Spectra of C* algebras, classification.

Eberhard Kirchberg

HU Berlin

Lect.1, Copenhagen, 09

 QQ

化重氮化重氮

4 0 8 1 \leftarrow \leftarrow \leftarrow

Contents

Spectra of C^{*} algebras

- [Strategies for partial results](#page-15-0)
- [Some Pimsner-Toeplitz algebras](#page-22-0)
- [Passage to sober spaces](#page-25-0)
- [Regular Abelian subalgebras](#page-28-0)

4 17 18

画

E.

Contents

Spectra of C^{*} algebras

- [Strategies for partial results](#page-15-0)
- [Some Pimsner-Toeplitz algebras](#page-22-0)
- [Passage to sober spaces](#page-25-0)
- [Regular Abelian subalgebras](#page-28-0)

Contents

Spectra of C^{*} algebras

- [Strategies for partial results](#page-15-0)
- [Some Pimsner-Toeplitz algebras](#page-22-0)
- [Passage to sober spaces](#page-25-0)
- [Regular Abelian subalgebras](#page-28-0)

Conventions and Notations

- Considered C*-algebras *A*,*B*, . . . are separable, ...
- \bullet ... except multiplier algebras $\mathcal{M}(B)$, and ideals of corona algebras $Q(B) := M(B)/B, ...$

as e.g., $Q(\mathbb{R}_+, B) := C_b(\mathbb{R}_+, B) / C_0(\mathbb{R}_+, B) \subset Q(SB)$.

- \bullet T₀ spaces *X*, *Y*, ... are second countable.
- \bullet $\mathbb{O}(X)$, $\mathcal{F}(X)$ denote the (distributive) lattices of open and of closed subsets of *X*.
- Prim(A) is the T_0 space of primitive ideals with kernel-hull topology (Jacobson topology).
- \bullet $I(A)$ means the lattice of closed ideals of A (It is naturally isomorphic to O(Prim(*A*))).
- **Q** denotes the Hilbert cube (with its coordinate-wise order).

 QQ

 $\mathcal{A} \left(\mathbf{H} \right) \left(\mathbf{A} \right) = \mathbf{A} \left(\mathbf{H} \right) \mathbf{A} \left(\mathbf{H} \right) \mathbf{A} \left(\mathbf{H} \right) = \mathbf{H} \left(\mathbf{H} \right)$

Let *A* denote a separable *C**-algebra, *X* := Prim(*A*).

• $X \cong \text{Prim}(A \otimes B)$ (naturally) for every simple exact *B* $(e.g. \ B \in \{ \mathcal{O}_2, \mathcal{O}_\infty, \mathcal{U}, \mathcal{Z}, \mathbb{K}, \mathcal{C}_{reg}^*(\mathcal{F}_2) \}).$

 Ω

イロト イ押ト イヨト イヨト ニヨ

Let *A* denote a separable *C**-algebra, *X* := Prim(*A*).

- **•** $X \cong Prim(A \otimes B)$ (naturally) for every simple exact *B* $(e.g. \ B \in \{ \mathcal{O}_2, \mathcal{O}_\infty, \mathcal{U}, \mathcal{Z}, \mathbb{K}, \mathcal{C}_{reg}^*(\mathcal{F}_2) \}).$
- **If** *A* is purely infinite then $(W(A), \leq, +)$ is naturally isomophic to $(\mathcal{I}(A), \subset, +) \cong (\mathbb{O}(X), \subset, \cup).$
- In general the Cuntz semi-group can not detect whether p.i. *A* tensorially absorbs \mathcal{O}_{∞} or not (by "exact" counter-examples).

 Ω

Let *A* denote a separable *C**-algebra, *X* := Prim(*A*).

- **•** $X \cong Prim(A \otimes B)$ (naturally) for every simple exact *B* $(e.g. \ B \in \{ \mathcal{O}_2, \mathcal{O}_\infty, \mathcal{U}, \mathcal{Z}, \mathbb{K}, \mathcal{C}_{reg}^*(\mathcal{F}_2) \}).$
- **If** *A* is purely infinite then $(W(A), \leq, +)$ is naturally isomophic to $(\mathcal{I}(A), \subset, +) \cong (\mathbb{O}(X), \subset, \cup).$
- In general the Cuntz semi-group can not detect whether p.i. *A* tensorially absorbs \mathcal{O}_{∞} or not (by "exact" counter-examples).
- No p.i. amenable counter-example *A* has been found until now.

