Torsion in the Elliott invariant and dimension theories of C*-algebras.

Hannes Thiel (supervisor Wilhelm Winter)

University of Copenhagen, Denmark

19.November 2009

- 2 Non-commutative dimension theories
- 3 Detecting ASH-dimension in the Elliott invariant
- Ingredients of the proof

1 Introduction

2 Non-commutative dimension theories

3 Detecting ASH-dimension in the Elliott invariant

4 Ingredients of the proof

Conjecture 1.1 (The Elliott conjecture)

Let A, B be simple, nuclear, separable C^* -algebras. Then A and B are isomorphic if and only if EII(A) and EII(B) are isomorphic.

it does not hold at its boldest, so we need to restrict to classes of "nice" C*-algebras (i.e. with some regularity properties, like \mathcal{Z} -stability)

besides proving the conjecture, there are other interesting questions:

- What is the range of the invariant?
- How do we detect properties of the algebra in its invariant?

Case distinction

Definition 1.2

A C*-algebra A is:

- stably projectionless : $\Leftrightarrow A \otimes \mathbb{K}$ contains no projection
- stably unital :⇔ A ⊗ K contains an approximate unit of projections
- stably finite : $\Leftrightarrow A \otimes \mathbb{K}$ contains no infinite projection

Proposition 1.3

Let A be a simple, nuclear C*-algebra. Then there are three disjoint (and exhaustive) possibilities:

$$\begin{array}{ll} (F_0) & K_0^+ = 0 \ \text{and} \ T(A) \neq 0 \\ (F_1) & K_0^+ \cap -K_0^+ = 0, \ K_0^+ - K_0^+ = K_0 \neq 0 \ \text{and} \ T(A) \neq 0 \\ (Inf) & K_0^+ = K_0 \ \text{and} \ T(A) = 0 \end{array}$$

Let A be a simple, stable, stably finite, nuclear, separable C*-algebra. Then its Elliott invariant $Ell(A) = (G_0, G_1, C, < ., . >)$ has the following properties:

- $G_0 = (G_0, G_0^+)$ is a countable, simple, pre-ordered, abelian group
- G_1 is a countable, abelian group
- $C \neq \emptyset$ is a topological convex cone with a compact, convex base that is a metrizable Choquet simplex
- $\rho: G_0 \to \operatorname{Aff}_0(C)$ is an order-homomorphism
- $r: C \rightarrow Pos(G_0)$ is a continuous, affine map
- If $G_0^+ \neq 0$, then *r* is assumed surjective

We will call such an invariant **admissible** (and stable).

Theorem 1.4 (Elliott 1996)

For every weakly unperforated, admissible, stable Elliott invariant \mathcal{E} exists a simple, stable ASH-algebra A with $Ell(A) = \mathcal{E}$.

Definition 1.5 (weak unperforation)

The pairing $\rho : G_0 \to Aff_0(C)$ is weakly unperforated if $\rho(g) \gg 0$ implies g > 0 for all $g \in G_0$. An ordered group is weakly unperforated if ng > 0 implies g > 0.

- The pairing is weakly unperforated \Leftrightarrow the order on G is determined by the map $\rho: G \to \operatorname{Aff}_0(C)$, i.e. $G_0^{++} = \rho^{-1}(\operatorname{Aff}_0(C)^{++})$
- If A is stably unital, then the two definitions agree.
- By using a weakly unperforated pairing we can treat the cases (*F*₀) and (*F*₁) at once.

Introduction

2 Non-commutative dimension theories

3 Detecting ASH-dimension in the Elliott invariant

Ingredients of the proof

Definition 2.1

A non-commutative dimension theory assigns to each C*-algebra A (in some class) a value $d(A) \in \mathbb{N} \cup \{\infty\}$ such that:

- (i) $d(I), d(A/I) \le d(A)$ whenever $I \lhd A$ is an ideal in A
- (ii) $d(\lim_k A_k) \le \underline{\lim}_k d(A_k)$ whenever $A = \underline{\lim}_k A_k$ is a countable limit

(iii)
$$d(A \oplus B) = \max\{d(A), d(B)\}$$

Example 2.2

The following are dimension theories:

- The real and stable rank (for all C*-algebras)
- The decomposition rank and nuclear dimension (for separable C*-algebras)

Definition 2.3 (locally Hausdorff space)

A topological space X is called **locally Hausdorff** if every closed subset $F \neq \emptyset$ contains a relatively open Hausdorff subset $\emptyset \neq F \cap G$

Definition 2.4 (Brown, Pederson 2007)

Let A be a C*-algbera. If Prim(A) is locally Hausdorff, then the **topological dimension** of A is

$$\operatorname{topdim}(A) = \sup_{K} \operatorname{dim}(K)$$

where the supremum runs over all locally closed, compact, Hausdorff subsets $K \subset Prim(A)$.

