$C^{\ast}\mbox{-algebras}$ associated to $C^{\ast}\mbox{-correspondences}$ and applications to noncommutative geometry.

Overview of the presentation.

- C*-algebras associated to C*-correspondences
- Restricted direct sum C*correspondences and pullbacks
- Even dimensional mirror quantum spheres
- Labelled graph algebras

 $C^{\ast}\mbox{-algebras}$ associated to $C^{\ast}\mbox{-correspondences}$ and applications to noncommutative geometry.

Overview of the presentation

- C*-algebras associated to C*-correspondences
- Restricted direct sum C*correspondences and pullbacks
- Even dimensional mirror quantum spheres
- Labelled graph algebras

C^{*}-correspondences

C^* -correspondences

 C^* -correspondences generalise the theory of Hilbert spaces by replacing the field of scalars \mathbb{C} with an arbitrary C^* -algebra A.

C^* -correspondences

 C^* -correspondences generalise the theory of Hilbert spaces by replacing the field of scalars \mathbb{C} with an arbitrary C^* -algebra A.

We begin with the definition of a right Hilbert-module.

We begin with the definition of a right Hilbert-module.

Definition

Let X be a Banach space and A be a C*-algebra. Suppose we have a right action $X \times A \to X$ of A on X and an A valued inner-product $\langle \cdot, \cdot \rangle : X \times X \to A$ that satisfies

for all $\xi, \eta \in X$, $a \in A$.

We begin with the definition of a right Hilbert-module.

Definition

Let X be a Banach space and A be a C*-algebra. Suppose we have a right action $X \times A \to X$ of A on X and an A valued inner-product $\langle \cdot, \cdot \rangle : X \times X \to A$ that satisfies • $\langle \xi, \eta \cdot a \rangle = \langle \xi, \eta \rangle \cdot a$

for all $\xi, \eta \in X$, $a \in A$.

We begin with the definition of a right Hilbert-module.

Definition

Let X be a Banach space and A be a C*-algebra. Suppose we have a right action $X \times A \to X$ of A on X and an A valued inner-product $\langle \cdot, \cdot \rangle : X \times X \to A$ that satisfies • $\langle \xi, \eta \cdot a \rangle = \langle \xi, \eta \rangle \cdot a$ • $\langle \eta, \xi \rangle = \langle \xi, \eta \rangle^*$

for all $\xi, \eta \in X$, $a \in A$.

We begin with the definition of a right Hilbert-module.

Definition

Let X be a Banach space and A be a C*-algebra. Suppose we have a right action $X \times A \to X$ of A on X and an A valued inner-product $\langle \cdot, \cdot \rangle : X \times X \to A$ that satisfies • $\langle \xi, \eta \cdot a \rangle = \langle \xi, \eta \rangle \cdot a$ • $\langle \eta, \xi \rangle = \langle \xi, \eta \rangle^*$ • $\langle \xi, \xi \rangle \ge 0$ and $\|\xi\|_X = \sqrt{\|\langle \xi, \xi \rangle\|_A}$. for all $\xi, \eta \in X, a \in A$.

We begin with the definition of a right Hilbert-module.

Definition

Let X be a Banach space and A be a C*-algebra. Suppose we have a right action $X \times A \to X$ of A on X and an A valued inner-product $\langle \cdot, \cdot \rangle : X \times X \to A$ that satisfies • $\langle \xi, \eta \cdot a \rangle = \langle \xi, \eta \rangle \cdot a$ • $\langle \eta, \xi \rangle = \langle \xi, \eta \rangle^*$ • $\langle \xi, \xi \rangle \ge 0$ and $\|\xi\|_X = \sqrt{\|\langle \xi, \xi \rangle\|_A}$. for all $\xi, \eta \in X$, $a \in A$. Then we say X is a *right Hilbert A-module*.

Adjointable and compact operators

David Robertson (Syddansk Universitet)

We say a linear operator $T : X \to X$ is *adjointable* if there exists an operator $T^* : X \to X$ such that

$$\langle T(\xi),\eta\rangle = \langle \xi T^*(\eta)\rangle$$

for all $\xi, \eta \in X$.