 Ω

Let *A* denote a separable *C**-algebra, *X* := Prim(*A*).

- **•** $X \cong Prim(A \otimes B)$ (naturally) for every simple exact *B* $(e.g. \ B \in \{ \mathcal{O}_2, \mathcal{O}_\infty, \mathcal{U}, \mathcal{Z}, \mathbb{K}, \mathcal{C}_{reg}^*(\mathcal{F}_2) \}).$
- **If** *A* is purely infinite then $(W(A), \leq, +)$ is naturally isomophic to $(\mathcal{I}(A), \subset, +) \cong (\mathbb{O}(X), \subset, \cup).$
- In general the Cuntz semi-group can not detect whether p.i. *A* tensorially absorbs \mathcal{O}_{∞} or not (by "exact" counter-examples).
- No p.i. amenable counter-example *A* has been found until now.
- \bullet X is T_0 , sober (i.e., is point-complete), locally quasi-compact and is second countable (by separability of *A*).

 Ω

Let *A* denote a separable C^* -algebra, $X := Prim(A)$.

- **•** *X* ≅ Prim(*A* \otimes *B*) (naturally) for every simple exact *B* $(e.g. \ B \in \{ \mathcal{O}_2, \mathcal{O}_\infty, \mathcal{U}, \mathcal{Z}, \mathbb{K}, \mathcal{C}_{reg}^*(\mathcal{F}_2) \}).$
- **If A** is purely infinite then $(W(A), \leq, +)$ is naturally isomophic to $(\mathcal{I}(A), \subset, +) \cong (\mathbb{O}(X), \subset, \cup).$
- In general the Cuntz semi-group can not detect whether p.i. *A* tensorially absorbs \mathcal{O}_{∞} or not (by "exact" counter-examples).
- No p.i. amenable counter-example *A* has been found until now.
- \bullet X is T_0 , sober (i.e., is point-complete), locally quasi-compact and is second countable (by separability of *A*). (The sobriety comes from the fact that *X* has the Baire property, as an open and continuous image of a Polish space — the space of pure states on *A* —.) $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$ QQ

The supports of the *Dini functions f* : *X* → [0,∞) (satisfying the conclusion of the Dini Lemma) build a base of the topology.

E

 QQ

イロト イ押 トイラト イラト

- The supports of the *Dini functions f* : *X* → [0,∞) (satisfying the conclusion of the Dini Lemma) build a base of the topology.
- The generalized Gelfand transforms $a \in A \mapsto \hat{a} \in \ell_{\infty}(X)$ maps A *onto* the set of all Dini functions on *X*. (Here $\hat{a}(J) := ||a + J||$ for *J* ∈ Prim(*A*).)

All locally quasi-compact sober T_0 space X have also the above metioned topol. properties. We get **three basic questions:**

 Ω

イロト イ押ト イヨト イヨト ニヨ

- The supports of the *Dini functions f* : *X* → [0,∞) (satisfying the conclusion of the Dini Lemma) build a base of the topology.
- The generalized Gelfand transforms $a \in A \mapsto \hat{a} \in \ell_{\infty}(X)$ maps A *onto* the set of all Dini functions on *X*. (Here $\hat{a}(J) := ||a + J||$ for *J* ∈ Prim(*A*).)

All locally quasi-compact sober T_0 space X have also the above metioned topol. properties. We get **three basic questions:** 1) Is every (second-countable) locally quasi-compact sober T_0 space *X* homeomorphic to the primitive ideal spaces Prim(*A*) of some (separable) *A*?

 Ω

- The supports of the *Dini functions f* : $X \rightarrow [0,\infty)$ (satisfying the conclusion of the Dini Lemma) build a base of the topology.
- The generalized Gelfand transforms $a \in A \mapsto \hat{a} \in \ell_{\infty}(X)$ maps A *onto* the set of all Dini functions on *X*. (Here $\hat{a}(J) := ||a + J||$ for *J* ∈ Prim(*A*).)

All locally quasi-compact sober T_0 space X have also the above metioned topol. properties. We get **three basic questions:** 1) Is every (second-countable) locally quasi-compact sober T_0 space *X* homeomorphic to the primitive ideal spaces Prim(*A*) of some (separable) *A*?

