall (y \in U), (x, y) \in R$ implies $x \in U$. The interior $(\bigcap_n U_n)^\circ$ in $\mathbb{O}(P)$ of the intersection $\bigcap_n U_n$ of a sequence $U_1, U_2, \ldots \in \mathbb{O}_R(P)$ is again in $\mathbb{O}_{B}(P)$, i.e., $\mathbb{O}_{B}(P)$ is a sup-inf-closed sub-lattice of $\mathbb{O}(P)$. If we introduce on P the equivalence relation $x \sim y$ if x < y and y < x, then one finds that $x \sim y$, if and only if, for all $U \in \mathbb{O}_{B}(P)$, $x \in U$ iff $y \in U$.

If such a partial order relation $(x, y) \in R \Leftrightarrow y \leq x$ on P is given, then one can introduce a (not necessarily separated) topology $\mathbb{O}_{R}(P)$ — (a "continuous" variant of the so called D. Scott topology, or "way below" topology) — that is given by the family of those open subsets of P that are upward hereditary. I.e., $U \in \mathbb{O}_{R}(P)$, iff, $U = \uparrow U$, iff, $U \in \mathbb{O}(P)$ and, $\forall (y \in U), (x, y) \in R \text{ implies } x \in U.$ The interior $(\bigcap_n U_n)^\circ$ in $\mathbb{O}(P)$ of the intersection $\bigcap_n U_n$ of a sequence $U_1, U_2, \ldots \in \mathbb{O}_R(P)$ is again in $\mathbb{O}_R(P)$, i.e., $\mathbb{O}_R(P)$ is a sup-inf-*closed sub-lattice* of $\mathbb{O}(P)$. If we introduce on *P* the equivalence relation $x \sim y$ if $x \leq y$ and $y \leq x$, then one finds that $x \sim y$, if and only if, for all $U \in \mathbb{O}_{B}(P)$, $x \in U$ iff $y \in U$. It follows that $X := P / \sim$ with the quotient-topology (defined by the images of the $U \in \mathbb{O}_{R}(P)$ in X) is a (not necessarily sober) T₀ space such that $\pi: x \in P \to [x]_{\sim} \in P / \sim$ is continuous (with respect to the I.c. topology of *P*) and satisfies $\{\pi^{-1}(W) : W \in \mathbb{O}(X)\} = \mathbb{O}_{R}(P)$.

- 3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Now we can calculate the primitive ideal space of the Toeplitz algebra $\mathcal{T}_{\mathcal{H}} \cong \mathcal{O}_{\mathcal{H}}$, the Cuntz-Pimsner algebra), where $\mathcal{H} := C_0(P, \mathbb{K})$ is the Hilbert $C_0(P, \mathbb{K})$ bi-module that is defined by H_0 of Lemma 1.

Now we can calculate the primitive ideal space of the Toeplitz algebra $\mathcal{T}_{\mathcal{H}} \cong \mathcal{O}_{\mathcal{H}}$, the Cuntz-Pimsner algebra), where $\mathcal{H} := C_0(P, \mathbb{K})$ is the Hilbert $C_0(P, \mathbb{K})$ bi-module that is defined by H_0 of Lemma 1.

Proposition (H.Harnisch,K.)

With above assumptions, $\mathcal{T}_{\mathcal{H}} \cong \mathcal{O}_{\mathcal{H}}$, and $\mathcal{T}_{\mathcal{H}}$ is a stable separable nuclear strongly purely infinite algebra. Its ideal lattice is isomorphic to $\mathbb{O}_R(P) \cong \mathbb{O}(P/\sim)$ and the natural embedding $C_0(P, \mathbb{K}) \hookrightarrow \mathcal{T}_{\mathcal{H}}$ defines KK-equivalence in KK($\mathbb{O}_R(P)$; $C_0(P, \mathbb{K}), \mathcal{T}_{\mathcal{H}}$).

Now we can calculate the primitive ideal space of the Toeplitz algebra $\mathcal{T}_{\mathcal{H}} \cong \mathcal{O}_{\mathcal{H}}$, the Cuntz-Pimsner algebra), where $\mathcal{H} := C_0(P, \mathbb{K})$ is the Hilbert $C_0(P, \mathbb{K})$ bi-module that is defined by H_0 of Lemma 1.

Proposition (H.Harnisch,K.)