We say a linear operator $T : X \to X$ is *adjointable* if there exists an operator $T^* : X \to X$ such that

$$\langle T(\xi),\eta
angle=\langle \xi T^*(\eta)
angle$$

for all $\xi, \eta \in X$.

We write $\mathcal{L}(X)$ for the collection of all adjointable operators $T: X \to X$.

We say a linear operator $T : X \to X$ is *adjointable* if there exists an operator $T^* : X \to X$ such that

$$\langle T(\xi),\eta
angle=\langle \xi T^*(\eta)
angle$$

for all $\xi, \eta \in X$.

We write $\mathcal{L}(X)$ for the collection of all adjointable operators $T: X \to X$.

Then $\mathcal{L}(X)$ is a C^* -algebra.

Adjointable and compact operators

David Robertson (Syddansk Universitet)

For $\xi, \eta \in X$, define $heta_{\xi,\eta}$ to be the operator satisfying

$$\theta_{\xi,\eta}(\zeta) = \xi \langle \eta, \zeta \rangle.$$

for all $\zeta \in X$.

For $\xi, \eta \in X$, define $\theta_{\xi,\eta}$ to be the operator satisfying

$$\theta_{\xi,\eta}(\zeta) = \xi \langle \eta, \zeta \rangle.$$

for all $\zeta \in X$.

This is an adjointable operator with $(\theta_{\xi,\eta})^* = \theta_{\eta,\xi}$. We call $\mathcal{K}(X) = \overline{\text{span}}\{\theta_{\xi,\eta} : \xi, \eta \in X\}$

the *compact* operators.

For $\xi, \eta \in X$, define $\theta_{\xi,\eta}$ to be the operator satisfying

$$\theta_{\xi,\eta}(\zeta) = \xi \langle \eta, \zeta \rangle.$$

for all $\zeta \in X$.

This is an adjointable operator with $(\theta_{\xi,\eta})^* = \theta_{\eta,\xi}$. We call $\mathcal{K}(X) = \overline{\text{span}} \{\theta_{\xi,\eta} : \xi, \eta \in X\}$

the *compact* operators.

Then $\mathcal{K}(X)$ is a closed two-sided ideal in $\mathcal{L}(X)$.

C^{*}-correspondences

Definition

A C^* -correspondence is a pair (X, A) where X is a Hilbert A-module, equipped with a *-homomorphism

$$\phi_X : A \to \mathcal{L}(X).$$

Definition

A C^* -correspondence is a pair (X, A) where X is a Hilbert A-module, equipped with a *-homomorphism

$$\phi_X : A \to \mathcal{L}(X).$$

We call ϕ_X the *left action* of A on X.

We define the C^* -algebra associated to a C^* -correspondence (X, A) as a universal object associated to representations of (X, A).

We define the C*-algebra associated to a C*-correspondence (X, A) as a universal object associated to representations of (X, A).

Definition

Let (X, A) be a C^* -correspondence and let B be a C^* -algebra. We say a pair (π, t) is a *representation of* (X, A) *on* B if $\pi : A \to B$ is a *-homomorphism and $t : X \to B$ is a linear map satisfying

We define the C*-algebra associated to a C*-correspondence (X, A) as a universal object associated to representations of (X, A).

Definition

Let (X, A) be a C^* -correspondence and let B be a C^* -algebra. We say a pair (π, t) is a *representation of* (X, A) *on* B if $\pi : A \to B$ is a *-homomorphism and $t : X \to B$ is a linear map satisfying

•
$$t(\phi_X(a)\xi) = \pi(a)t(\xi)$$
 for all $a \in A, \xi \in X$

We define the C*-algebra associated to a C*-correspondence (X, A) as a universal object associated to representations of (X, A).

Definition

Let (X, A) be a C^* -correspondence and let B be a C^* -algebra. We say a pair (π, t) is a *representation of* (X, A) *on* B if $\pi : A \to B$ is a *-homomorphism and $t : X \to B$ is a linear map satisfying

•
$$t(\phi_X(a)\xi)=\pi(a)t(\xi)$$
 for all $a\in A,\xi\in X$

•
$$\pi(\langle \xi, \eta \rangle) = t(\xi)^* t(\eta)$$
 for all $\xi, \eta \in X$.