2) Is there a topological characterization of the Spectra Prim(*A*) of *amenable A* (up to homeomorphisms)?

 QQ

- The supports of the *Dini functions f* : *X* → [0,∞) (satisfying the conclusion of the Dini Lemma) build a base of the topology.
- The generalized Gelfand transforms $a \in A \mapsto \hat{a} \in \ell_{\infty}(X)$ maps A *onto* the set of all Dini functions on *X*. (Here $\hat{a}(J) := ||a + J||$ for *J* ∈ Prim(*A*).)

All locally quasi-compact sober T_0 space X have also the above metioned topol. properties. We get **three basic questions:** 1) Is every (second-countable) locally quasi-compact sober T_0 space *X* homeomorphic to the primitive ideal spaces Prim(*A*) of some (separable) *A*?

2) Is there a topological characterization of the Spectra Prim(*A*) of *amenable A* (up to homeomorphisms)?

3) Is there some uniqueness for the corresponding algebra *A* with Prim(*[A](#page-13-0)*) \cong *X* (coming from 2), e.g. if [w](#page-15-0)e tensor *A* w[it](#page-9-0)[h](#page-10-0) \mathcal{O}_2 \mathcal{O}_2 \mathcal{O}_2 \mathcal{O}_2 [?](#page-14-0)

 000

Strategies and partial results (1)

Lemma

If $R \subset P \times P$ *is a (partial) order relation (y* $\leq x$ *iff* $(x, y) \in R$ *) on a locally compact Polish space P such that the map* $\pi_1\colon (x,y)\in R \mapsto x\in P$ is open and $\overline{x}^R:=\{y\in P\colon (x,y)\in R\}$ is *closed for all x* ∈ *P, then there is non-degenerate *-monomorphism* $H_0: C_0(P, \mathbb{K}) \to \mathcal{M}(C_0(P, \mathbb{K}))$, such that $\delta_{\infty} \circ H_0$ *is unitarily equivalent to* H_0 *, and* $(x, y) \in R$ *if and only if the irreducible representation* $\nu_y \otimes \text{id}$ *is weakly contained in* $M(\nu_X \otimes id) \circ H_0$.

Idea of proof: Bounded *-weakly cont. maps $x \in P \to \gamma(x) \in B^*_+$ and c.p. maps $V: B \to C_b(P)$, are 1-1-related by $\nu_x \circ V = \gamma(x)$. If $x\in P\rightarrow \mathcal{F}(x)\in \mathcal{F}(\mathsf{Prim}(B))$ is lower semi-cont. (e.g. $\mathcal{F}(x):=\overline{x}^R,$ $B := C_0(P)$, then supports of the $\gamma(x)$ can be chosen in $F(x)$ and $\gamma(x_0) = f$ $\gamma(x_0) = f$ $\gamma(x_0) = f$ f[o](#page-22-0)r $f \in B^*_+$ $f \in B^*_+$ $f \in B^*_+$ support[e](#page-14-0)d in $F(x_0)$ (by Mi[ch](#page-14-0)[ae](#page-16-0)[l](#page-14-0) [se](#page-15-0)[l](#page-16-0)e[c](#page-15-0)[ti](#page-21-0)on)[.](#page-32-0)

If such a partial order relation $(x, y) \in R \Leftrightarrow y \leq x$ on P is given, then one can introduce a (not necessarily separated) topology $\mathbb{O}_R(P)$

 QQ

The South Book

 \leftarrow \Box \rightarrow \leftarrow \leftarrow \Box \rightarrow

If such a partial order relation $(x, y) \in R \Leftrightarrow y \leq x$ on P is given, then one can introduce a (not necessarily separated) topology $\mathbb{O}_R(P)$ — (a "continuous" variant of the so called D. Scott topology, or "way below" topology) — that is given by the family of those *open* subsets of *P* that are upward hereditary. I.e., $U \in \mathbb{O}_R(P)$, iff, $U = \uparrow U$, iff, $U \in \mathbb{O}(P)$ and, ∀(*y* ∈ *U*), (*x*, *y*) ∈ *R* implies *x* ∈ *U*.

