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C ∗-correspondences

C ∗-correspondences generalise the theory of Hilbert spaces by replacing
the field of scalars C with an arbitrary C ∗-algebra A.

We begin with the definition of a right Hilbert-module.

Definition

Let X be a Banach space and A be a C ∗-algebra. Suppose we have a right
action X × A→ X of A on X and an A valued inner-product
〈·, ·〉 : X × X → A that satisfies

〈ξ, η · a〉 = 〈ξ, η〉 · a
〈η, ξ〉 = 〈ξ, η〉∗

〈ξ, ξ〉 ≥ 0 and ‖ξ‖X =
√
‖〈ξ, ξ〉‖A.

for all ξ, η ∈ X , a ∈ A.

Then we say X is a right Hilbert A-module

.
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Adjointable and compact operators

We say a linear operator T : X → X is adjointable if there exists an
operator T ∗ : X → X such that

〈T (ξ), η〉 = 〈ξT ∗(η)〉

for all ξ, η ∈ X .

We write L(X ) for the collection of all adjointable operators T : X → X .

Then L(X ) is a C ∗-algebra.
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Adjointable and compact operators

For ξ, η ∈ X , define θξ,η to be the operator satisfying

θξ,η(ζ) = ξ〈η, ζ〉.

for all ζ ∈ X .

This is an adjointable operator with (θξ,η)∗ = θη,ξ. We call

K(X ) = span{θξ,η : ξ, η ∈ X}

the compact operators.

Then K(X ) is a closed two-sided ideal in L(X ).
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C ∗-correspondences

Definition

A C ∗-correspondence is a pair (X ,A) where X is a Hilbert A-module,
equipped with a ∗-homomorphism

φX : A→ L(X ).

We call φX the left action of A on X .
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Representations

We define the C ∗-algebra associated to a C ∗-correspondence (X ,A) as a
universal object associated to representations of (X ,A).

Definition

Let (X ,A) be a C ∗-correspondence and let B be a C ∗-algebra. We say a
pair (π, t) is a representation of (X ,A) on B if π : A→ B is a
∗-homomorphism and t : X → B is a linear map satisfying

t(φX (a)ξ) = π(a)t(ξ) for all a ∈ A, ξ ∈ X

π(〈ξ, η〉) = t(ξ)∗t(η) for all ξ, η ∈ X .
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Covariance

Definition (Katsura 2003)

Define an ideal JX of A by

JX := {a ∈ A : φX (a) ∈ K(X ) and a · b = 0 for all b ∈ ker φX}

Definition (Katsura 2003)

We say a representation (π, t) of (X ,A) on B is covariant if for all a ∈ JX

we have
π(a) = ψt(φX (a))

where ψt : K(X )→ B satisfies ψt(θξ,η) = t(ξ)t(η)∗.
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The algebra

So we are ready to define the C ∗-algebra associated to a
C ∗-correspondence (X ,A).

Definition (Katsura, 2003)

For a C ∗-correspondence (X ,A) define OX to be the C ∗-algebra generated
by the images of X and A under the universal covariant representation
(πX , tX ).
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Categorical viewpoint

By defining appropriate morphisms between C ∗-correspondences, they fit
nicely into the language of categories.

Definition

Given two C ∗-correspondences (X ,A) and (Y ,B), a pair (ψX , ψA) where
ψX : X → Y is a linear map and ψA : A→ B is a C ∗-homomorphism, is
called a morphism of C ∗-correspondences if it satisfies

〈ψX (ξ), ψX (η)〉 = ψA(〈ξ, η〉) for all ξ, η ∈ X ,

ψX (φX (a)ξ) = φY (ψA(a))ψX (ξ) for all ξ ∈ X and a ∈ A, and

ψA(JX ) ⊂ JY and

for all a ∈ JX we have φY (ψA(a)) = ψ+
X (φX (a)) where

ψ+
X : K(X )→ K(Y ) satisfies ψ+

X (θξ,η) = θψX (ξ),ψX (η).
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Functors

There is a functor F from the category of C ∗-correspondences to the
category of C ∗-algebras such that

F (X ,A) = OX

Ψ = F (ψX , ψA) : OX → OY is a C ∗-homomorphism satisfying

Ψ(πX (a)) = πY (ψA(a)) and Ψ(tX (ξ)) = tY (ψX (ξ))

for all a ∈ A and ξ ∈ X .

Not all homomorphisms ϕ : OX → OY arise this way.
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Restricted direct sums

Restricted direct sums of C ∗-correspondences are a generalisation of
pullbacks of C ∗-algebras.

Definition (Bakić, Guljǎs (2003))

Given C ∗-correspondences (X ,A), (Y ,B) and (Z ,C ), and morphisms of
C ∗-correspondences (ψX , ψA) : (X ,A)→ (Z ,C ),
(ωY , ωB) : (Y ,B)→ (Z ,C ), define the restricted direct sum

X ⊕Z Y := {(ξ, η) ∈ X ⊕ Y : ψX (ξ) = ωY (η)}.

Proposition

The restricted direct sum X ⊕Z Y is a C ∗-correspondence over the
C ∗-algebra A⊕C B defined to be the pullback C ∗-algebra of A and B
along ψA and ωB .
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Gluing C ∗-correspondences

Our main result says that the process of taking restricted direct sums on
the level of C ∗-correspondences lifts to the process of taking pull-backs on
the level of induced C ∗-algebras via the functor F .