Covariance

Definition (Katsura 2003)

Define an ideal J_X of A by

$$J_X := \{a \in A : \phi_X(a) \in \mathcal{K}(X) \text{ and } a \cdot b = 0 \text{ for all } b \in \ker \phi_X\}$$

Definition (Katsura 2003)

Define an ideal J_X of A by

$$J_X := \{a \in A : \phi_X(a) \in \mathcal{K}(X) \text{ and } a \cdot b = 0 \text{ for all } b \in \ker \phi_X\}$$

Definition (Katsura 2003)

We say a representation (π, t) of (X, A) on B is *covariant* if for all $a \in J_X$ we have

$$\pi(a) = \psi_t(\phi_X(a))$$

where $\psi_t : \mathcal{K}(X) \to B$ satisfies $\psi_t(\theta_{\xi,\eta}) = t(\xi)t(\eta)^*$.

So we are ready to define the C^* -algebra associated to a C^* -correspondence (X, A).

So we are ready to define the C^* -algebra associated to a C^* -correspondence (X, A).

Definition (Katsura, 2003)

For a C^* -correspondence (X, A) define \mathcal{O}_X to be the C^* -algebra generated by the images of X and A under the universal covariant representation (π_X, t_X) .

Definition

Definition

Given two C*-correspondences (X, A) and (Y, B), a pair (ψ_X, ψ_A) where $\psi_X : X \to Y$ is a linear map and $\psi_A : A \to B$ is a C*-homomorphism, is called a *morphism of C*-correspondences* if it satisfies

• $\langle \psi_X(\xi), \psi_X(\eta) \rangle = \psi_A(\langle \xi, \eta \rangle)$ for all $\xi, \eta \in X$,

Definition

- $\langle \psi_X(\xi), \psi_X(\eta) \rangle = \psi_A(\langle \xi, \eta \rangle)$ for all $\xi, \eta \in X$,
- $\psi_X(\phi_X(a)\xi) = \phi_Y(\psi_A(a))\psi_X(\xi)$ for all $\xi \in X$ and $a \in A$, and

Definition

- $\langle \psi_X(\xi), \psi_X(\eta) \rangle = \psi_A(\langle \xi, \eta \rangle)$ for all $\xi, \eta \in X$,
- $\psi_X(\phi_X(a)\xi) = \phi_Y(\psi_A(a))\psi_X(\xi)$ for all $\xi \in X$ and $a \in A$, and
- $\psi_A(J_X) \subset J_Y$ and

Definition

- $\langle \psi_X(\xi), \psi_X(\eta) \rangle = \psi_A(\langle \xi, \eta \rangle)$ for all $\xi, \eta \in X$,
- $\psi_X(\phi_X(a)\xi) = \phi_Y(\psi_A(a))\psi_X(\xi)$ for all $\xi \in X$ and $a \in A$, and
- $\psi_A(J_X) \subset J_Y$ and
- for all $a \in J_X$ we have $\phi_Y(\psi_A(a)) = \psi_X^+(\phi_X(a))$ where $\psi_X^+ : \mathcal{K}(X) \to \mathcal{K}(Y)$ satisfies $\psi_X^+(\theta_{\xi,\eta}) = \theta_{\psi_X(\xi),\psi_X(\eta)}$.
•
$$F(X,A) = \mathcal{O}_X$$

Not all homomorphisms $\varphi : \mathcal{O}_X \to \mathcal{O}_Y$ arise this way.

 $C^{\ast}\mbox{-algebras}$ associated to $C^{\ast}\mbox{-correspondences}$ and applications to noncommutative geometry.

Overview of the presentation

- C*-algebras associated to C*-correspondences
- Restricted direct sum C*correspondences and pullbacks: Our main theorem
- Even dimensional mirror quantum spheres
- Labelled graph algebras

Restricted direct sums

Restricted direct sums of C^* -correspondences are a generalisation of pullbacks of C^* -algebras.

Restricted direct sums of C^* -correspondences are a generalisation of pullbacks of C^* -algebras.

