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1. Part 1 - Lecture from 16.November 2009

We consider C*-algebras A which are:

∙ separable

∙ unital

∙ nuclear (which is equivalent to being amenable)

∙ usually simple

A is nuclear if for any other C*-algebra B there is only one way to complete

the algebraic tensor product A⊙B to get a C*-algebra.

1.1. Example (cross products): Any cross product A = C(X) ⋊� ℤ is

nuclear, where X is a compact Hausdorff space, � : X → X is a homeomor-

phism. Recall that C(X) ⋊� ℤ = C∗(C(X), u) where u is a unitary which

implements �, i.e. ufu∗ = f ∘ �−1 for any f ∈ C(X) ⊂ C(X)⋊� ℤ.

1.2. Example (recursive subhomogeneous algebras): Any recursive sub-

homogeneous algebras (RSH-algebra) A is nuclear. Recall that these are

defined as iterated pullbacks using the following data:

∙ compact metric spaces X1, . . . , Xl

∙ closed subspaces X
(0)
i ⊂ Xi

∙ numbers n1, . . . , nl ∈ ℕ
∙ unital ∗-homomorphisms �k : Ak−1 → Mnk

(C(X
(0)
k )) (attaching

maps)

such that A1 = Mn1(C(X1)), and the following is a pullback (for k =

2, . . . , l):
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Ak //

��

Ak−1

�k
��

Mnk
(C(Xk))

∂k // Mnk
(C(X

(0)
k ))

Here ∂k is induced by the inclusion X
(0)
k → Xk. Such a pullback is often

written as Ak = Ak−1 ⊕Mnk
(C(X

(0)
k ))

Mnk
(C(Xk)), and the standard way to

define that pullback algebra is as follows:

Ak = {(a, b) : a ∈ Ak−1, b ∈Mnk
(C(Xk)), 'k(a) = ∂k(b) = b∣X(0)

k

}

These algebras are interesting because one can try to extend results form

homogeneous to RSH-algebras. Possibly all stably finite C*-algebras are di-

rect limits of RSH-algebras. Note also that all RSH-algebras are of type I.

What kind of theorem do we want?

1.3. Theorem: Let A,B be simple, unital, separable, nuclear C*-algebras

in some class ℭ. There exists a functor F : ℭ→ ℭ′ such that if ' : F (A)
∼=−→

F (B) is an isomorphism, then there exists a ∗-isomorphism Φ : A→ B s.t.

F (Φ) = '.

What is F typically? It is K-theory and traces. (we do not need quasitraces,

since we only consider nuclear C*-algebras, where every quasitrace is auto-

matically a trace)

1.4 (K0-group): For simplicity let us only consider the unital case. For

projections p, q ∈ A⊗K say

p ∼ q :⇔ there exists some v ∈ A⊗K s.t. p = v∗v, vv∗ = q

Set V (A) := { the projections in A⊗K}/∼. For a projection p ∈ A⊗K we

denote its equivalence class in V (A) by [p]. Define an addition on V (A) by

[p] + [q] =
[(

p 0
0 q

)]
. In this way V (A) becomes an abelian semigroup.

Use the Grothendieck completion process Γ to define an abelian group

K0(A) := Gr(V (A)). This comes with a natural map Γ : V (A) → K0(A)

and we denote its image as K0(A)+ := Γ(V (A)). This is also called the

positive part (or positive cone) in K0(A). Then (K0(A),K0(A)+, [1A]) is a

pre-ordered, pointed abelian group.

A projection p is called infinite if it is equivalent to a proper subprojec-

tion, otherwise it is called finite. We call A stably finite, if all projections

in Mn(A) are finite (for all n). In that case K0 is ordered.

1.5 (K1-group): Let U(A) denote the set of unitaries in A, and U0(A) ⊂
U(A) its connected component containing 1A. The map u 7→

(
u 0
0 1A

)
induces
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a homomorphism 'n : U(MnA)/U0(MnA) → U(Mn+1A)/U0(Mn+1A). We

set K1(A) := lim−→n
U(MnA)/U0(MnA). This is an abelian group with addi-

tion defined via [u] + [v] = [uv].