 QQ

イロト イ押ト イヨト イヨト ニヨ

If such a partial order relation $(x, y) \in R \Leftrightarrow y \leq x$ on P is given, then one can introduce a (not necessarily separated) topology $\mathbb{O}_R(P)$ — (a "continuous" variant of the so called D. Scott topology, or "way below" topology) — that is given by the family of those *open* subsets of *P* that are upward hereditary. I.e., $U \in \mathbb{O}_R(P)$, iff, $U = \uparrow U$, iff, $U \in \mathbb{O}(P)$ and, $\forall (y \in U)$, $(x, y) \in R$ implies $x \in U$. The interior $(\bigcap_n U_n)^\circ$ in $\mathbb{O}(P)$ of the intersection $\bigcap_n U_n$ of a sequence $U_1, U_2, \ldots \in \mathbb{O}_R(P)$ is again in O*R*(*P*), i.e.,

 QQ

 (0.123×10^{-14})

If such a partial order relation $(x, y) \in R \Leftrightarrow y \leq x$ on P is given, then one can introduce a (not necessarily separated) topology $\mathbb{O}_R(P)$ — (a "continuous" variant of the so called D. Scott topology, or "way below" topology) — that is given by the family of those *open* subsets of *P* that are upward hereditary. I.e., $U \in \mathbb{O}_R(P)$, iff, $U = \uparrow U$, iff, $U \in \mathbb{O}(P)$ and, $\forall (y \in U)$, $(x, y) \in R$ implies $x \in U$. The interior $(\bigcap_n U_n)^\circ$ in $\mathbb{O}(P)$ of the intersection $\bigcap_n U_n$ of a sequence $U_1, U_2, \ldots \in \mathbb{O}_R(P)$ is again in $\mathbb{O}_B(P)$, i.e., $\mathbb{O}_B(P)$ *is a* sup-inf–closed sub-lattice of $\mathbb{O}(P)$.

 QQ

 $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$

If such a partial order relation $(x, y) \in R \Leftrightarrow y \leq x$ on P is given, then one can introduce a (not necessarily separated) topology $\mathbb{O}_R(P)$ — (a "continuous" variant of the so called D. Scott topology, or "way below" topology) — that is given by the family of those *open* subsets of *P* that are upward hereditary. I.e., $U \in \mathbb{O}_R(P)$, iff, $U = \uparrow U$, iff, $U \in \mathbb{O}(P)$ and, $\forall (y \in U)$, $(x, y) \in R$ implies $x \in U$. The interior $(\bigcap_n U_n)^\circ$ in $\mathbb{O}(P)$ of the intersection $\bigcap_n U_n$ of a sequence $U_1, U_2, \ldots \in \mathbb{O}_R(P)$ is again in $\mathbb{O}_B(P)$, i.e., $\mathbb{O}_B(P)$ *is a* sup-inf-*closed sub-lattice* of $\mathbb{O}(P)$. If we introduce on *P* the equivalence relation *x* ∼ *y* if *x* ≤ *y* and *y* ≤ *x*, then one finds that *x* ∼ *y*, if and only if, for all $U \in \mathbb{O}_R(P)$, *x* ∈ *U* iff *y* ∈ *U*.

 QQ

 $(0.12.10 \times 10^{-14} \times 10^{-14})$

If such a partial order relation $(x, y) \in R \Leftrightarrow y \leq x$ on P is given, then one can introduce a (not necessarily separated) topology $\mathbb{O}_R(P)$ — (a "continuous" variant of the so called D. Scott topology, or "way below" topology) — that is given by the family of those *open* subsets of *P* that are upward hereditary. I.e., $U \in \mathbb{O}_R(P)$, iff, $U = \uparrow U$, iff, $U \in \mathbb{O}(P)$ and, $\forall (y \in U)$, $(x, y) \in R$ implies $x \in U$. The interior $(\bigcap_n U_n)^\circ$ in $\mathbb{O}(P)$ of the intersection $\bigcap_n U_n$ of a sequence $U_1, U_2, \ldots \in \mathbb{O}_R(P)$ is again in $\mathbb{O}_B(P)$, i.e., $\mathbb{O}_B(P)$ *is a* sup-inf-*closed sub-lattice* of $\mathbb{O}(P)$. If we introduce on *P* the equivalence relation *x* ∼ *y* if *x* ≤ *y* and *y* ≤ *x*, then one finds that *x* ∼ *y*, if and only if, for all $U \in \mathbb{O}_R(P)$, *x* ∈ *U* iff *y* ∈ *U*. It follows that $X := P / \sim$ with the quotient-topology (defined by the images of the $U \in \mathbb{O}_R(P)$ in X) is a (not necessarily sober) T_0 space such that $\pi: x \in P \to [x]_{\sim} \in P/\sim$ is continuous (with respect to the l.c. topology of P) and satisfies $\{\pi^{-1}(W) \,:\; W \in \mathbb{O}(X)\,\} = \mathbb{O}_R(P).$