Definition (Bakić, Guljăs (2003))

Given C^* -correspondences (X, A), (Y, B) and (Z, C), and morphisms of C^* -correspondences $(\psi_X, \psi_A) : (X, A) \to (Z, C)$, $(\omega_Y, \omega_B) : (Y, B) \to (Z, C)$, define the *restricted direct sum*

Restricted direct sums of C^* -correspondences are a generalisation of pullbacks of C^* -algebras.

Definition (Bakić, Guljăs (2003))

Given C^* -correspondences (X, A), (Y, B) and (Z, C), and morphisms of C^* -correspondences $(\psi_X, \psi_A) : (X, A) \to (Z, C)$, $(\omega_Y, \omega_B) : (Y, B) \to (Z, C)$, define the *restricted direct sum*

$$X \oplus_Z Y := \{(\xi, \eta) \in X \oplus Y : \psi_X(\xi) = \omega_Y(\eta)\}.$$

Restricted direct sums of C^* -correspondences are a generalisation of pullbacks of C^* -algebras.

Definition (Bakić, Guljăs (2003))

Given C^* -correspondences (X, A), (Y, B) and (Z, C), and morphisms of C^* -correspondences $(\psi_X, \psi_A) : (X, A) \to (Z, C)$, $(\omega_Y, \omega_B) : (Y, B) \to (Z, C)$, define the *restricted direct sum*

$$X \oplus_Z Y := \{(\xi, \eta) \in X \oplus Y : \psi_X(\xi) = \omega_Y(\eta)\}.$$

Proposition

The restricted direct sum $X \oplus_Z Y$ is a C^* -correspondence over the C^* -algebra $A \oplus_C B$ defined to be the pullback C^* -algebra of A and B along ψ_A and ω_B .

Our main result says that the process of taking restricted direct sums on the level of C^* -correspondences lifts to the process of taking pull-backs on the level of induced C^* -algebras via the functor F.

Our main result says that the process of taking restricted direct sums on the level of C^* -correspondences lifts to the process of taking pull-backs on the level of induced C^* -algebras via the functor F.

Theorem

Let (X, A), (Y, B) and (Z, C) be C^{*}-correspondences fix morphisms of C^{*}-correspondences $(\psi_X, \psi_A) : (X, A) \to (Z, C),$ $(\omega_Y, \omega_B) : (Y, B) \to (Z, C)$ satisfying

Our main result says that the process of taking restricted direct sums on the level of C^* -correspondences lifts to the process of taking pull-backs on the level of induced C^* -algebras via the functor F.

Theorem

Let
$$(X, A), (Y, B)$$
 and (Z, C) be C^* -correspondences fix morphisms of C^* -correspondences $(\psi_X, \psi_A) : (X, A) \to (Z, C),$
 $(\omega_Y, \omega_B) : (Y, B) \to (Z, C)$ satisfying
• $\psi_X(X) = \omega_Y(Y)$

Our main result says that the process of taking restricted direct sums on the level of C^* -correspondences lifts to the process of taking pull-backs on the level of induced C^* -algebras via the functor F.

Theorem

Let
$$(X, A), (Y, B)$$
 and (Z, C) be C^* -correspondences fix morphisms of C^* -correspondences $(\psi_X, \psi_A) : (X, A) \to (Z, C),$
 $(\omega_Y, \omega_B) : (Y, B) \to (Z, C)$ satisfying
• $\psi_X(X) = \omega_Y(Y)$
• $\psi_A(A) = \omega_B(B)$, and

Our main result says that the process of taking restricted direct sums on the level of C^* -correspondences lifts to the process of taking pull-backs on the level of induced C^* -algebras via the functor F.

Theorem

Let
$$(X, A), (Y, B)$$
 and (Z, C) be C^* -correspondences fix morphisms of C^* -correspondences $(\psi_X, \psi_A) : (X, A) \to (Z, C),$
 $(\omega_Y, \omega_B) : (Y, B) \to (Z, C)$ satisfying
• $\psi_X(X) = \omega_Y(Y)$
• $\psi_A(A) = \omega_B(B),$ and
• $\psi_A(\ker(\phi_X)) = \omega_B(\ker(\phi_Y)).$

Our main result says that the process of taking restricted direct sums on the level of C^* -correspondences lifts to the process of taking pull-backs on the level of induced C^* -algebras via the functor F.

