Purely infinite crossed product C*-algebras

Adam Sierakowski York University

Copenhagen, November 16, 2009

• Classification = the art of distinguishing different objects!

Theorem (Kirchberg and Phillips, 90')

"Many" purely infinite C*-algebras are classifiable.

- $(a \precsim b) =$ there exists a sequence (r_n) such that $r_n^* br_n \to a$
- a properly infinite = $\begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} \preceq \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$
- purely infinite = non-zero positive elements are properly infinite

Goal

Contribute to classification of crossed products.

- $A = C^*$ -algebra
- *G* = countable discrete group
- $A \rtimes_r G$ = completion of $C_c(G, A)$ wrt. reduced norm

Remark

• For A = C(X):

G amenable \Rightarrow *A* \rtimes _{*r*} *G* is not purely infinite.

• G non-amenable = There exist finite number of subsets of G that can be translated to cover G two times

Proposition

Let X denote the Cantor set. The following are equivalent

- G is non-amenable
- There exist a (minimal) action of G on X such that C(X) ⋊_r G has a properly infinite unit.
- There exist an action of G on X such that C(X) ⋊_r G admits no tracial state.

Question

Suppose G is acting on a compact Hausdorff space X. Are the following two conditions equivalent:

- $C(X) \rtimes_r G$ has a properly infinite unit
- $C(X) \rtimes_r G$ admits no tracial state

Lemma

Suppose G is acting on a compact Hausdorff space X. Consider the properties

(i) X is τ_X -paradoxical, i.e. X can be doubled up using open disjoint subsets of X.

(ii) $A \rtimes_r G$ has a properly infinite unit.

Then $(i) \Rightarrow (ii)$.

Remark

For $X = \beta G$ - the Stone-Cech compactification of G - one can show that (ii) \Rightarrow (i).

Lemma

Suppose G is acting on a compact Hausdorff space X. Consider the properties

(i) X is τ_X -paradoxical, i.e. X can be doubled up using open disjoint subsets of X.

 $1 = x^*x = y^*y, xx^* \perp yy^* \leq 1$ for some $x, y \in C_c(G, A^+)$

(ii) $A \rtimes_r G$ has a properly infinite unit. $1 = x^*x = y^*y, xx^* \bot yy^* \le 1$ for some $x, y \in A \rtimes_r G$ Then (i) \Rightarrow (ii).

Remark

For $X = \beta G$ - the Stone-Cech compactification of G - one can show that (ii) \Rightarrow (i).

Conjecture (implicitly stated by Renault, 80')

If the action of G on \widehat{A} , the spectrum of A, is essentially free then A separates the ideals in $A \rtimes_r G$.

- essentially free action on X = for every closed invariant set Y ⊆ X the points in Y that are only fixed by e ∈ G are dense in Y
- A separates ideals = two different ideals have different intersection with A.

If the action is exact and essentially free then A separates the ideals in $A \rtimes_r G$.

• exact = every invariant ideal *I* in *A* induces a short exact sequence at the level of reduced crossed products

Remark

Exactness is a necessary condition.

Question

Can essential freeness be replaced with a weaker condition and still ensure A separates ideals in $A \rtimes_r G$?

Theorem (Pasnicu-Phillips)

Suppose A is unital and G is finite. Then A separates the ideals in $A \rtimes_r G$ if the action satisfies the Rokhlin property.

• Rokhin property = there exist a projection $p \in A' \cap A_{\infty}$ s.t.

$$p \perp t.p, t \neq e, \quad \sum_t t.p = 1_{\mathcal{A}_{\infty}}$$

A separates the ideals in $A \rtimes_r G$ if the action is exact and satisfies the residual Rokhlin* property.

• Rokhlin* property = there exist a projection $p \in A' \cap A_{\infty}^{**}$ s.t.

$$p \perp t.p, t \neq e, \quad \|a \sum_{t} t.p\| = \|a\|, a \in A$$

Remark

Essential freeness is in general stronger than residual Rokhlin* property, for A abelian the properties coincide.