 QQ

 $(0.123 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m} \times 10^{-14} \text{ m}$

Now we can calculate the primitive ideal space of the Toeplitz algebra $T_H \, (\cong \mathcal{O}_H)$, the Cuntz-Pimsner algebra), where $\mathcal{H} := C_0(P, \mathbb{K})$ is the Hilbert $C_0(P, \mathbb{K})$ bi-module that is defined by H_0 of Lemma [1.](#page-15-1)

 Ω

 $(0.123 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m} \times 10^{-14} \text{ m}$

Now we can calculate the primitive ideal space of the Toeplitz algebra T_H ($\cong \mathcal{O}_H$, the Cuntz-Pimsner algebra), where $\mathcal{H} := C_0(P, \mathbb{K})$ is the Hilbert $C_0(P, \mathbb{K})$ bi-module that is defined by H_0 of Lemma [1.](#page-15-1)

Proposition (H.Harnisch,K.)

With above assumptions, $T_{\mathcal{H}} \cong \mathcal{O}_{\mathcal{H}}$, and $T_{\mathcal{H}}$ is a stable separable *nuclear strongly purely infinite algebra. Its ideal lattice is isomorphic to* $\mathbb{O}_B(P) \cong \mathbb{O}(P/\sim)$ and the natural embedding $C_0(P,\mathbb{K}) \hookrightarrow \mathcal{T}_H$ defines KK-equivalence in KK $(\mathbb{O}_R(P); C_0(P, \mathbb{K}), \mathcal{T}_{\mathcal{H}})$.

 Ω

 $(0.123 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m} \times 10^{-14} \text{ m}$

Now we can calculate the primitive ideal space of the Toeplitz algebra $T_H \n\cong \mathcal{O}_H$, the Cuntz-Pimsner algebra), where $\mathcal{H} := C_0(P, \mathbb{K})$ is the Hilbert $C_0(P, \mathbb{K})$ bi-module that is defined by H_0 of Lemma [1.](#page-15-1)

Proposition (H.Harnisch,K.)

With above assumptions, $T_{\mathcal{H}} \cong \mathcal{O}_{\mathcal{H}}$, and $T_{\mathcal{H}}$ is a stable separable *nuclear strongly purely infinite algebra. Its ideal lattice is isomorphic to* $\mathbb{O}_B(P) \cong \mathbb{O}(P/\sim)$ and the natural embedding $C_0(P, \mathbb{K}) \hookrightarrow \mathcal{T}_H$ defines KK-equivalence in KK $(\mathbb{O}_R(P); C_0(P, \mathbb{K}), \mathcal{T}_{\mathcal{H}})$.

It leads to the problem to find — for given *A* — a l.c. Polish space *P* and a continuous map π : $P \rightarrow X$: = Prim(A), such that the relation $(x, y) \in R \Leftrightarrow \pi(y) \in {\pi(x)}$ satisfies the conditions of Lemma [1,](#page-15-1) and that $\pi(P)$ is "sufficiently dense" in X in the sense that $\pi^{-1}\colon \mathbb{O}(X)\to \mathbb{O}(P)$ is injective: $X\cong \pi(P)^c$ in notation below.

E

 QQ

 $A \equiv \mathbf{1} \times \mathbf{1} \times \mathbf{1} \times \mathbf{1}$

Functorial passage to sober T0 spaces:

If X is any topological T_0 space then the lattice $\mathcal{F}(X)$ of closed subsets order anti-isomorphic to $\mathbb{O}(X)$ by $F \mapsto X \setminus F$. The set $\mathcal{F}(X)$ becomes a T_0 space with the topology generated by the complements $\mathcal{F}(X) \setminus [\emptyset, F]$ of the order intervals $[\emptyset, F]$ (for $F \in \mathcal{F}(X)$).