Theorem

Let
$$(X, A), (Y, B)$$
 and (Z, C) be C^* -correspondences fix morphisms of C^* -correspondences $(\psi_X, \psi_A) : (X, A) \to (Z, C),$
 $(\omega_Y, \omega_B) : (Y, B) \to (Z, C)$ satisfying
• $\psi_X(X) = \omega_Y(Y)$
• $\psi_A(A) = \omega_B(B),$ and
• $\psi_A(\ker(\phi_X)) = \omega_B(\ker(\phi_Y)).$
Then
 $\mathcal{O}_{X \oplus_Z Y} \cong \mathcal{O}_X \oplus_{\mathcal{O}_Z} \mathcal{O}_Y$

where $\mathcal{O}_X \oplus_{\mathcal{O}_Z} \mathcal{O}_Y$ is the pullback C^* -algebra of \mathcal{O}_X and \mathcal{O}_Y along $\Psi = F(\psi_X, \psi_A)$ and $\Omega = F(\omega_Y, \omega_B)$.

We can use this to construct new examples of noncommutative spaces.

 $C^{\ast}\mbox{-algebras}$ associated to $C^{\ast}\mbox{-correspondences}$ and applications to noncommutative geometry.

Overview of the presentation

- C*-algebras associated to C*-correspondences
- Restricted direct sum C*correspondences and pullbacks
- Even dimensional mirror quantum spheres
- Labelled graph algebras

Even dimensional mirror quantum spheres

The motivating examples for this research are the even-dimensional mirror quantum spheres, first defined for dimension 2 by Hajac, Matthes and Szymanski in 2006, and generalised to higher dimension by Hong and Szymanski in 2008.

Even dimensional mirror quantum spheres

The motivating examples for this research are the even-dimensional mirror quantum spheres, first defined for dimension 2 by Hajac, Matthes and Szymanski in 2006, and generalised to higher dimension by Hong and Szymanski in 2008.

For $n \in \mathbb{N}$, the 2*n*-dimensional mirror quantum sphere is defined as the pullback of the following diagram

$$\begin{array}{c} C(\mathbb{D}_q^{2n}) \\ & \downarrow \beta \circ \pi \\ C(\mathbb{D}_q^{2n}) \xrightarrow{\pi} C(S_q^{2n-1}) \end{array}$$

where $\pi : C(\mathbb{D}_q^{2n}) \to C(S_q^{2n-1})$ is the natural surjection and $\beta \in \operatorname{Aut}(C(S_q^{2n-1})).$

Hong and Szymanski showed that the algebras $C(\mathbb{D}_q^{2n})$ and $C(S_q^{2n-1})$ are graph algebras, so we can easily find C^* -correspondences for these algebras

Hong and Szymanski showed that the algebras $C(\mathbb{D}_q^{2n})$ and $C(S_q^{2n-1})$ are graph algebras, so we can easily find C^* -correspondences for these algebras

$$(X,A)$$
 such that $\mathcal{O}_X\cong C(\mathbb{D}_q^{2n})$

$$(Z,C)$$
 such that $\mathcal{O}_Z\cong C(S_q^{2n-1})$

Hong and Szymanski showed that the algebras $C(\mathbb{D}_q^{2n})$ and $C(S_q^{2n-1})$ are graph algebras, so we can easily find C^* -correspondences for these algebras

$$(X,A)$$
 such that $\mathcal{O}_X\cong C(\mathbb{D}_q^{2n})$

$$(Z,C)$$
 such that $\mathcal{O}_Z\cong C(S_q^{2n-1})$

There is a morphism of C^* -correspondences $(\sigma_X, \sigma_A) : (X, A) \to (Z, C)$ such that $\Sigma = F(\sigma_X, \sigma_A) : \mathcal{O}_X \to \mathcal{O}_Z$ and $\pi : C(\mathbb{D}_q^{2n}) \to C(S_q^{2n-1})$ are the same map.