Remark 2.5

If A is type I, then Prim(A) is locally Hausdorff. The topological dimension is a dimension theory for σ -unital, type I C*-algebras.

Definition 2.6 (Pedersen 1999)

A **NCCW-complex** is a C*-algebra $A = A_I$ which is obtained as an iterated pullback

$$\begin{array}{c} A_k \xrightarrow{} A_{k-1} \\ \downarrow \\ \downarrow \\ F_k \otimes C(D^n) \xrightarrow{\partial_k} F_k \otimes C(S^{n-1}) \end{array}$$

(for k = 1, ..., I) where $A_0 = F_0, F_1, ..., F_k$ have finite vector-space dimension.

Theorem 2.7 (Eilers-Loring-Pedersen 1998)

Every NCCW-complex of dimension ≤ 1 is semiprojective.

The AH- and ASH-dimension

Definition 2.8

We define classes of separable C*-algebras:

- $\underline{\mathrm{H}}(n) := all \text{ homogeneous } A \text{ with } \mathrm{topdim}(A) \leq n$
- $\underline{SH}(n) := all \ subhomogeneous \ A \ with \ topdim(A) \le n$
- $\underline{SH}(n)' := all \ NCCW$ -complexes with $topdim(A) \le n$

Let $\underline{AH}(n)$, $\underline{ASH}(n)$, $\underline{ASH}(n)'$ denote the classes of countable limits of such algebras.

Example 2.9

 $SH(0)' = F \subset SH(0) \subset AF$, AH(0) = ASH(0)' = ASH(0) = AF.

Definition 2.10

We let $\dim_{AH}(A) \leq n : \Leftrightarrow A \in \underline{AH}(n)$, and similarly for $\dim_{ASH}(A)$ and $\dim_{ASH'}(A)$

Remark 2.11

$dr(A) \leq \dim_{ASH}(A) \leq \dim_{ASH'}(A) \leq \dim_{AH}(A)$

- Dadarlat-Eilers: There exists a (non-simple) algebra which is a limit of <u>AH(3)</u>-algebras, but not an *AH*-algebra itself.
- This implies that the AH-dimension is not a dimension theory (in the above sense) for all AH-algebras. It might be for simple algebras.
- Note however: a limit of <u>AH(k)</u>-algebras is again in <u>AH(k)</u> for k = 0, 1, and similarly for <u>ASH(k)</u>'.
- The situation for <u>ASH(1)</u> seems to be open (is <u>AASH(1)</u> = <u>ASH(1)</u>?). It might be that <u>ASH(1)</u> = <u>ASH(1)</u>'.
- Also, for $\underline{AH}(2)$ the situation is unclear (is $\underline{AAH}(2) = \underline{AH}(2)$?).

Introduction

2 Non-commutative dimension theories

3 Detecting ASH-dimension in the Elliott invariant

Ingredients of the proof

Theorem 3.1 (Elliott 1996)

Let \mathcal{E} be an admissible, stable, weakly unperforated invariant. Then there exists a simple, stable C*-algebra A in <u>ASH(2)'</u> such that EII(A) = \mathcal{E} .

Theorem 3.2 (T)

Let \mathcal{E} be an admissible, stable, weakly unperforated invariant with G_0 torsion-free. Then there exists a simple, stable C*-algebra A in <u>ASH(1)'</u> such that Ell(A) = \mathcal{E} .

Remark 3.3 (Unital version)

Let \mathcal{E} be an admissible, unital, weakly unperforated invariant. Then there exists a simple, unital C*-algebra A in <u>ASH(2)</u>' such that Ell(A) = \mathcal{E} . If G_0 is torsion-free, we can find A in <u>ASH(1)</u>'.

These algebras all have dr $< \infty$, and are thus \mathcal{Z} -stable.

Appications

For this slide assume EC is true for the class \underline{C} of simple, stably finite, $\mathcal{Z}\text{-stable}$, unital, nuclear, separable C*-algebras.

Corollary 3.4

Let A be in \underline{C} . Then the following are equivalent:

- A is in ASH(1)'
- A is in ASH(1)
- $K_0(A)$ is torsion-free

Corollary 3.5

Let A be in <u>C</u>. Then dim_{ASH}(A) = dim_{ASH}(A) \leq 2 and we can detect the exact ASH-dimension as follows:

- 1.) $\dim_{ASH}(A) = 0 \iff K_0(A)$ is a simple dimension group, $K_1(A) = 0$ and r_A is a homeomorphism
- 2.) $\dim_{ASH}(A) \leq 1 \quad \Leftrightarrow K_0(A)$ is torsion-free

Proposition 3.6 (T)

Let A be a separable, type I C*-algebra with sr(A) = 1. Then $K_0(A)$ is torsion-free.