 Ω

イロト イ押ト イヨト イヨト ニヨ

Functorial passage to sober T0 spaces:

If X is any topological T_0 space then the lattice $\mathcal{F}(X)$ of closed subsets order anti-isomorphic to $\mathbb{O}(X)$ by $F \mapsto X \setminus F$. The set $\mathcal{F}(X)$ becomes a T_0 space with the topology generated by the complements $\mathcal{F}(X) \setminus [\emptyset, F]$ of the order intervals $[\emptyset, F]$ (for $F \in \mathcal{F}(X)$). The map $\eta: x \in X \mapsto \overline{\{x\}} \in \mathcal{F}(X)$ is a topological homeomorphism from X onto $\eta(X)$. The image $\eta(X)$ is contained in the set X^c of ∨-prime elements of F(*X*), and *X c* is a sober subspace of F(*X*), such that η^{-1} defines a lattice isomorphism from $\mathbb{O}(X^c)$ onto $\mathbb{O}(X)$. If X is sober, iff, $\eta(X) = X^c$.

 QQ

Functorial passage to sober T0 spaces:

If X is any topological T_0 space then the lattice $\mathcal{F}(X)$ of closed subsets order anti-isomorphic to $\mathbb{O}(X)$ by $F \mapsto X \setminus F$. The set $\mathcal{F}(X)$ becomes a T_0 space with the topology generated by the complements $\mathcal{F}(X) \setminus [\emptyset, F]$ of the order intervals $[\emptyset, F]$ (for $F \in \mathcal{F}(X)$). The map $\eta: x \in X \mapsto \overline{\{x\}} \in \mathcal{F}(X)$ is a topological homeomorphism from X onto $\eta(X)$. The image $\eta(X)$ is contained in the set X^c of ∨-prime elements of F(*X*), and *X c* is a sober subspace of F(*X*), such that η^{-1} defines a lattice isomorphism from $\mathbb{O}(X^c)$ onto $\mathbb{O}(X)$. If X is sober, iff, $\eta(X) = X^c$.

Result: The lattice O(*X*) and the top. space *X* define each other up to isomorphisms in a natural (functorial) way, if and only if, *X* is sober. The passage $X \to X^c$ is functorial.

 QQ

KONYARY KENYEN DI

An **abelian** *C*^{*}-subalgebra *C* \subset *A* is *regular*, iff, for $J_1, J_2 \in I(A)$,

- $C \cap (J_1 + J_2) = (C \cap J_1) + (C \cap J_2)$ and,
- **•** *C* separates the ideals of *A* (i.e., $C \cap J_1 = C \cap J_2$ implies $J_1 = J_2$).

 Ω

イロト イ押ト イヨト イヨト ニヨ

An **abelian** *C*^{*}-subalgebra *C* \subset *A* is *regular*, iff, for $J_1, J_2 \in I(A)$,

- $C \cap (J_1 + J_2) = (C \cap J_1) + (C \cap J_2)$ and,
- **•** *C* separates the ideals of *A* (i.e., $C \cap J_1 = C \cap J_2$ implies $J_1 = J_2$).

If $P := Prim(C) = X(C)$ and $Y := Prim(A)$, then $J \mapsto C \cap J$ defines $\mathsf{maps}\ \Psi\colon \mathbb{O}(Y)\hookrightarrow \mathbb{O}(P)$ and $\pi\colon P\to Y$, with $\pi^{-1}|\mathbb{O}(Y)=\Psi.$

 Ω

イロト イ押 トイヨ トイヨ トーヨー

An **abelian** C^* -subalgebra $C \subset A$ is *regular*, iff, for $J_1, J_2 \in \mathcal{I}(A)$,

- $C \cap (J_1 + J_2) = (C \cap J_1) + (C \cap J_2)$ and,
- **•** *C* separates the ideals of *A* (i.e., $C \cap J_1 = C \cap J_2$ implies $J_1 = J_2$).

If $P := Prim(C) = X(C)$ and $Y := Prim(A)$, then $J \mapsto C \cap J$ defines $\mathsf{maps}\ \Psi\colon \mathbb{O}(Y)\hookrightarrow \mathbb{O}(P)$ and $\pi\colon P\to Y$, with $\pi^{-1}|\mathbb{O}(Y)=\Psi.$ The π is *pseudo-open* (i.e., relation $(x, y) \in R \Leftrightarrow \pi(y) \in \overline{\{\pi(x)\}}$ satisfies the assumptions on *R* in Lem. [1\)](#page-15-1) and is *pseudo-epimorphic* (i.e., $U \subset V \in \mathbb{O}(Y)$ and $\pi(P) \cap (V \setminus U) = \emptyset$ imply $U = V$).