Theorem

Let (X ,A), (Y ,B) and (Z ,C ) be C ∗-correspondences fix morphisms of
C ∗-correspondences (ψX , ψA) : (X ,A)→ (Z ,C ),
(ωY , ωB) : (Y ,B)→ (Z ,C ) satisfying

ψX (X ) = ωY (Y )

ψA(A) = ωB(B), and

ψA(ker(φX )) = ωB(ker(φY )).

Then
OX⊕ZY

∼= OX ⊕OZ
OY

where OX ⊕OZ
OY is the pullback C ∗-algebra of OX and OY along

Ψ = F (ψX , ψA) and Ω = F (ωY , ωB).
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Noncommutative spaces

We can use this to construct new examples of noncommutative spaces.
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Overview

C ∗-algebras associated to C ∗-correspondences and applications to
noncommutative geometry.

Overview of the presentation

C ∗-algebras associated to C ∗-correspondences

Restricted direct sum C ∗correspondences and pullbacks

Even dimensional mirror quantum spheres

Labelled graph algebras
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Even dimensional mirror quantum spheres

The motivating examples for this research are the even-dimensional mirror
quantum spheres, first defined for dimension 2 by Hajac, Matthes and
Szymanski in 2006, and generalised to higher dimension by Hong and
Szymanski in 2008.

For n ∈ N, the 2n-dimensional mirror quantum sphere is defined as the
pullback of the following diagram

where π : C (D2n
q )→ C (S2n−1

q ) is the natural surjection and
β ∈ Aut(C (S2n−1

q )).
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Mirror quantum spheres as C ∗-correspondences

Hong and Szymanski showed that the algebras C (D2n
q ) and C (S2n−1

q ) are
graph algebras, so we can easily find C ∗-correspondences for these
algebras

(X ,A) such that OX
∼= C (D2n

q )

(Z ,C ) such that OZ
∼= C (S2n−1

q )

There is a morphism of C ∗-correspondences (σX , σA) : (X ,A)→ (Z ,C )
such that Σ = F (σX , σA) : OX → OZ and π : C (D2n

q )→ C (S2n−1
q ) are the

same map.
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Mirror quantum spheres as C ∗-correspondences

However, there is no morphism of C ∗-correspondences
(ρX , ρA) : (X ,A)→ (Z ,C ) such that F (ρX , ρA) = π ◦ β.

There is another C ∗-correspondence (Y ,B) and morphism
(ρY , ρB) : (Y ,B)→ (Z ,C ) such that

OY
∼= C (D2n

q )

F (ρY , ρB) = π ◦ β

But the C ∗-correspondence (Y ,B) no longer comes from a directed graph.
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Overview

C ∗-algebras associated to C ∗-correspondences and applications to
noncommutative geometry.

Overview of the presentation
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Labelled graphs

Labelled graphs are a generalisation of directed graphs, where two or more
edges may carry the same label, and the range and sources of edges
become sets of vertices.

Definition (Bates, Pask (2007))

A labelled graph (E ,L) over an alphabet A is a directed graph E together
with a surjective labelling map L : E 1 → A which assigns to each edge
e ∈ E 1 a label a ∈ A.

The range and source maps then become r , s : A → P(E 0) satisfying

s(a) = {s(e) : L(e) = a} and r(a) = {r(e) : L(e) = a}
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Example

Example of a labelled graph (E ,L).

Then we have
s(a) = {u} r(a) = {v}

s(b) = {u, v} = r(b)
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C ∗-algebra

We associate C ∗-algebras to labelled spaces (E ,L,B) where (E ,L) is a
labelled graph and B ⊂ 2E0

.

The C ∗-algebra is generated by a collection of partial isometries associated
to the labels on E 1, and projections associated to the sets of vertices
A ∈ B.

Not all labelled graphs admit a suitable set B in order to associate a
C ∗-algebra. When B exists we say B is accommodating for (E ,L).
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C ∗-algebra

Definition (Bates, Pask (2003))

Let (E ,L) be a labelled graph, B an accommodating set for (E ,L). A
representation of (E ,L) is a collection {pA : A ∈ B} of projections and a
collection {sa : a ∈ L(E 1)} of partial isometries such that:

For A,B ∈ B, we have pApB = pA∩B and pA∪B = pA + pB − pA∩B

where p∅ = 0

For a ∈ L(E 1) and A ∈ B, we have pAsa = sapr(A,a) where
r(A, a) = {r(e) : s(e) ∈ A,L(e)) = a}
For a, b ∈ L(E 1), we have s∗a sa = pr(a) and s∗a sb = 0 unless a = b

For A ∈ B define L1(A) := {a ∈ L(E 1) : s(a)∩A 6= ∅}. Then if L1(A)
is finite and non-empty, we have

pA =
∑

a∈L1(A)

sapr(A,a)s∗a +
∑

v∈A:v is a sink

p{v}.
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Even dimensional mirror quantum sphere

Using the
representation of the
even dimensional
mirror quantum
sphere as a C ∗

algebra associated to
a C ∗-correspondence,
we can prove that it
is in fact a labelled
graph algebra.

Figure: Labelled graph for
C (S10

q,β).
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