There is another C^* -correspondence (Y, B) and morphism $(\rho_Y, \rho_B) : (Y, B) \to (Z, C)$ such that

There is another C^* -correspondence (Y, B) and morphism $(\rho_Y, \rho_B) : (Y, B) \rightarrow (Z, C)$ such that

• $\mathcal{O}_Y \cong C(\mathbb{D}_q^{2n})$

There is another C^* -correspondence (Y, B) and morphism $(\rho_Y, \rho_B) : (Y, B) \rightarrow (Z, C)$ such that

There is another C^* -correspondence (Y, B) and morphism $(\rho_Y, \rho_B) : (Y, B) \rightarrow (Z, C)$ such that

But the C^* -correspondence (Y, B) no longer comes from a directed graph.

 $C^{\ast}\mbox{-algebras}$ associated to $C^{\ast}\mbox{-correspondences}$ and applications to noncommutative geometry.

Overview of the presentation

- C*-algebras associated to C*-correspondences
- Restricted direct sum C*correspondences and pullbacks
- Graph algebras
- Even dimensional mirror quantum spheres
- Labelled graph algebras

Labelled graphs are a generalisation of directed graphs, where two or more edges may carry the same label, and the range and sources of edges become sets of vertices.

Labelled graphs are a generalisation of directed graphs, where two or more edges may carry the same label, and the range and sources of edges become sets of vertices.

Definition (Bates, Pask (2007))

A labelled graph (E, \mathcal{L}) over an alphabet \mathcal{A} is a directed graph E together with a surjective labelling map $\mathcal{L} : E^1 \to \mathcal{A}$ which assigns to each edge $e \in E^1$ a label $a \in \mathcal{A}$. Labelled graphs are a generalisation of directed graphs, where two or more edges may carry the same label, and the range and sources of edges become sets of vertices.

Definition (Bates, Pask (2007))

A labelled graph (E, \mathcal{L}) over an alphabet \mathcal{A} is a directed graph E together with a surjective labelling map $\mathcal{L} : E^1 \to \mathcal{A}$ which assigns to each edge $e \in E^1$ a label $a \in \mathcal{A}$.

The range and source maps then become $r, s : \mathcal{A} \to \mathcal{P}(E^0)$ satisfying

$$s(a) = \{s(e) : \mathcal{L}(e) = a\}$$
 and $r(a) = \{r(e) : \mathcal{L}(e) = a\}$

Example of a labelled graph (E, \mathcal{L}) .

Example of a labelled graph (E, \mathcal{L}) .

Example of a labelled graph (E, \mathcal{L}) .

Then we have

$$s(a) = \{u\}$$
 $r(a) = \{v\}$
 $s(b) = \{u, v\} = r(b)$

 C^* -algebra

We associate C^* -algebras to *labelled spaces* $(E, \mathcal{L}, \mathcal{B})$ where (E, \mathcal{L}) is a labelled graph and $\mathcal{B} \subset 2^{E^0}$.

We associate C^* -algebras to *labelled spaces* $(E, \mathcal{L}, \mathcal{B})$ where (E, \mathcal{L}) is a labelled graph and $\mathcal{B} \subset 2^{E^0}$.

The C^* -algebra is generated by a collection of partial isometries associated to the labels on E^1 , and projections associated to the sets of vertices $A \in \mathcal{B}$.
We associate C^* -algebras to *labelled spaces* $(E, \mathcal{L}, \mathcal{B})$ where (E, \mathcal{L}) is a labelled graph and $\mathcal{B} \subset 2^{E^0}$.

The C^* -algebra is generated by a collection of partial isometries associated to the labels on E^1 , and projections associated to the sets of vertices $A \in \mathcal{B}$.

Not all labelled graphs admit a suitable set \mathcal{B} in order to associate a C^* -algebra. When \mathcal{B} exists we say \mathcal{B} is *accommodating* for (E, \mathcal{L}) .

$$C^*$$
-algebra

Let (E, \mathcal{L}) be a labelled graph, B an accommodating set for (E, \mathcal{L}) . A representation of (E, \mathcal{L}) is a collection $\{p_A : A \in \mathcal{B}\}$ of projections and a collection $\{s_a : a \in \mathcal{L}(E^1)\}$ of partial isometries such that:

 C^* -algebra

Let (E, \mathcal{L}) be a labelled graph, B an accommodating set for (E, \mathcal{L}) . A representation of (E, \mathcal{L}) is a collection $\{p_A : A \in \mathcal{B}\}$ of projections and a collection $\{s_a : a \in \mathcal{L}(E^1)\}$ of partial isometries such that:

• For $A, B \in \mathcal{B}$, we have $p_A p_B = p_{A \cap B}$ and $p_{A \cup B} = p_A + p_B - p_{A \cap B}$ where $p_{\emptyset} = 0$

 C^* -algebra

Let (E, \mathcal{L}) be a labelled graph, B an accommodating set for (E, \mathcal{L}) . A representation of (E, \mathcal{L}) is a collection $\{p_A : A \in \mathcal{B}\}$ of projections and a collection $\{s_a : a \in \mathcal{L}(E^1)\}$ of partial isometries such that:

- For $A, B \in \mathcal{B}$, we have $p_A p_B = p_{A \cap B}$ and $p_{A \cup B} = p_A + p_B p_{A \cap B}$ where $p_{\emptyset} = 0$
- For $a \in \mathcal{L}(E^1)$ and $A \in \mathcal{B}$, we have $p_A s_a = s_a p_{r(A,a)}$ where $r(A, a) = \{r(e) : s(e) \in A, \mathcal{L}(e)\} = a\}$

$$C^*$$
-algebra

Let (E, \mathcal{L}) be a labelled graph, B an accommodating set for (E, \mathcal{L}) . A representation of (E, \mathcal{L}) is a collection $\{p_A : A \in \mathcal{B}\}$ of projections and a collection $\{s_a : a \in \mathcal{L}(E^1)\}$ of partial isometries such that:

- For $A, B \in \mathcal{B}$, we have $p_A p_B = p_{A \cap B}$ and $p_{A \cup B} = p_A + p_B p_{A \cap B}$ where $p_{\emptyset} = 0$
- For $a \in \mathcal{L}(E^1)$ and $A \in \mathcal{B}$, we have $p_A s_a = s_a p_{r(A,a)}$ where $r(A, a) = \{r(e) : s(e) \in A, \mathcal{L}(e)\} = a\}$

• For $a, b \in \mathcal{L}(E^1)$, we have $s_a^* s_a = p_{r(a)}$ and $s_a^* s_b = 0$ unless a = b

$$C^*$$
-algebra

Let (E, \mathcal{L}) be a labelled graph, B an accommodating set for (E, \mathcal{L}) . A representation of (E, \mathcal{L}) is a collection $\{p_A : A \in \mathcal{B}\}$ of projections and a collection $\{s_a : a \in \mathcal{L}(E^1)\}$ of partial isometries such that:

- For $A, B \in \mathcal{B}$, we have $p_A p_B = p_{A \cap B}$ and $p_{A \cup B} = p_A + p_B p_{A \cap B}$ where $p_{\emptyset} = 0$
- For $a \in \mathcal{L}(E^1)$ and $A \in \mathcal{B}$, we have $p_A s_a = s_a p_{r(A,a)}$ where $r(A, a) = \{r(e) : s(e) \in A, \mathcal{L}(e)\} = a\}$
- For $a, b \in \mathcal{L}(E^1)$, we have $s^*_a s_a = p_{r(a)}$ and $s^*_a s_b = 0$ unless a = b
- For $A \in \mathcal{B}$ define $L^1(A) := \{a \in \mathcal{L}(E^1) : s(a) \cap A \neq \emptyset\}$. Then if $L^1(A)$ is finite and non-empty, we have

$$p_A = \sum_{a \in L^1(A)} s_a p_{r(A,a)} s_a^* + \sum_{v \in A: v \text{ is a sink}} p_{\{v\}}.$$

Using the representation of the even dimensional mirror quantum sphere as a C^* algebra associated to a C^* -correspondence, we can prove that it is in fact a labelled graph algebra.

Using the representation of the even dimensional mirror quantum sphere as a C^* algebra associated to a C^* -correspondence, we can prove that it is in fact a labelled graph algebra.

Even dimensional mirror quantum sphere

Using the representation of the even dimensional mirror quantum sphere as a C^* algebra associated to a C^* -correspondence, we can prove that it is in fact a labelled graph algebra.

Figure: Labelled graph for $C(S_{q,\beta}^{10})$.