With above assumptions, $\mathcal{T}_{\mathcal{H}} \cong \mathcal{O}_{\mathcal{H}}$, and $\mathcal{T}_{\mathcal{H}}$ is a stable separable nuclear strongly purely infinite algebra. Its ideal lattice is isomorphic to $\mathbb{O}_R(P) \cong \mathbb{O}(P/\sim)$ and the natural embedding $C_0(P, \mathbb{K}) \hookrightarrow \mathcal{T}_{\mathcal{H}}$ defines KK-equivalence in KK($\mathbb{O}_R(P)$; $C_0(P, \mathbb{K}), \mathcal{T}_{\mathcal{H}}$).

It leads to the problem to find — for given A — a l.c. Polish space Pand a continuous map $\pi \colon P \to X := \operatorname{Prim}(A)$, such that the relation $(x, y) \in R \Leftrightarrow \pi(y) \in \overline{\{\pi(x)\}}$ satisfies the conditions of Lemma 1, and that $\pi(P)$ is "sufficiently dense" in X in the sense that $\pi^{-1} \colon \mathbb{O}(X) \to \mathbb{O}(P)$ is injective: $X \cong \pi(P)^c$ in notation below.

3 > < 3 >

Functorial passage to sober T0 spaces:

If X is any topological T_0 space then the lattice $\mathcal{F}(X)$ of closed subsets order anti-isomorphic to $\mathbb{O}(X)$ by $F \mapsto X \setminus F$. The set $\mathcal{F}(X)$ becomes a T_0 space with the topology generated by the complements $\mathcal{F}(X) \setminus [\emptyset, F]$ of the order intervals $[\emptyset, F]$ (for $F \in \mathcal{F}(X)$).

Functorial passage to sober T0 spaces:

If X is any topological T₀ space then the lattice $\mathcal{F}(X)$ of closed subsets order anti-isomorphic to $\mathbb{O}(X)$ by $F \mapsto X \setminus F$. The set $\mathcal{F}(X)$ becomes a T_0 space with the topology generated by the complements $\mathcal{F}(X) \setminus [\emptyset, F]$ of the order intervals $[\emptyset, F]$ (for $F \in \mathcal{F}(X)$). The map $\eta: x \in X \mapsto \overline{\{x\}} \in \mathcal{F}(X)$ is a topological homeomorphism from X onto $\eta(X)$. The image $\eta(X)$ is contained in the set X^c of \vee -prime elements of $\mathcal{F}(X)$, and X^c is a sober subspace of $\mathcal{F}(X)$, such that η^{-1} defines a lattice isomorphism from $\mathbb{O}(X^c)$ onto $\mathbb{O}(X)$. If X is sober, iff, $\eta(X) = X^c$.

Functorial passage to sober T0 spaces:

If X is any topological T₀ space then the lattice $\mathcal{F}(X)$ of closed subsets order anti-isomorphic to $\mathbb{O}(X)$ by $F \mapsto X \setminus F$. The set $\mathcal{F}(X)$ becomes a T_0 space with the topology generated by the complements $\mathcal{F}(X) \setminus [\emptyset, F]$ of the order intervals $[\emptyset, F]$ (for $F \in \mathcal{F}(X)$). The map $\eta: x \in X \mapsto \overline{\{x\}} \in \mathcal{F}(X)$ is a topological homeomorphism from X onto $\eta(X)$. The image $\eta(X)$ is contained in the set X^c of \vee -prime elements of $\mathcal{F}(X)$, and X^c is a sober subspace of $\mathcal{F}(X)$, such that η^{-1} defines a lattice isomorphism from $\mathbb{O}(X^c)$ onto $\mathbb{O}(X)$. If X is sober, iff, $\eta(X) = X^c$.

Result: The lattice $\mathbb{O}(X)$ and the top. space *X* define each other up to isomorphisms in a natural (functorial) way, if and only if, *X* is sober. The passage $X \to X^c$ is functorial.

An **abelian** C^* -subalgebra $C \subset A$ is **regular**, iff, for $J_1, J_2 \in \mathcal{I}(A)$,

- $C \cap (J_1 + J_2) = (C \cap J_1) + (C \cap J_2)$ and,
- *C* separates the ideals of *A* (i.e., $C \cap J_1 = C \cap J_2$ implies $J_1 = J_2$).

A D K A B K A B K A B K B B

An **abelian** C^* -subalgebra $C \subset A$ is **regular**, iff, for $J_1, J_2 \in \mathcal{I}(A)$,

- $C \cap (J_1 + J_2) = (C \cap J_1) + (C \cap J_2)$ and,
- *C* separates the ideals of *A* (i.e., $C \cap J_1 = C \cap J_2$ implies $J_1 = J_2$).

