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Quantum spaces

• C — category of C∗-algebras
• Objects: unital C∗-algebras
• Morphisms: unital ∗-homomorphisms

Definition
A compact quantum space is an object of the category dual to C.

• Compact Hausdorff spaces are quantum spaces

X ! C(X )

(we call such quantum spaces classical)

• A quantum space corresponding to A ∈ Ob(C) is classical ⇔
the C∗-algebra A is commutative.



Compact quantum semigroups

Definition
A compact quantum semigroup is a pair

• (A,∆)

unital C∗-algebra
unital ∗-homomorphism A → A ⊗ A

• (∆ ⊗ id)◦∆ = (id ⊗ ∆)◦∆.

Example

A = C(S) (S — compact semigroup),

∆(f ) ∈ A ⊗ A = C(S × S), ∆(f )(s, t) = f (st).



Compact quantum groups

Definition
A compact quantum group is a compact quantum semigroup
(A,∆) such that

span
{

(a ⊗ 1)∆(b) a, b ∈ A
}

⊂dense A ⊗ A,

span
{

∆(a)(1 ⊗ b) a, b ∈ A
}

⊂dense A ⊗ A.

• In case A = C(S) density conditions correspond to

(

s · t = s · t ′
)

=⇒
(

t = t ′
)

,
(

s · t = s ′ · t
)

=⇒
(

s = s ′
)

.

Example

• A = C∗(Γ) (Γ — discrete group),

• ∆(γ) = γ ⊗ γ (γ ∈ Γ).



Haar measure

Theorem (S.L. Woronowicz)

Let (A,∆) be a compact quantum group. Then there exists a
unique state h on A such that

(id ⊗ h)∆(a) = (h ⊗ id)∆(a) = h(a)1

for all a ∈ A.

• For A = C(G ) (G — compact group)

h(f ) =

∫

G

f (t) dt.

• For A = C∗(Γ) (Γ — discrete group)

h(x) = (δe λ(x)δe) ,

where λ is the regular representation C∗(Γ) → C∗
r (Γ).



Reduced quantum group

• (A,∆) — compact quantum group, h — it’s Haar measure.

• Let J =
{

a ∈ A h(a∗a) = 0
}

, Ar = A/J, λ : A ։ Ar .

• There is a unique ∆r : Ar → Ar ⊗ Ar such that

A

λ

∆
A ⊗ A

λ⊗λ

Ar ∆r
Ar ⊗ Ar

• (Ar ,∆r ) is a compact quantum group — reduced (A,∆).

• For A = C∗(Γ) we have Ar = C∗
r (Γ).



Hopf algebra

• (A,∆) — compact quantum group.

• There exists a unique dense unital ∗-subalgebra A ⊂ A such
that

∆(A ) ⊂ A ⊗alg A

and
(

A ,∆
∣

∣

A

)

is a Hopf ∗-algebra (counit e, antipode κ).

• For A = C∗(Γ) we have A = C[Γ].

• If A = C(G ) then A is the span of matrix elements of irreps.



Universal quantum group

• (A,∆) — compact quantum group, A — it’s Hopf algebra.

• The enveloping C∗-algebra Au of A carries a unique
comultiplication ∆u : Au → Au ⊗ Au such that

Au

ρ

∆u
Au ⊗ Au

ρ⊗ρ

A
∆

A ⊗ A

where ρ : Au → A is the quotient map.

• (Au,∆u) is a compact quantum group — universal (A,∆).

• The Hopf algebra associated with (Au,∆u) is A .

• Also the Hopf algebra associated with (Ar ,∆r ) is A .



Completions of A

A ⊂ Au

λ

A ⊂ A

ρ

A ⊂ Ar



Woronowicz characters

• (A,∆) — compact quantum group, A — it’s Hopf algebra.

• ∃! family (fz)z∈C of non-zero multiplicative functionals on A

such that
• for an a ∈ A the function z 7→ fz (a) is entire,

• f0 = e, fz1 ∗ fz2 = fz1+z2 ,
(

ψ ∗ ϕ = (ψ ⊗ ϕ)◦∆
)

• fz(a∗) = f−z (a) for all a ∈ A , z ∈ C,

• fz(κ(a)) = f−z(a) for all a ∈ A , z ∈ C,

• κ2(a) = f−1 ∗ a ∗ f1 for all a ∈ A .
(

ψ ∗ a = (id ⊗ ψ)∆(a)
)

• (fit)t∈R are ∗-characters of A

=⇒ they extend to characters of Au.

• The family (fz)z∈C is related to the modular function on the
dual of (A,∆).

• We have fz = e for all z iff the Haar measure is a trace.



Quantum two-torus

• θ ∈]0, 1[, Aθ = C∗(u, v)

u∗u = 1 = uu∗, v∗v = 1 = vv∗, uv = e
2πiθvu.

• Aθ admits a faithful trace.

• If there is ∆ : Aθ → Aθ ⊗ Aθ such that (Aθ,∆) is a c.q.g.
then

• the Haar measure of (Aθ,∆) is a trace,
• κ2 = id (i.e. (Aθ,∆) is a Kac algebra). (P.M.S.)

• Aθ is nuclear. Therefore
• Aθ r = Aθu, (This property is called co-amenability.)

• the counit of A is continuous on Aθ. (Bedos, Murphy & Tuset)

• This means that Aθ must admit a character, but it does not.

• The quantum two-torus is not a quantum group (for θ 6= 0).

• Neither is any higher dimensional quantum torus. �



Bratteli-Elliott-Evans-Kishimoto quantum two-spheres

• Cθ = C(S2
θ ) is defined as Cθ = Aθ

α, where α ∈ Aut(Aθ)

α(u) = u∗, α(v) = v∗.

• Cθ admits a faithful trace,

• Cθ is nuclear,

• Cθ does not admit a character. �



Standard Podleś quantum two-spheres

• q ∈ [−1, 1] \ {0}, C(S2
q,0) = K +.

• Assume that there is ∆ : K + → K + ⊗ K + such that
(K +,∆) is a c.q.g.

• One can show that it’s Haar measure must be faithful.

• K + admits a character, and so (K +,∆) is co-amenable.
Thus

• all Woronowicz characters are continuous,
• but there is only one character on K +,
• so fit = e for all t ∈ R,
• so fz = e for all z ∈ C,
• so Haar measure of (K +,∆) is a trace.

• There are no faithful traces on K +. �



Natsume-Olsen quantum two-spheres

• t ∈
[

0, 1
2

[

, Bt = C(S2
t ), Bt = C∗(ζ, z)

ζ∗ζ + z2 = 1 = ζζ∗ + (tζζ∗ + z)2,

ζz − zζ = tζ(1 − z2).

• For t = 0 we get C(S2) and S2 is not a group.

• We can show that if there is ∆ : Bt → Bt ⊗ Bt such that
(Bt ,∆) is a c.q.g. then

• The Haar measure of G cannot be a trace,
• Bt r possesses a character.

• Thus (Bt ,∆) must be co-amenable, so Bt r = Btu = Bt

⇒ all Woronowicz characters are continuous on Bt .

• But Bt has only two characters (not enough). �


