C^{*}-algebras associated to C^{*}-correspondences and applications to noncommutative geometry.

Overview of the presentation.

- C^{*}-algebras associated to C^{*}-correspondences
- Restricted direct sum C^{*} correspondences and pullbacks
- Even dimensional mirror quantum spheres
- Labelled graph algebras
C^{*}-algebras associated to C^{*}-correspondences and applications to noncommutative geometry.

Overview of the presentation

- C^{*}-algebras associated to C^{*}-correspondences
- Restricted direct sum C^{*} correspondences and pullbacks
- Even dimensional mirror quantum spheres
- Labelled graph algebras
C^{*}-correspondences generalise the theory of Hilbert spaces by replacing the field of scalars \mathbb{C} with an arbitrary C^{*}-algebra A.
C^{*}-correspondences generalise the theory of Hilbert spaces by replacing the field of scalars \mathbb{C} with an arbitrary C^{*}-algebra A.

We begin with the definition of a right Hilbert-module.

C^{*}-correspondences

C^{*}-correspondences generalise the theory of Hilbert spaces by replacing the field of scalars \mathbb{C} with an arbitrary C^{*}-algebra A.

We begin with the definition of a right Hilbert-module.

Definition

Let X be a Banach space and A be a C^{*}-algebra. Suppose we have a right action $X \times A \rightarrow X$ of A on X and an A valued inner-product $\langle\cdot, \cdot\rangle: X \times X \rightarrow A$ that satisfies
for all $\xi, \eta \in X, a \in A$.

C^{*}-correspondences

C^{*}-correspondences generalise the theory of Hilbert spaces by replacing the field of scalars \mathbb{C} with an arbitrary C^{*}-algebra A.

We begin with the definition of a right Hilbert-module.

Definition

Let X be a Banach space and A be a C^{*}-algebra. Suppose we have a right action $X \times A \rightarrow X$ of A on X and an A valued inner-product
$\langle\cdot, \cdot\rangle: X \times X \rightarrow A$ that satisfies

- $\langle\xi, \eta \cdot a\rangle=\langle\xi, \eta\rangle \cdot a$
for all $\xi, \eta \in X, a \in A$.

C^{*}-correspondences

C^{*}-correspondences generalise the theory of Hilbert spaces by replacing the field of scalars \mathbb{C} with an arbitrary C^{*}-algebra A.

We begin with the definition of a right Hilbert-module.

Definition

Let X be a Banach space and A be a C^{*}-algebra. Suppose we have a right action $X \times A \rightarrow X$ of A on X and an A valued inner-product
$\langle\cdot, \cdot\rangle: X \times X \rightarrow A$ that satisfies

- $\langle\xi, \eta \cdot a\rangle=\langle\xi, \eta\rangle \cdot a$
- $\langle\eta, \xi\rangle=\langle\xi, \eta\rangle^{*}$
for all $\xi, \eta \in X, a \in A$.

C^{*}-correspondences

C^{*}-correspondences generalise the theory of Hilbert spaces by replacing the field of scalars \mathbb{C} with an arbitrary C^{*}-algebra A.

We begin with the definition of a right Hilbert-module.

Definition

Let X be a Banach space and A be a C^{*}-algebra. Suppose we have a right action $X \times A \rightarrow X$ of A on X and an A valued inner-product $\langle\cdot, \cdot\rangle: X \times X \rightarrow A$ that satisfies

- $\langle\xi, \eta \cdot a\rangle=\langle\xi, \eta\rangle \cdot a$
- $\langle\eta, \xi\rangle=\langle\xi, \eta\rangle^{*}$
- $\langle\xi, \xi\rangle \geq 0$ and $\|\xi\|_{X}=\sqrt{\|\langle\xi, \xi\rangle\|_{A}}$.
for all $\xi, \eta \in X, a \in A$.

C^{*}-correspondences

C^{*}-correspondences generalise the theory of Hilbert spaces by replacing the field of scalars \mathbb{C} with an arbitrary C^{*}-algebra A.

We begin with the definition of a right Hilbert-module.

Definition

Let X be a Banach space and A be a C^{*}-algebra. Suppose we have a right action $X \times A \rightarrow X$ of A on X and an A valued inner-product
$\langle\cdot, \cdot\rangle: X \times X \rightarrow A$ that satisfies

- $\langle\xi, \eta \cdot a\rangle=\langle\xi, \eta\rangle \cdot a$
- $\langle\eta, \xi\rangle=\langle\xi, \eta\rangle^{*}$
- $\langle\xi, \xi\rangle \geq 0$ and $\|\xi\|_{X}=\sqrt{\|\langle\xi, \xi\rangle\|_{A}}$.
for all $\xi, \eta \in X, a \in A$.
Then we say X is a right Hilbert A-module.