1.6 (Traces): A tracial stat on A is a positive linear functional t : A→ ℂ
such that �(1A) = 1, and �(xy) = �(yx) for all x, y ∈ A. The set T (A) of

all traces on A is a metrizable Choquet simplex. A trace defines a state on

K0(A) as follows: first extend � to a trace �⊗tr onMn(A) using the canonical

trace tr : Mn → ℂ, then for a projection p ∈Mn(A) set �([p]) := (� ⊗ tr)(p).

We get a map �A : T (A)→ St(K0(A),K0(A), [1A]).

For a unital C*-algebra A the Elliott invariant is:

Ell(A) := (K0(A),K0(A), [1A],K1(A), T (A), �A)

In good cases (K0(A),K0(A), [1A], T (A), �A) is equivalent to the Cuntz semi-

group Cu(A), and then Ell(A) ∼= (Cu(A),K1(A)), which amounts to a de-

composition in a positive and unitary part.

1.7 (The Cuntz semigroup): Let A be unital. For a, b ∈ (A ⊗ K)+ we

say a is Cuntz-dominated by b (denoted a ≾ b) if there exists a sequence

(rn) ⊂ A ⊗ K s.t. rnbrn∗ → a (in norm). Say a is Cuntz-equivalent to b

(denoted a ∼ b) if a ≾ b and b ≾ a. On projections this agrees with the

earlier defined equivalence for stably finite algebras. Note that for any � > 0

and a ∈ (A⊗K)+ we have a ∼ �a.

1.8. Example: Mn

Let A = Mn. Then a ≾ b iff rank(a) ≤ rank(b).

1.9. Example: Mn(C[0, 1])

Let A = Mn(C[0, 1]). Then a ≾ b iff rank(a)(t) ≤ rank(b)(t) for all

t ∈ [0, 1]. The reason is that a and b can be approximately unitarily diago-

nalized.

1.10. Example: Mn(C(X))

Let A = Mn(C(X)) with X a CW-complex of dim(X) ≥ 3 and n ≥ 2.

Then there exist a, b ∈ Mn(C(X)) s.t. rank(a)(t) = rank(b)(t) for all

t ∈ [0, 1], yet a ≁ b. The reason is that dim(X) ≥ 3 ensures that we

can find S2 in X. We can find projections p, q in M2(C(S2)) that both have

constant rank one, yet p ≁ q (e.g. the trivial line bundle, and the Bott

line bundle). Extend this to a small neighborhood of S2 ↪→ X, and then to

positive elements a, b ∈M2(C(X)) ⊂Mn(C(X)).
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1.11. Example: C(X)

Let A = C(X) and f, g ∈ A+. Then f ≾ G iff supp(f) ⊂ supp(g).

1.12 (The Cuntz semigroup): Define Cu(A) := { positive elements in A⊗
K}/∼. We denote the equivalence class of a ∈ (A ⊗ K)+ in Cu(A) by ⟨a⟩.
As before we define an addition ⟨a⟩+ ⟨b⟩ :=

〈(
a 0
0 b

)〉
. If we define ⟨a⟩ ≤ ⟨b⟩

iff a ≾ b, then we get an ordered abelian semigroup.

1.13. Example: Mn

Let A = Mn. Then Cu(A) = ℕ∪{∞} with x+∞ =∞,∞+∞ =∞ and

⟨1A⟩ = n ∈ ℕ.

1.14. Example: Mn(C[0, 1])

Let A = Mn(C[0, 1]). Then Cu(A) consists of all functions f : [0, 1] →
ℕ ∪ {∞} that are the supremum of an increasing sequence of functions

f (n) : [0, 1]→ {0, . . . , n}}.

We denote by Aff(T (A)) the continuous affine ℝ-valued functions on T (A),

and by L(T (A)) the functions T (A) → ℝ ∪ {∞} that are the supremum of

an increasing sequence of functions f (n) ∈ Aff(T (A)).

Why are we interested in Cu(A)?

∙ if Cu(A) is nice, you can prove classification theorems for such A

∙ Cu(A) is more sensitive that K-theory and traces

Assume A is unital, exact and T (A) ∕= ∅. Then every � ∈ T (A) extends

to an unbounded trace on A ⊗ K as follows: if a ∈ (A ⊗ K)+, then define

d� (a) = limn→∞ �(a1/n).