Theorem 3.7 (T)

Let A be a separable, type I C*-algebra. TFAE:

• sr(A) = 1

• A is residually stably finite, and $topdim(A) \le 1$

Corollary 3.8

Let A be a separable, type I C*-algebra with $dr(A) \le 1$. Then sr(A) = 1.

Question 3.9

Does every (simple) C*-algebra with $dr(A) \le 1$ have torsion-free K_0 -group? Does sr(A) = 1 for a type I C*-algebra imply $dim_{ASH}(A) \le 1$ (or at least $dr(A) \le 1$)?

Introduction

- 2 Non-commutative dimension theories
- 3 Detecting ASH-dimension in the Elliott invariant
- 4 Ingredients of the proof

The integral Chern character for low-dimensional spaces.

The chern classes of vector bundles can be used to define homomorphisms

$$ch^{0}: \mathcal{K}^{0}(X) \to H^{ev}(X; \mathbb{Q}) = \bigoplus_{k \ge 0} H^{2k}(X; \mathbb{Q})$$
$$ch^{1}: \mathcal{K}^{1}(X) \to H^{odd}(X; \mathbb{Q}) = \bigoplus_{k \ge 0} H^{2k+1}(X; \mathbb{Q})$$

which become isomorphisms after tensoring with \mathbb{Q} .

Theorem 4.1 (T)

Let X be a compact space of dimension ≤ 3 . Then:

•
$$\chi^0: {\mathcal K}^0(X) o {\mathcal H}^0(X) \oplus {\mathcal H}^2(X)$$
 is an isomorphism

• $\chi^1: K^1(X)
ightarrow H^1(X) \oplus H^3(X)$ is an isomorphism

Corollary 4.2

Let X be a compact space.

- If dim $(X) \leq 2$, then $K^1(X)$ is torsion-free.
- If dim $(X) \leq 1$, then $K^0(X)$ is torsion-free.

Corollary 4.3

- If $\dim_{AH}(A) \leq 1$, then $K_0(A)$ and $K_1(A)$ are torsion-free
- If $\dim_{AH}(A) \leq 2$, then $K_1(A)$ is torsion-free

It is possible that the converses hold (within the class of simple AH-algebras of bounded dimension).

Strategy for constructing C*-algebras with prescribed invariant

To construct a (simple) C*-algebra with a prescribed Elliott invariant \mathcal{E} we use roughly the following strategy (due to Elliott):

- decompose \mathcal{E} as a direct limit $\cong \underset{\longrightarrow}{\lim}(\mathcal{E}^k, \theta_{k+1,k})$ where the \mathcal{E}^k are basic
- **2** construct C*-algebras A_k (building blocks) and *-homomorphisms $\varphi_{k+1,k} : A_k \to A_{k+1}$ such that $\operatorname{Ell}(A_k) = \mathcal{E}_k$ and $\operatorname{Ell}(\varphi_{k+1,k}) = \theta_{k+1,k}$.
- the limit A := lim_k A_k already has Ell(A) = E, but is not necessarily simple. Deform the connecting maps φ_{k+1,k} such that the limit gets simple (while the invariant is unchanged)

Theorem 4.4 (Effros-Handelman-Shen, Elliott, T)

Let G be a countable, ordered group. Then:

- 1.) *G* is unperforated with Riesz interpolation $\Leftrightarrow G \cong \varinjlim_k G_k$ and each $G_k = \mathbb{Z}^{r_k} = \bigoplus_{i=1}^{r_k} (\mathbb{Z})$
- 2.) G is weakly unperforated with Riesz interpolation $\Leftrightarrow G \cong \lim_{k \to k} G^k$ and each $G^k = \bigoplus_{i=1}^{r_k} (\mathbb{Z} \oplus \mathbb{Z}_{[k,i]})$ (for some numbers $[k, i] \ge 1$)

Let $G_* = G_0 \oplus G_1$ be a countable, graded, ordered group. Then:

- 3.) G_* is weakly unperforated with Riesz interpolation $\Leftrightarrow G_* \cong \varinjlim_k G_*^k$ and each $G_*^k = \bigoplus_{i=1}^{r_k} (\mathbb{Z} \oplus \mathbb{Z}_{[k,i]}) \oplus_{str} (\mathbb{Z} \oplus \mathbb{Z}_{[k,i]}))$
- 4.) G_* is weakly unperforated with Riesz interpolation and G_0 is torsion-free

 $\Leftrightarrow G_* \cong \varinjlim_k G^k_* \text{ and each } G^k_* = \bigoplus_{i=1}^{r_k} ((\mathbb{Z}) \oplus_{str} (\mathbb{Z}_{[k,i]}))$