Adjointable and compact operators

We say a linear operator $T: X \rightarrow X$ is adjointable if there exists an operator $T^{*}: X \rightarrow X$ such that

$$
\langle T(\xi), \eta\rangle=\left\langle\xi T^{*}(\eta)\right\rangle
$$

for all $\xi, \eta \in X$.

We say a linear operator $T: X \rightarrow X$ is adjointable if there exists an operator $T^{*}: X \rightarrow X$ such that

$$
\langle T(\xi), \eta\rangle=\left\langle\xi T^{*}(\eta)\right\rangle
$$

for all $\xi, \eta \in X$.
We write $\mathcal{L}(X)$ for the collection of all adjointable operators $T: X \rightarrow X$.

We say a linear operator $T: X \rightarrow X$ is adjointable if there exists an operator $T^{*}: X \rightarrow X$ such that

$$
\langle T(\xi), \eta\rangle=\left\langle\xi T^{*}(\eta)\right\rangle
$$

for all $\xi, \eta \in X$.
We write $\mathcal{L}(X)$ for the collection of all adjointable operators $T: X \rightarrow X$.
Then $\mathcal{L}(X)$ is a C^{*}-algebra.

Adjointable and compact operators

Adjointable and compact operators

For $\xi, \eta \in X$, define $\theta_{\xi, \eta}$ to be the operator satisfying

$$
\theta_{\xi, \eta}(\zeta)=\xi\langle\eta, \zeta\rangle .
$$

for all $\zeta \in X$.

For $\xi, \eta \in X$, define $\theta_{\xi, \eta}$ to be the operator satisfying

$$
\theta_{\xi, \eta}(\zeta)=\xi\langle\eta, \zeta\rangle .
$$

for all $\zeta \in X$.
This is an adjointable operator with $\left(\theta_{\xi, \eta}\right)^{*}=\theta_{\eta, \xi}$. We call

$$
\mathcal{K}(X)=\overline{\operatorname{span}}\left\{\theta_{\xi, \eta}: \xi, \eta \in X\right\}
$$

the compact operators.

For $\xi, \eta \in X$, define $\theta_{\xi, \eta}$ to be the operator satisfying

$$
\theta_{\xi, \eta}(\zeta)=\xi\langle\eta, \zeta\rangle .
$$

for all $\zeta \in X$.
This is an adjointable operator with $\left(\theta_{\xi, \eta}\right)^{*}=\theta_{\eta, \xi}$. We call

$$
\mathcal{K}(X)=\overline{\operatorname{span}}\left\{\theta_{\xi, \eta}: \xi, \eta \in X\right\}
$$

the compact operators.
Then $\mathcal{K}(X)$ is a closed two-sided ideal in $\mathcal{L}(X)$.

Definition

A C^{*}-correspondence is a pair (X, A) where X is a Hilbert A-module, equipped with a $*$-homomorphism

$$
\phi_{X}: A \rightarrow \mathcal{L}(X)
$$

Definition

A C^{*}-correspondence is a pair (X, A) where X is a Hilbert A-module, equipped with a $*$-homomorphism

$$
\phi_{X}: A \rightarrow \mathcal{L}(X)
$$

We call ϕ_{X} the left action of A on X.

We define the C^{*}-algebra associated to a C^{*}-correspondence (X, A) as a universal object associated to representations of (X, A).

We define the C^{*}-algebra associated to a C^{*}-correspondence (X, A) as a universal object associated to representations of (X, A).

Definition

Let (X, A) be a C^{*}-correspondence and let B be a C^{*}-algebra. We say a pair (π, t) is a representation of (X, A) on B if $\pi: A \rightarrow B$ is a *-homomorphism and $t: X \rightarrow B$ is a linear map satisfying

We define the C^{*}-algebra associated to a C^{*}-correspondence (X, A) as a universal object associated to representations of (X, A).

Definition

Let (X, A) be a C^{*}-correspondence and let B be a C^{*}-algebra. We say a pair (π, t) is a representation of (X, A) on B if $\pi: A \rightarrow B$ is a *-homomorphism and $t: X \rightarrow B$ is a linear map satisfying

- $t\left(\phi_{X}(a) \xi\right)=\pi(a) t(\xi)$ for all $a \in A, \xi \in X$

We define the C^{*}-algebra associated to a C^{*}-correspondence (X, A) as a universal object associated to representations of (X, A).

Definition

Let (X, A) be a C^{*}-correspondence and let B be a C^{*}-algebra. We say a pair (π, t) is a representation of (X, A) on B if $\pi: A \rightarrow B$ is a *-homomorphism and $t: X \rightarrow B$ is a linear map satisfying

- $t\left(\phi_{X}(a) \xi\right)=\pi(a) t(\xi)$ for all $a \in A, \xi \in X$
- $\pi(\langle\xi, \eta\rangle)=t(\xi)^{*} t(\eta)$ for all $\xi, \eta \in X$.