If P := Prim(C) = X(C) and Y := Prim(A), then $J \mapsto C \cap J$ defines maps $\Psi : \mathbb{O}(Y) \hookrightarrow \mathbb{O}(P)$ and $\pi : P \to Y$, with $\pi^{-1}|\mathbb{O}(Y) = \Psi$.

An **abelian** C^* -subalgebra $C \subset A$ is *regular*, iff, for $J_1, J_2 \in \mathcal{I}(A)$,

- $C \cap (J_1 + J_2) = (C \cap J_1) + (C \cap J_2)$ and,
- *C* separates the ideals of *A* (i.e., $C \cap J_1 = C \cap J_2$ implies $J_1 = J_2$).

If P := Prim(C) = X(C) and Y := Prim(A), then $J \mapsto C \cap J$ defines maps $\Psi : \mathbb{O}(Y) \hookrightarrow \mathbb{O}(P)$ and $\pi : P \to Y$, with $\pi^{-1} | \mathbb{O}(Y) = \Psi$. The π is *pseudo-open* (i.e., relation $(x, y) \in R \Leftrightarrow \pi(y) \in \overline{\{\pi(x)\}}$ satisfies the assumptions on R in Lem. 1) and is *pseudo-epimorphic* (i.e., $U \subset V \in \mathbb{O}(Y)$ and $\pi(P) \cap (V \setminus U) = \emptyset$ imply U = V).

An **abelian** C^* -subalgebra $C \subset A$ is *regular*, iff, for $J_1, J_2 \in \mathcal{I}(A)$,

- $C \cap (J_1 + J_2) = (C \cap J_1) + (C \cap J_2)$ and,
- *C* separates the ideals of *A* (i.e., $C \cap J_1 = C \cap J_2$ implies $J_1 = J_2$).

If P := Prim(C) = X(C) and Y := Prim(A), then $J \mapsto C \cap J$ defines maps $\Psi : \mathbb{O}(Y) \hookrightarrow \mathbb{O}(P)$ and $\pi : P \to Y$, with $\pi^{-1} | \mathbb{O}(Y) = \Psi$. The π is *pseudo-open* (i.e., relation $(x, y) \in R \Leftrightarrow \pi(y) \in \overline{\{\pi(x)\}}$ satisfies the assumptions on R in Lem. 1) and is *pseudo-epimorphic* (i.e., $U \subset V \in \mathbb{O}(Y)$ and $\pi(P) \cap (V \setminus U) = \emptyset$ imply U = V).

There are *regular* $C \subset A$ in AH-algebras (AF if A is AF). Regular comm. $C \subset A$ are in general not maximal, and $C \cap J$ does *not* necessarily contain an approximate unit of J.

10/13

An **abelian** C^* -subalgebra $C \subset A$ is *regular*, iff, for $J_1, J_2 \in \mathcal{I}(A)$,

- $C \cap (J_1 + J_2) = (C \cap J_1) + (C \cap J_2)$ and,
- *C* separates the ideals of *A* (i.e., $C \cap J_1 = C \cap J_2$ implies $J_1 = J_2$).

If P := Prim(C) = X(C) and Y := Prim(A), then $J \mapsto C \cap J$ defines maps $\Psi : \mathbb{O}(Y) \hookrightarrow \mathbb{O}(P)$ and $\pi : P \to Y$, with $\pi^{-1} | \mathbb{O}(Y) = \Psi$. The π is *pseudo-open* (i.e., relation $(x, y) \in R \Leftrightarrow \pi(y) \in \overline{\{\pi(x)\}}$ satisfies the assumptions on R in Lem. 1) and is *pseudo-epimorphic* (i.e., $U \subset V \in \mathbb{O}(Y)$ and $\pi(P) \cap (V \setminus U) = \emptyset$ imply U = V).

There are *regular* $C \subset A$ in AH-algebras (AF if A is AF). Regular comm. $C \subset A$ are in general not maximal, and $C \cap J$ does *not* necessarily contain an approximate unit of J. For w.p.i. B and separable $E \subset Q(\mathbb{R}_+, B)$, there exists separable $E \subset A \subset Q(\mathbb{R}_+, B)$ such that EAE = A and A contains a regular abelian subalgebra.

Eberhard Kirchberg (HU Berlin)

Theorem (On Prim(*A*), H.Harnisch, E.Kirchberg, M.Rørdam)

Let X a point-complete T_0 -space. TFAE:

- (i) $X \cong Prim(E)$ for some exact C*-algebra E.
- (ii) The lattice of open sets 𝔅(X) is isomorphic to an sup-inf invariant sub-lattice of 𝔅(P) for some l.c. Polish space P.
- (iii) There is a locally compact Polish space P and a pseudo-open and pseudo-epimorphic continuous map $\pi: P \to X$.