 Ω

イロト イ押 トイラト イラト・ラー

An **abelian** C^* -subalgebra $C \subset A$ is *regular*, iff, for $J_1, J_2 \in \mathcal{I}(A)$,

- $C \cap (J_1 + J_2) = (C \cap J_1) + (C \cap J_2)$ and,
- **•** *C* separates the ideals of *A* (i.e., $C \cap J_1 = C \cap J_2$ implies $J_1 = J_2$).

If $P := Prim(C) = X(C)$ and $Y := Prim(A)$, then $J \mapsto C \cap J$ defines $\mathsf{maps}\ \Psi\colon \mathbb{O}(Y)\hookrightarrow \mathbb{O}(P)$ and $\pi\colon P\to Y$, with $\pi^{-1}|\mathbb{O}(Y)=\Psi.$ The π is *pseudo-open* (i.e., relation $(x, y) \in R \Leftrightarrow \pi(y) \in \overline{\{\pi(x)\}}$ satisfies the assumptions on *R* in Lem. [1\)](#page-15-1) and is *pseudo-epimorphic* (i.e., $U \subset V \in \mathbb{O}(Y)$ and $\pi(P) \cap (V \setminus U) = \emptyset$ imply $U = V$).

There are *regular* $C \subset A$ in AH-algebras (AF if A is AF). Regular comm. *C* ⊂ *A* are in general not maximal, and *C* ∩ *J* does *not* necessarily contain an approximate unit of *J*.

An **abelian** C^* -subalgebra $C \subset A$ is *regular*, iff, for $J_1, J_2 \in \mathcal{I}(A)$,

- $C \cap (J_1 + J_2) = (C \cap J_1) + (C \cap J_2)$ and,
- **•** *C* separates the ideals of *A* (i.e., $C \cap J_1 = C \cap J_2$ implies $J_1 = J_2$).

If $P := Prim(C) = X(C)$ and $Y := Prim(A)$, then $J \mapsto C \cap J$ defines $\mathsf{maps}\ \Psi\colon \mathbb{O}(Y)\hookrightarrow \mathbb{O}(P)$ and $\pi\colon P\to Y$, with $\pi^{-1}|\mathbb{O}(Y)=\Psi.$ The π is *pseudo-open* (i.e., relation $(x, y) \in R \Leftrightarrow \pi(y) \in \overline{\{\pi(x)\}}$ satisfies the assumptions on *R* in Lem. [1\)](#page-15-1) and is *pseudo-epimorphic* (i.e., $U \subset V \in \mathbb{O}(Y)$ and $\pi(P) \cap (V \setminus U) = \emptyset$ imply $U = V$).

There are *regular* $C \subset A$ in AH-algebras (AF if A is AF). Regular comm. *C* ⊂ *A* are in general not maximal, and *C* ∩ *J* does *not* necessarily contain an approximate unit of *J*. For w.p.i. *B* and separable $E \subset Q(\mathbb{R}_+, B)$, there exists separable $E \subset A \subset Q(\mathbb{R}_+, B)$ suchth[a](#page-33-0)t $EAE = A$ and A contains a regular a[be](#page-31-0)l[ia](#page-33-0)[n](#page-27-0) [s](#page-32-0)[u](#page-33-0)[b](#page-5-0)a[l](#page-32-0)[g](#page-33-0)[e](#page-4-0)b[r](#page-32-0)a[.](#page-0-0)

Theorem (On Prim(*A*), H.Harnisch,E.Kirchberg,M.Rørdam)

Let X a point-complete T_0 -space. TFAE:

- (i) *X* \cong Prim(*E*) *for some exact C^{*}-algebra E.*
- (ii) *The lattice of open sets* O(*X*) *is isomorphic to an* sup*–*inf *invariant sub-lattice of* O(*P*) *for some l.c. Polish space P.*
- (iii) *There is a locally compact Polish space P and a pseudo-open and pseudo-epimorphic continuous map* π : *P* → *X.*

Theorem (On Prim(*A*), H.Harnisch,E.Kirchberg,M.Rørdam)

Let X a point-complete T_0 -space. TFAE:

- (i) *X* \cong Prim(*E*) *for some exact C^{*}-algebra E.*
- (ii) *The lattice of open sets* O(*X*) *is isomorphic to an* sup*–*inf *invariant sub-lattice of* O(*P*) *for some l.c. Polish space P.*
- (iii) *There is a locally compact Polish space P and a pseudo-open and pseudo-epimorphic continuous map* π : *P* → *X.*

If X satisfies (i)–(iii), then there is a stable nuclear C-algebra A with* $A \cong A \otimes \mathcal{O}_2$, and a homeomorphism $\psi: X \to \text{Prim}(A)$, *such that,*

for every nuclear stable B with $B \otimes \mathcal{O}_2 \cong B$ and every homeomorphism $\phi: X \rightarrow \text{Prim}(B)$,

there is an isomorphism α : $A \rightarrow B$ with $\alpha(\psi(x)) = \phi(x)$ for $x \in X$.

This α *is unique up to unitary homotopy.*

Above Theorem [3](#page-33-1) answers Questions 2) partially and 3) (almost) completely.

÷.

 299

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1$

Above Theorem [3](#page-33-1) answers Questions 2) partially and 3) (almost) completely. Bratteli and Elliott gave (an interior) characterization of the primitive ideal space *X* of separable AF algebras *A*: $X \cong Prim(A)$ iff *X* is a sober T₀ space that has a base (!!) of its topology consisting of open quasi-compact sets.

 Ω

イロト イ押ト イヨト イヨト ニヨ

Above Theorem [3](#page-33-1) answers Questions 2) partially and 3) (almost) completely. Bratteli and Elliott gave (an interior) characterization of the primitive ideal space *X* of separable AF algebras *A*: $X \cong Prim(A)$ iff *X* is a sober T₀ space that has a base (!!) of its topology consisting of open quasi-compact sets.

Hochster has characterized 1969 the prime ideal space *X* of countable locally unital commutative (algebraic) rings. The space *X* is as in the case of AF algebras, but with the additional property that the intersection of any two open quasi-compact sets is again quasi-compact.

KOL KALLARIN (BILA) DI VOOR

Above Theorem [3](#page-33-1) answers Questions 2) partially and 3) (almost) completely. Bratteli and Elliott gave (an interior) characterization of the primitive ideal space *X* of separable AF algebras *A*: *X* \cong Prim(*A*) iff *X* is a sober T_0 space that has a base (!!) of its topology consisting of open quasi-compact sets.

Hochster has characterized 1969 the prime ideal space *X* of countable locally unital commutative (algebraic) rings. The space *X* is as in the case of AF algebras, but with the additional property that the intersection of any two open quasi-compact sets is again quasi-compact.

The latter spaces are special cases of *coherent* spaces. A sober T_0 space *X* is called "coherent" if the intersection $C_1 \cap C_2$ of two *saturated* quasi-compact subsets $C_1, C_2 \subset X$ is again quasi-compact. A subset *C* of *X* is "saturated" if $C = \text{Sat}(C)$, where $\text{Sat}(C)$ means the intersection of all $U \in \mathbb{O}(X)$ with $U \supset C$. **KON KON KENKEN E YOON**

Proposition

The image $\eta(X) \cong X$ *in* $\mathcal{F}(X) \setminus \{\emptyset\}$ *of a l.q-c. second countable sober* T_0 *space X is closed in the Fell-Vietoris topology on* $F(X)$ *, if and only if, X is coherent, if and only if, the set* D(*X*) *of Dini functions on X is convex, if and only if,* D(*X*) *is* min*-closed, if and only if,* D(*X*) *is multiplicatively closed.*

4 m k 1

в

Proposition

The image $\eta(X) \cong X$ *in* $\mathcal{F}(X) \setminus \{\emptyset\}$ *of a l.q-c. second countable sober* T_0 *space X is closed in the Fell-Vietoris topology on* $F(X)$ *, if and only if, X is coherent, if and only if, the set* D(*X*) *of Dini functions on X is convex, if and only if,* D(*X*) *is* min*-closed, if and only if,* D(*X*) *is multiplicatively closed.*

Corollary

If there is a coherent sober l.c. space X that is not homeomorphic to the primitive ideal space of an amenable C-algebra, then there is n* ∈ N *and a finite union Y of (Hausdorff-closed) cubes in* [0, 1] *ⁿ such that Y with induced order-topology is not the primitive ideal space of any amenable C*-algebra.*

в

 Ω

イロト イ押ト イヨト イヨト