Covariance

Covariance

Definition (Katsura 2003)

Define an ideal J_{X} of A by

$$
J_{X}:=\left\{a \in A: \phi_{X}(a) \in \mathcal{K}(X) \text { and } a \cdot b=0 \text { for all } b \in \operatorname{ker} \phi_{X}\right\}
$$

Covariance

Definition (Katsura 2003)

Define an ideal J_{X} of A by

$$
J_{X}:=\left\{a \in A: \phi_{X}(a) \in \mathcal{K}(X) \text { and } a \cdot b=0 \text { for all } b \in \operatorname{ker} \phi_{X}\right\}
$$

Definition (Katsura 2003)

We say a representation (π, t) of (X, A) on B is covariant if for all $a \in J_{X}$ we have

$$
\pi(a)=\psi_{t}\left(\phi_{X}(a)\right)
$$

where $\psi_{t}: \mathcal{K}(X) \rightarrow B$ satisfies $\psi_{t}\left(\theta_{\xi, \eta}\right)=t(\xi) t(\eta)^{*}$.

The algebra

So we are ready to define the C^{*}-algebra associated to a C^{*}-correspondence (X, A).

So we are ready to define the C^{*}-algebra associated to a C^{*}-correspondence (X, A).

Definition (Katsura, 2003)

For a C^{*}-correspondence (X, A) define \mathcal{O}_{X} to be the C^{*}-algebra generated by the images of X and A under the universal covariant representation $\left(\pi_{X}, t_{X}\right)$.

By defining appropriate morphisms between C^{*}-correspondences, they fit nicely into the language of categories.

Categorical viewpoint

By defining appropriate morphisms between C^{*}-correspondences, they fit nicely into the language of categories.

Definition

Given two C^{*}-correspondences (X, A) and (Y, B), a pair $\left(\psi_{X}, \psi_{A}\right)$ where $\psi_{X}: X \rightarrow Y$ is a linear map and $\psi_{A}: A \rightarrow B$ is a C^{*}-homomorphism, is called a morphism of C^{*}-correspondences if it satisfies

Categorical viewpoint

By defining appropriate morphisms between C^{*}-correspondences, they fit nicely into the language of categories.

Definition

Given two C^{*}-correspondences (X, A) and (Y, B), a pair $\left(\psi_{X}, \psi_{A}\right)$ where $\psi_{X}: X \rightarrow Y$ is a linear map and $\psi_{A}: A \rightarrow B$ is a C^{*}-homomorphism, is called a morphism of C^{*}-correspondences if it satisfies

- $\left\langle\psi_{X}(\xi), \psi_{X}(\eta)\right\rangle=\psi_{A}(\langle\xi, \eta\rangle)$ for all $\xi, \eta \in X$,

By defining appropriate morphisms between C^{*}-correspondences, they fit nicely into the language of categories.

Definition

Given two C^{*}-correspondences (X, A) and (Y, B), a pair $\left(\psi_{X}, \psi_{A}\right)$ where $\psi_{X}: X \rightarrow Y$ is a linear map and $\psi_{A}: A \rightarrow B$ is a C^{*}-homomorphism, is called a morphism of C^{*}-correspondences if it satisfies

- $\left\langle\psi_{X}(\xi), \psi_{X}(\eta)\right\rangle=\psi_{A}(\langle\xi, \eta\rangle)$ for all $\xi, \eta \in X$,
- $\psi_{X}\left(\phi_{X}(a) \xi\right)=\phi_{Y}\left(\psi_{A}(a)\right) \psi_{X}(\xi)$ for all $\xi \in X$ and $a \in A$, and

By defining appropriate morphisms between C^{*}-correspondences, they fit nicely into the language of categories.

Definition

Given two C^{*}-correspondences (X, A) and (Y, B), a pair $\left(\psi_{X}, \psi_{A}\right)$ where $\psi_{X}: X \rightarrow Y$ is a linear map and $\psi_{A}: A \rightarrow B$ is a C^{*}-homomorphism, is called a morphism of C^{*}-correspondences if it satisfies

- $\left\langle\psi_{X}(\xi), \psi_{X}(\eta)\right\rangle=\psi_{A}(\langle\xi, \eta\rangle)$ for all $\xi, \eta \in X$,
- $\psi_{X}\left(\phi_{X}(a) \xi\right)=\phi_{Y}\left(\psi_{A}(a)\right) \psi_{X}(\xi)$ for all $\xi \in X$ and $a \in A$, and
- $\psi_{A}\left(J_{X}\right) \subset J_{Y}$ and

By defining appropriate morphisms between C^{*}-correspondences, they fit nicely into the language of categories.

Definition

Given two C^{*}-correspondences (X, A) and (Y, B), a pair $\left(\psi_{X}, \psi_{A}\right)$ where $\psi_{X}: X \rightarrow Y$ is a linear map and $\psi_{A}: A \rightarrow B$ is a C^{*}-homomorphism, is called a morphism of C^{*}-correspondences if it satisfies

- $\left\langle\psi_{X}(\xi), \psi_{X}(\eta)\right\rangle=\psi_{A}(\langle\xi, \eta\rangle)$ for all $\xi, \eta \in X$,
- $\psi_{X}\left(\phi_{X}(a) \xi\right)=\phi_{Y}\left(\psi_{A}(a)\right) \psi_{X}(\xi)$ for all $\xi \in X$ and $a \in A$, and
- $\psi_{A}\left(J_{X}\right) \subset J_{Y}$ and
- for all $a \in J_{X}$ we have $\phi_{Y}\left(\psi_{A}(a)\right)=\psi_{X}^{+}\left(\phi_{X}(a)\right)$ where $\psi_{X}^{+}: \mathcal{K}(X) \rightarrow \mathcal{K}(Y)$ satisfies $\psi_{X}^{+}\left(\theta_{\xi, \eta}\right)=\theta_{\psi_{X}(\xi), \psi_{X}(\eta)}$.

Functors

There is a functor F from the category of C^{*}-correspondences to the category of C^{*}-algebras such that

Functors

There is a functor F from the category of C^{*}-correspondences to the category of C^{*}-algebras such that

- $F(X, A)=\mathcal{O}_{X}$

There is a functor F from the category of C^{*}-correspondences to the category of C^{*}-algebras such that

- $F(X, A)=\mathcal{O}_{X}$
- $\Psi=F\left(\psi_{X}, \psi_{A}\right): \mathcal{O}_{X} \rightarrow \mathcal{O}_{Y}$ is a C^{*}-homomorphism satisfying

$$
\Psi\left(\pi_{X}(a)\right)=\pi_{Y}\left(\psi_{A}(a)\right) \text { and } \Psi\left(t_{X}(\xi)\right)=t_{Y}\left(\psi_{X}(\xi)\right)
$$

for all $a \in A$ and $\xi \in X$.

There is a functor F from the category of C^{*}-correspondences to the category of C^{*}-algebras such that

- $F(X, A)=\mathcal{O}_{X}$
- $\Psi=F\left(\psi_{X}, \psi_{A}\right): \mathcal{O}_{X} \rightarrow \mathcal{O}_{Y}$ is a C^{*}-homomorphism satisfying

$$
\Psi\left(\pi_{X}(a)\right)=\pi_{Y}\left(\psi_{A}(a)\right) \text { and } \Psi\left(t_{X}(\xi)\right)=t_{Y}\left(\psi_{X}(\xi)\right)
$$

for all $a \in A$ and $\xi \in X$.

Not all homomorphisms $\varphi: \mathcal{O}_{X} \rightarrow \mathcal{O}_{Y}$ arise this way.
C^{*}-algebras associated to C^{*}-correspondences and applications to noncommutative geometry.

Overview of the presentation

- C^{*}-algebras associated to C^{*}-correspondences
- Restricted direct sum C*correspondences and pullbacks: Our main theorem
- Even dimensional mirror quantum spheres
- Labelled graph algebras

Restricted direct sums of C^{*}-correspondences are a generalisation of pullbacks of C^{*}-algebras.

Restricted direct sums

Restricted direct sums of C^{*}-correspondences are a generalisation of pullbacks of C^{*}-algebras.

Definition (Bakić, Guljǎs (2003))

Given C^{*}-correspondences $(X, A),(Y, B)$ and (Z, C), and morphisms of C^{*}-correspondences $\left(\psi_{X}, \psi_{A}\right):(X, A) \rightarrow(Z, C)$, $\left(\omega_{Y}, \omega_{B}\right):(Y, B) \rightarrow(Z, C)$, define the restricted direct sum

Restricted direct sums

Restricted direct sums of C^{*}-correspondences are a generalisation of pullbacks of C^{*}-algebras.

Definition (Bakić, Guljǎs (2003))

Given C^{*}-correspondences $(X, A),(Y, B)$ and (Z, C), and morphisms of C^{*}-correspondences $\left(\psi_{X}, \psi_{A}\right):(X, A) \rightarrow(Z, C)$,
$\left(\omega_{Y}, \omega_{B}\right):(Y, B) \rightarrow(Z, C)$, define the restricted direct sum

$$
X \oplus_{Z} Y:=\left\{(\xi, \eta) \in X \oplus Y: \psi_{X}(\xi)=\omega_{Y}(\eta)\right\}
$$

Restricted direct sums

Restricted direct sums of C^{*}-correspondences are a generalisation of pullbacks of C^{*}-algebras.

Definition (Bakić, Guljǎs (2003))

Given C^{*}-correspondences $(X, A),(Y, B)$ and (Z, C), and morphisms of C^{*}-correspondences $\left(\psi_{X}, \psi_{A}\right):(X, A) \rightarrow(Z, C)$, $\left(\omega_{Y}, \omega_{B}\right):(Y, B) \rightarrow(Z, C)$, define the restricted direct sum

$$
X \oplus_{Z} Y:=\left\{(\xi, \eta) \in X \oplus Y: \psi_{X}(\xi)=\omega_{Y}(\eta)\right\}
$$

Proposition

The restricted direct sum $X \oplus_{z} Y$ is a C^{*}-correspondence over the C^{*}-algebra $A \oplus_{C} B$ defined to be the pullback C^{*}-algebra of A and B along ψ_{A} and ω_{B}.

Gluing C^{*}-correspondences

Our main result says that the process of taking restricted direct sums on the level of C^{*}-correspondences lifts to the process of taking pull-backs on the level of induced C^{*}-algebras via the functor F.

Gluing C^{*}-correspondences

Our main result says that the process of taking restricted direct sums on the level of C^{*}-correspondences lifts to the process of taking pull-backs on the level of induced C^{*}-algebras via the functor F.

Theorem

Let $(X, A),(Y, B)$ and (Z, C) be C^{*}-correspondences fix morphisms of C^{*}-correspondences $\left(\psi_{X}, \psi_{A}\right):(X, A) \rightarrow(Z, C)$, $\left(\omega_{Y}, \omega_{B}\right):(Y, B) \rightarrow(Z, C)$ satisfying

Gluing C*-correspondences

Our main result says that the process of taking restricted direct sums on the level of C^{*}-correspondences lifts to the process of taking pull-backs on the level of induced C^{*}-algebras via the functor F.

Theorem

Let $(X, A),(Y, B)$ and (Z, C) be C^{*}-correspondences fix morphisms of C^{*}-correspondences $\left(\psi_{X}, \psi_{A}\right):(X, A) \rightarrow(Z, C)$, $\left(\omega_{Y}, \omega_{B}\right):(Y, B) \rightarrow(Z, C)$ satisfying

- $\psi_{X}(X)=\omega_{Y}(Y)$

Gluing C*-correspondences

Our main result says that the process of taking restricted direct sums on the level of C^{*}-correspondences lifts to the process of taking pull-backs on the level of induced C^{*}-algebras via the functor F.

Theorem

Let $(X, A),(Y, B)$ and (Z, C) be C^{*}-correspondences fix morphisms of C^{*}-correspondences $\left(\psi_{X}, \psi_{A}\right):(X, A) \rightarrow(Z, C)$, $\left(\omega_{Y}, \omega_{B}\right):(Y, B) \rightarrow(Z, C)$ satisfying

- $\psi_{X}(X)=\omega_{Y}(Y)$
- $\psi_{A}(A)=\omega_{B}(B)$, and

Gluing C*-correspondences

Our main result says that the process of taking restricted direct sums on the level of C^{*}-correspondences lifts to the process of taking pull-backs on the level of induced C^{*}-algebras via the functor F.

Theorem

Let $(X, A),(Y, B)$ and (Z, C) be C^{*}-correspondences fix morphisms of
C^{*}-correspondences $\left(\psi_{X}, \psi_{A}\right):(X, A) \rightarrow(Z, C)$,
$\left(\omega_{Y}, \omega_{B}\right):(Y, B) \rightarrow(Z, C)$ satisfying

- $\psi_{X}(X)=\omega_{Y}(Y)$
- $\psi_{A}(A)=\omega_{B}(B)$, and
- $\psi_{A}\left(\operatorname{ker}\left(\phi_{X}\right)\right)=\omega_{B}\left(\operatorname{ker}\left(\phi_{Y}\right)\right)$.

Gluing C^{*}-correspondences

Our main result says that the process of taking restricted direct sums on the level of C^{*}-correspondences lifts to the process of taking pull-backs on the level of induced C^{*}-algebras via the functor F.

Theorem

Let $(X, A),(Y, B)$ and (Z, C) be C^{*}-correspondences fix morphisms of
C^{*}-correspondences $\left(\psi_{X}, \psi_{A}\right):(X, A) \rightarrow(Z, C)$,
$\left(\omega_{Y}, \omega_{B}\right):(Y, B) \rightarrow(Z, C)$ satisfying

- $\psi_{X}(X)=\omega_{Y}(Y)$
- $\psi_{A}(A)=\omega_{B}(B)$, and
- $\psi_{A}\left(\operatorname{ker}\left(\phi_{X}\right)\right)=\omega_{B}\left(\operatorname{ker}\left(\phi_{Y}\right)\right)$.

Then

$$
\mathcal{O}_{X \oplus_{Z} Y} \cong \mathcal{O}_{X} \oplus_{\mathcal{O}_{Z}} \mathcal{O}_{Y}
$$

where $\mathcal{O}_{X} \oplus_{\mathcal{O}_{Z}} \mathcal{O}_{Y}$ is the pullback C^{*}-algebra of \mathcal{O}_{X} and \mathcal{O}_{Y} along $\psi=F\left(\psi_{X}, \psi_{A}\right)$ and $\Omega=F\left(\omega_{Y}, \omega_{B}\right)$.

We can use this to construct new examples of noncommutative spaces.
C^{*}-algebras associated to C^{*}-correspondences and applications to noncommutative geometry.

Overview of the presentation

- C^{*}-algebras associated to C^{*}-correspondences
- Restricted direct sum C^{*} correspondences and pullbacks
- Even dimensional mirror quantum spheres
- Labelled graph algebras

The motivating examples for this research are the even-dimensional mirror quantum spheres, first defined for dimension 2 by Hajac, Matthes and Szymanski in 2006, and generalised to higher dimension by Hong and Szymanski in 2008.

The motivating examples for this research are the even-dimensional mirror quantum spheres, first defined for dimension 2 by Hajac, Matthes and Szymanski in 2006, and generalised to higher dimension by Hong and Szymanski in 2008.

For $n \in \mathbb{N}$, the $2 n$-dimensional mirror quantum sphere is defined as the pullback of the following diagram

where $\pi: C\left(\mathbb{D}_{q}^{2 n}\right) \rightarrow C\left(S_{q}^{2 n-1}\right)$ is the natural surjection and $\beta \in \operatorname{Aut}\left(C\left(S_{q}^{2 n-1}\right)\right)$.

Hong and Szymanski showed that the algebras $C\left(\mathbb{D}_{q}^{2 n}\right)$ and $C\left(S_{q}^{2 n-1}\right)$ are graph algebras, so we can easily find C^{*}-correspondences for these algebras

Hong and Szymanski showed that the algebras $C\left(\mathbb{D}_{q}^{2 n}\right)$ and $C\left(S_{q}^{2 n-1}\right)$ are graph algebras, so we can easily find C^{*}-correspondences for these algebras

$$
\begin{aligned}
& (X, A) \text { such that } \mathcal{O}_{X} \cong C\left(\mathbb{D}_{q}^{2 n}\right) \\
& (Z, C) \text { such that } \mathcal{O}_{Z} \cong C\left(S_{q}^{2 n-1}\right)
\end{aligned}
$$

Hong and Szymanski showed that the algebras $C\left(\mathbb{D}_{q}^{2 n}\right)$ and $C\left(S_{q}^{2 n-1}\right)$ are graph algebras, so we can easily find C^{*}-correspondences for these algebras

$$
(X, A) \text { such that } \mathcal{O}_{X} \cong C\left(\mathbb{D}_{q}^{2 n}\right)
$$

(Z, C) such that $\mathcal{O}_{Z} \cong C\left(S_{q}^{2 n-1}\right)$
There is a morphism of C^{*}-correspondences $\left(\sigma_{X}, \sigma_{A}\right):(X, A) \rightarrow(Z, C)$ such that $\Sigma=F\left(\sigma_{X}, \sigma_{A}\right): \mathcal{O}_{X} \rightarrow \mathcal{O}_{Z}$ and $\pi: C\left(\mathbb{D}_{q}^{2 n}\right) \rightarrow C\left(S_{q}^{2 n-1}\right)$ are the same map.

However, there is no morphism of C^{*}-correspondences $\left(\rho_{X}, \rho_{A}\right):(X, A) \rightarrow(Z, C)$ such that $F\left(\rho_{X}, \rho_{A}\right)=\pi \circ \beta$.

However, there is no morphism of C^{*}-correspondences $\left(\rho_{X}, \rho_{A}\right):(X, A) \rightarrow(Z, C)$ such that $F\left(\rho_{X}, \rho_{A}\right)=\pi \circ \beta$.

There is another C^{*}-correspondence (Y, B) and morphism $\left(\rho_{Y}, \rho_{B}\right):(Y, B) \rightarrow(Z, C)$ such that

However, there is no morphism of C^{*}-correspondences $\left(\rho_{X}, \rho_{A}\right):(X, A) \rightarrow(Z, C)$ such that $F\left(\rho_{X}, \rho_{A}\right)=\pi \circ \beta$.

There is another C^{*}-correspondence (Y, B) and morphism $\left(\rho_{Y}, \rho_{B}\right):(Y, B) \rightarrow(Z, C)$ such that

- $\mathcal{O}_{Y} \cong C\left(\mathbb{D}_{q}^{2 n}\right)$

However, there is no morphism of C^{*}-correspondences $\left(\rho_{X}, \rho_{A}\right):(X, A) \rightarrow(Z, C)$ such that $F\left(\rho_{X}, \rho_{A}\right)=\pi \circ \beta$.

There is another C^{*}-correspondence (Y, B) and morphism $\left(\rho_{Y}, \rho_{B}\right):(Y, B) \rightarrow(Z, C)$ such that

- $\mathcal{O}_{Y} \cong C\left(\mathbb{D}_{q}^{2 n}\right)$
- $F\left(\rho_{Y}, \rho_{B}\right)=\pi \circ \beta$

However, there is no morphism of C^{*}-correspondences $\left(\rho_{X}, \rho_{A}\right):(X, A) \rightarrow(Z, C)$ such that $F\left(\rho_{X}, \rho_{A}\right)=\pi \circ \beta$.

There is another C^{*}-correspondence (Y, B) and morphism $\left(\rho_{Y}, \rho_{B}\right):(Y, B) \rightarrow(Z, C)$ such that

- $\mathcal{O}_{Y} \cong C\left(\mathbb{D}_{q}^{2 n}\right)$
- $F\left(\rho_{Y}, \rho_{B}\right)=\pi \circ \beta$

But the C^{*}-correspondence (Y, B) no longer comes from a directed graph.
C^{*}-algebras associated to C^{*}-correspondences and applications to noncommutative geometry.

Overview of the presentation

- C^{*}-algebras associated to C^{*}-correspondences
- Restricted direct sum C^{*} correspondences and pullbacks
- Graph algebras
- Even dimensional mirror quantum spheres
- Labelled graph algebras

Labelled graphs

Labelled graphs are a generalisation of directed graphs, where two or more edges may carry the same label, and the range and sources of edges become sets of vertices.

Labelled graphs

Labelled graphs are a generalisation of directed graphs, where two or more edges may carry the same label, and the range and sources of edges become sets of vertices.

Definition (Bates, Pask (2007))

A labelled graph (E, \mathcal{L}) over an alphabet \mathcal{A} is a directed graph E together with a surjective labelling map $\mathcal{L}: E^{1} \rightarrow \mathcal{A}$ which assigns to each edge $e \in E^{1}$ a label $a \in \mathcal{A}$.

Labelled graphs are a generalisation of directed graphs, where two or more edges may carry the same label, and the range and sources of edges become sets of vertices.

Definition (Bates, Pask (2007))

A labelled graph (E, \mathcal{L}) over an alphabet \mathcal{A} is a directed graph E together with a surjective labelling map $\mathcal{L}: E^{1} \rightarrow \mathcal{A}$ which assigns to each edge $e \in E^{1}$ a label $a \in \mathcal{A}$.

The range and source maps then become $r, s: \mathcal{A} \rightarrow \mathcal{P}\left(E^{0}\right)$ satisfying

$$
s(a)=\{s(e): \mathcal{L}(e)=a\} \quad \text { and } r(a)=\{r(e): \mathcal{L}(e)=a\}
$$

Example

Example of a labelled graph (E, \mathcal{L}).

Example

Example of a labelled graph (E, \mathcal{L}).

Example

Example of a labelled graph (E, \mathcal{L}).

Then we have

$$
\begin{gathered}
s(a)=\{u\} \quad r(a)=\{v\} \\
s(b)=\{u, v\}=r(b)
\end{gathered}
$$

We associate C^{*}-algebras to labelled spaces $(E, \mathcal{L}, \mathcal{B})$ where (E, \mathcal{L}) is a labelled graph and $\mathcal{B} \subset 2^{E^{0}}$.

We associate C^{*}-algebras to labelled spaces $(E, \mathcal{L}, \mathcal{B})$ where (E, \mathcal{L}) is a labelled graph and $\mathcal{B} \subset 2^{E^{0}}$.

The C^{*}-algebra is generated by a collection of partial isometries associated to the labels on E^{1}, and projections associated to the sets of vertices $A \in \mathcal{B}$.

We associate C^{*}-algebras to labelled spaces $(E, \mathcal{L}, \mathcal{B})$ where (E, \mathcal{L}) is a labelled graph and $\mathcal{B} \subset 2^{E^{0}}$.

The C^{*}-algebra is generated by a collection of partial isometries associated to the labels on E^{1}, and projections associated to the sets of vertices $A \in \mathcal{B}$.

Not all labelled graphs admit a suitable set \mathcal{B} in order to associate a C^{*}-algebra. When \mathcal{B} exists we say \mathcal{B} is accommodating for (E, \mathcal{L}).

Definition (Bates, Pask (2003))

Let (E, \mathcal{L}) be a labelled graph, B an accommodating set for (E, \mathcal{L}). A representation of (E, \mathcal{L}) is a collection $\left\{p_{A}: A \in \mathcal{B}\right\}$ of projections and a collection $\left\{s_{a}: a \in \mathcal{L}\left(E^{1}\right)\right\}$ of partial isometries such that:

C^{*}-algebra

Definition (Bates, Pask (2003))

Let (E, \mathcal{L}) be a labelled graph, B an accommodating set for (E, \mathcal{L}). A representation of (E, \mathcal{L}) is a collection $\left\{p_{A}: A \in \mathcal{B}\right\}$ of projections and a collection $\left\{s_{a}: a \in \mathcal{L}\left(E^{1}\right)\right\}$ of partial isometries such that:

- For $A, B \in \mathcal{B}$, we have $p_{A} p_{B}=p_{A \cap B}$ and $p_{A \cup B}=p_{A}+p_{B}-p_{A \cap B}$ where $p_{\emptyset}=0$

C^{*}-algebra

Definition (Bates, Pask (2003))

Let (E, \mathcal{L}) be a labelled graph, B an accommodating set for (E, \mathcal{L}). A representation of (E, \mathcal{L}) is a collection $\left\{p_{A}: A \in \mathcal{B}\right\}$ of projections and a collection $\left\{s_{a}: a \in \mathcal{L}\left(E^{1}\right)\right\}$ of partial isometries such that:

- For $A, B \in \mathcal{B}$, we have $p_{A} p_{B}=p_{A \cap B}$ and $p_{A \cup B}=p_{A}+p_{B}-p_{A \cap B}$ where $p_{\emptyset}=0$
- For $a \in \mathcal{L}\left(E^{1}\right)$ and $A \in \mathcal{B}$, we have $p_{A} s_{a}=s_{a} p_{r(A, a)}$ where $r(A, a)=\{r(e): s(e) \in A, \mathcal{L}(e))=a\}$

Definition (Bates, Pask (2003))

Let (E, \mathcal{L}) be a labelled graph, B an accommodating set for (E, \mathcal{L}). A representation of (E, \mathcal{L}) is a collection $\left\{p_{A}: A \in \mathcal{B}\right\}$ of projections and a collection $\left\{s_{a}: a \in \mathcal{L}\left(E^{1}\right)\right\}$ of partial isometries such that:

- For $A, B \in \mathcal{B}$, we have $p_{A} p_{B}=p_{A \cap B}$ and $p_{A \cup B}=p_{A}+p_{B}-p_{A \cap B}$ where $p_{\emptyset}=0$
- For $a \in \mathcal{L}\left(E^{1}\right)$ and $A \in \mathcal{B}$, we have $p_{A} s_{a}=s_{a} p_{r(A, a)}$ where $r(A, a)=\{r(e): s(e) \in A, \mathcal{L}(e))=a\}$
- For $a, b \in \mathcal{L}\left(E^{1}\right)$, we have $s_{a}^{*} s_{a}=p_{r(a)}$ and $s_{a}^{*} s_{b}=0$ unless $a=b$

Definition (Bates, Pask (2003))

Let (E, \mathcal{L}) be a labelled graph, B an accommodating set for (E, \mathcal{L}). A representation of (E, \mathcal{L}) is a collection $\left\{p_{A}: A \in \mathcal{B}\right\}$ of projections and a collection $\left\{s_{a}: a \in \mathcal{L}\left(E^{1}\right)\right\}$ of partial isometries such that:

- For $A, B \in \mathcal{B}$, we have $p_{A} p_{B}=p_{A \cap B}$ and $p_{A \cup B}=p_{A}+p_{B}-p_{A \cap B}$ where $p_{\emptyset}=0$
- For $a \in \mathcal{L}\left(E^{1}\right)$ and $A \in \mathcal{B}$, we have $p_{A} s_{a}=s_{a} p_{r(A, a)}$ where $r(A, a)=\{r(e): s(e) \in A, \mathcal{L}(e))=a\}$
- For $a, b \in \mathcal{L}\left(E^{1}\right)$, we have $s_{a}^{*} s_{a}=p_{r(a)}$ and $s_{a}^{*} s_{b}=0$ unless $a=b$
- For $A \in \mathcal{B}$ define $L^{1}(A):=\left\{a \in \mathcal{L}\left(E^{1}\right): s(a) \cap A \neq \emptyset\right\}$. Then if $L^{1}(A)$ is finite and non-empty, we have

$$
p_{A}=\sum_{a \in L^{1}(A)} s_{a} p_{r(A, a)} s_{a}^{*}+\sum_{v \in A: v \text { is a sink }} p_{\{v\}} .
$$

[^0][^1]Using the
representation of the even dimensional mirror quantum sphere as a C^{*} algebra associated to a C^{*}-correspondence, we can prove that it is in fact a labelled graph algebra.

Figure: Labelled graph for $C\left(S_{q, \beta}^{10}\right)$.

[^0]: Using the
 representation of the even dimensional mirror quantum
 sphere as a C^{*}
 algebra associated to
 a C^{*}-correspondence, we can prove that it is in fact a labelled graph algebra.

[^1]: Using the
 representation of the even dimensional mirror quantum
 sphere as a C^{*}
 algebra associated to
 a C^{*}-correspondence, we can prove that it is in fact a labelled graph algebra.