Theorem (On Prim(*A*), H.Harnisch, E.Kirchberg, M.Rørdam)

Let X a point-complete T_0 -space. TFAE:

- (i) $X \cong Prim(E)$ for some exact C^* -algebra E.
- (ii) The lattice of open sets 𝔅(X) is isomorphic to an sup-inf invariant sub-lattice of 𝔅(P) for some l.c. Polish space P.
- (iii) There is a locally compact Polish space P and a pseudo-open and pseudo-epimorphic continuous map $\pi: P \to X$.

If X satisfies (i)–(iii), then there is a stable **nuclear** C*-algebra A with $A \cong A \otimes O_2$, and a homeomorphism $\psi \colon X \to Prim(A)$, such that,

for every nuclear stable B with $B \otimes \mathcal{O}_2 \cong B$ and every homeomorphism $\phi \colon X \to Prim(B)$,

there is an isomorphism α : $A \to B$ with $\alpha(\psi(x)) = \phi(x)$ for $x \in X$. This α is unique up to unitary homotopy. Above Theorem 3 answers Questions 2) partially and 3) (almost) completely.

э

Above Theorem 3 answers Questions 2) partially and 3) (almost) completely. Bratteli and Elliott gave (an interior) characterization of the primitive ideal space X of separable AF algebras A:

 $X \cong Prim(A)$ iff X is a sober T₀ space that has a base (!!) of its topology consisting of open quasi-compact sets.

Above Theorem 3 answers Questions 2) partially and 3) (almost) completely. Bratteli and Elliott gave (an interior) characterization of the primitive ideal space X of separable AF algebras A: $X \cong Prim(A)$ iff X is a sober T₀ space that has a base (!!) of its

topology consisting of open quasi-compact sets.

Hochster has characterized 1969 the prime ideal space X of countable locally unital commutative (algebraic) rings. The space X is as in the case of AF algebras, but with the additional property that the intersection of any two open quasi-compact sets is again quasi-compact.

Above Theorem 3 answers Questions 2) partially and 3) (almost) completely. Bratteli and Elliott gave (an interior) characterization of the primitive ideal space X of separable AF algebras A: $X \cong Prim(A)$ iff X is a sober T₀ space that has a base (!!) of its

topology consisting of open quasi-compact sets.

Hochster has characterized 1969 the prime ideal space X of countable locally unital commutative (algebraic) rings. The space X is as in the case of AF algebras, but with the additional property that the intersection of any two open quasi-compact sets is again quasi-compact.

The latter spaces are special cases of *coherent* spaces. A sober T_0 space *X* is called "coherent" if the intersection $C_1 \cap C_2$ of two *saturated* quasi-compact subsets $C_1, C_2 \subset X$ is again quasi-compact. A subset *C* of *X* is "saturated" if C = Sat(C), where Sat(C) means the intersection of all $U \in \mathbb{O}(X)$ with $U \supset C$.

Proposition

The image $\eta(X) \cong X$ in $\mathcal{F}(X) \setminus \{\emptyset\}$ of a l.q-c. second countable sober T_0 space X is **closed** in the Fell-Vietoris topology on $\mathcal{F}(X)$, if and only if, X is **coherent**, if and only if, the set $\mathcal{D}(X)$ of Dini functions on X is **convex**, if and only if, $\mathcal{D}(X)$ is min-**closed**, if and only if, $\mathcal{D}(X)$ is **multiplicatively closed**.

3

4 **A** N A **B** N A **B** N

Proposition

The image $\eta(X) \cong X$ in $\mathcal{F}(X) \setminus \{\emptyset\}$ of a l.q-c. second countable sober T_0 space X is **closed** in the Fell-Vietoris topology on $\mathcal{F}(X)$, if and only if, X is **coherent**, if and only if, the set $\mathcal{D}(X)$ of Dini functions on X is **convex**, if and only if, $\mathcal{D}(X)$ is min-**closed**, if and only if, $\mathcal{D}(X)$ is **multiplicatively closed**.

Corollary

If there is a coherent sober l.c. space X that is not homeomorphic to the primitive ideal space of an amenable C*-algebra, then there is $n \in \mathbb{N}$ and a finite union Y of (Hausdorff-closed) cubes in $[0, 1]^n$ such that Y with induced order-topology is not the primitive ideal space of any amenable C*-algebra.

3

< ロ > < 同 > < 回 > < 回 >