Example (Cuntz $B \rtimes_r Z \cong \mathcal{O}_n \otimes \mathcal{K}$)

- $B = M_{n^{\infty}} \otimes \mathcal{K}$, the stabilized UHF-algebra of type n^{∞}
- $(B, \mu_m \colon M_{n^{\infty}} \to B)$ is an inductive limit of $M_{n^{\infty}} \to^{\lambda} M_{n^{\infty}} \to^{\lambda} \dots \to B, \quad \lambda(a) = a \otimes e_{11}$
- \mathbb{Z} acts on $M_{n^{\infty}}\otimes \mathcal{K}$ via an automorphism $\bar{\lambda}$ that scales the trace be a factor 1/n

$$p := (q_1, q_2, q_3 \dots) \in B_{\infty},$$
$$q_k := \mu_k (\underbrace{1 \otimes \cdots \otimes 1}_{2k} \otimes (1 - e_{11}) \otimes \underbrace{e_{11} \otimes \cdots \otimes e_{11}}_{2k} \otimes 1 \otimes \dots), k \in \mathbb{N}$$

Suppose the action is exact and has the residual Rokhlin* property. Further assume that A is separable and has property (IP). TFAE

- $A \rtimes_r G$ is purely infinite
- All non-zero elements in A⁺ are properly infinite (considered as elements in A ⋊_r G)
- (IP) = projections separates ideals

Corollary

Given A = C(X) such that the action is exact and essentially free. If X has a basis of clopen τ_X -paradoxical sets then $A \rtimes_r G$ is purely infinite.

Theorem (Jolissaint-Robertson, A = C(X))

Given A = C(X) separable such that the action is properly outer. If X has no isolated points and the action is n-filling, then $A \rtimes_r G$ is purely infinite and simple.

Remark

If the action of G on a compact space X is n-filling then every open set is τ_X -paradoxical and the action is minimal and exact. Further essential freeness coincides with the notion of proper outerness.

Suppose G is exact and acts essentially free on the Cantor set X. Let E denote the family of clopen subsets of X. Then the properties

- (i) The C*-algebra $C(X) \rtimes_r G$ is purely infinite.
- (ii) The C*-algebra $C(X) \rtimes_r G$ is traceless.

are equivalent provided that the semigroup S(X, G, E) is almost unperforated.

• S(X,G,E) = the type semigroup

$$\{\bigcup_{1}^{n} A_{i} \times \{i\} : A_{i} \in E, n \in \mathbb{N}\} / \sim_{S} A_{i} \in \mathbb{N}\} / \sim_{S} A_{i} \in \mathbb{N}\} / \sum_{i=1}^{n} A_{i} \times \{i\} = A_{i} \in \mathbb{N}\} / \sum_{i=1}^{n} A_{i} \times \{i\} = A_{i} \in \mathbb{N}\} / \sum_{i=1}^{n} A_{i} \times \{i\} = A_{i} \in \mathbb{N}\} / \sum_{i=1}^{n} A_{i} \times \{i\} = A_{i} \in \mathbb{N}\} / \sum_{i=1}^{n} A_{i} \times \{i\} = A_{i} \in \mathbb{N}\} / \sum_{i=1}^{n} A_{i} \times \{i\} = A_{i} \in \mathbb{N}\} / \sum_{i=1}^{n} A_{i} \times \{i\} = A_{i} \in \mathbb{N}\} / \sum_{i=1}^{n} A_{i} \times \{i\} = A_{i} \in \mathbb{N}\} / \sum_{i=1}^{n} A_{i} \times \{i\} = A_{i} \in \mathbb{N}\} / \sum_{i=1}^{n} A_{i} \times \{i\} = A_{i} \in \mathbb{N}\} / \sum_{i=1}^{n} A_{i} \times \{i\} = A_{i} \in \mathbb{N}\}$$

Thank you for your attention