This is an example of a dimension function on A, i.e. an additive order-

preserving map ' : Cu(A)→ [0,∞] s.t. '(⟨1A⟩) = 1. (this gives exactly the

lower semicontinuous dimension functions).

1.15. Example: For a ∈ (Mn)+ we get d� (a) = rank(a)/n.

For ⟨a⟩ ∈ Cu(A) we define �(⟨a⟩) : T (A) → [0,∞] by �(⟨a⟩)(�) := d� (a).

Then:

∙ �(⟨a⟩) is in L(T (A)) since � 7→ �(a1/n) is continuous and �(a1/n) ≤
�(a1/n+1) (if ∥a∥ ≤ 1, so rescale a)

∙ if a ≥ 0, f ∈ C∗(a), f ≥ 0, then d� (f(a)) = �� (supp(f) ∩ �(a))

where �� is the spectral measure induced by �

∙ a ≾ b iff ∀" > ∃� > 0 such that (a− ")+ ≾ (b− �)+.
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Question: When is ⟨a⟩ = ⟨p⟩ for some projection p?

1.16. Lemma: If A is unital, simple and T (A) ∕= ∅, then ⟨a⟩ = ⟨p⟩ for a

projection p iff 0 is not a limit point of �(a).

Proof:

⇐: then a ∼ �X(a) where �X is the characteristic function on the set

(0,∞) ∩ �(a), and �X(a) is a projection

⇒: then p ∼ (p−")+ ≾ (a−�)+ ≾ a ∼ p, whence d� ((a−�)+) = d� (p) for

all � small enough. But (a−�)+ ≤ g(a)+(a−�)+ ≤ a for some small function

g with supp(g) ⊂ [0, �]. Then d� ((a − �)+) = d� (g(a)) + d� ((a − �)+), and

therefore d� (g(a)) = 0 for all � while g(a) ∕= 0. This is a contradiction. □

Now for A unital, simple with T (A) ∕= ∅ we have

Cu(A) = V (A) ⊔ Cu(A)+

where Cu(A)+ = {⟨a⟩ : 0 is a limit point of �(a)}. Cu(A)+ is absorbing in

the sense that x+ y ∈ Cu(A)+ whenever y ∈ Cu(A)+.

1.17. Definition: Let A be unital. We say A has strict comparison of pos-

itive elements (often abbreviated by just saying ”strict comparison”) if ≾ b

whenever d� (a) < d� (b) for all � ∈ T (A) such that d� (b) <∞.
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2. Part 2 - Lecture from 17.November 2009

Let A be simple, unital with T (A) ∕= ∅. Then Cu(A) = V (A)⊔Cu(A)+. We

define a map

' : Cu(A)→ V (A) ⊔ L(TA)

as '(⟨a⟩) := [p] whenever a ∼ p for a projection p, and for ⟨a⟩ ∈ Cu(A)+
we set '(⟨a⟩) := �(⟨a⟩)(�) := d� (a). When is this map injective, when is it

surjective?

Suppose A has strict comparison, ⟨a⟩ ∈ Cu(A)+, ⟨b⟩ ∈ Cu(A), and d� (a) ≤
d� (b) for all � ∈ T (A) with d� (b) < ∞. Since 0 is a limit point of �(a), we

have d� ((a−")+) < d� (b) for all " > 0 small enough. From strict comparison

of A we get (a−")+ ≾ b for all " > 0 small enough, and therefore also a ≾ b.

Thus, if ⟨a⟩, ⟨b⟩ ∈ Cu(A)+, then ⟨a⟩ = ⟨b⟩ iff d� (a) = d� (b) for all � . Now '

is at least injective if A has strict comparison.

When is im(�) = LT (A)>0?

2.1. Proposition: Let A be simple, unital with strict comparison and TA ∕=
∅. Suppose that for any f ∈ Aff(TA), " > 0 there exists a ∈ (A⊗K)+, s.t.

∣d� (a) − f(�)∣ < " for all � ∈ TA. Then for any g ∈ LT (A)>0 there exists

b ∈ (A⊗K)+ s.t. d� (b) = g�().

Proof:

Let g be given. There exists a sequence (fn) ⊂ Aff(TA) s.t. fn > 0,

fn < fn+1 and supn fn(�) = g(�), Find a sequence "n > 0 s.t. fn − "n <
fn+1 − "n+1. Then find an ∈ (A ⊗ K)+ s.t. ∣d� (an) − fn(�)∣ < "n. Then

d� (an) < d� (an+1) and supn d� (an) = g(�). By strict comparison an ≾ an+1.

Suprema of increasing sequences in Cu(A) exist, and d� is sup-preserving.

Let ⟨a⟩ = sup⟨an⟩ ∈ Cu(A). Then d� (a) = g(�). □

So when do we have density (in the sense of the proposition)?

2.2. Definition: We say Cu(A) is almost divisible if for any x ∈ Cu(A),

n ∈ ℕ there exists y ∈ Cu(A) s.t. ny ≤ x ≤ (n+ 1)y.

2.3. Proposition: Let A be simple, unital with T (A) ∕= ∅ and Cu(A) almost

divisible. It follows that for any f ∈ Aff(TA)>0, " > 0 there exists a ∈
(A⊗K)+, s.t. ∣d� (a)− f(�)∣ < " for all � ∈ T (A).

Proof:
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We can assume ∥f∥ ≤ 1. By a theorem of Lin / Cuntz, Pedersen there exists

b ∈ A+ s.t. �(b) = f(�) and ∥b∥ ≤ 1 + ". Then:

f(�) = �(b)

≈
n∑
i=1

1/n�(�(i/n,∥b∥](b))

=
n∑
i=1

1/nd� (fi(b)) for functions fi with supp(fi) = (i/n, ∥b∥]

=
n∑
i=1

d� (ci)

Set c =
⊕n

i=1 ci, then d� (c) ≈ f(�). □

2.4. Theorem: Let A be simple, unital with strict comparison, T (A) ∕= ∅
and Cu(A) almost divisible. Then Cu(A) ∼= V (A) ⊔ L(TA)>0 is an order-

isomorphism. Here addition on the right hand side is as usual in each of

V (A) and L(TA)>0, and if x ∈ V (A), y ∈ L(TA)>0 then x+ y = �(x) + y.

Also, the order on the right hand side is the usual in each of V (A) and

L(TA)>0, and if x ∈ V (A), y ∈ L(TA)>0 then x ≤ y if �(x) < y in

L(TA)>0, and y ≤ x if y ≤ �(x).

2.5. Example: If A is UHF-algebra with K0(A) ∼= ℚ, then Cu(A) ∼=
ℚ+ ⊔ (ℝ+ ∖ {0}) ∪ {∞}. Also Cu(Mn) = ℕ ∪ {∞}.

2.6. Theorem: (Winter, Lin-Niu) Let A,B be simple, unital with UCT and

locally finite decomposition rank. Also suppose Cu(A) = V (A) ⊔ L(TA)>0

(similarly for B) and projections separate traces. If there exists an isomor-

phism ' : K∗(A) → K∗(B), then there exists a ∗-isomorphism Φ : A → B

s.t. K(Φ) = '.

Note that these algebras will have real rank zero after tensoring with an

UHF algebra.

2.7. Example: Let A be simple, unital, exact, finite, Z-stable. Then A

has strict comparison (the proof uses that strict comparison is equivalent to

almost unperforation of Cu(A), i.e. if x, y ∈ Cu(A) with (n + 1)x ≤ yn for

some n, then x ≤ y).

Also Cu(A) is almost divisible. The proof uses:

(1) Under the isomorphism A⊗Z ∼= A we have ⟨a⊗ 1Z⟩ = ⟨a⟩
(2) There exists an embedding  : C[0, 1] ↪→ Z s.t. the image of � ∈

T (Z) = {�} is the Lebesgue measure on [0, 1]. Thus, for any 0 <

� < 1 there exists a� ∈ C[0, 1] s.t. d� (a�) = � for all � ∈ T (A)
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(3) Compute d� (a⊗ a�) = �d� (a) (so Cu(A) is a cone)

2.8. Theorem: If A is a simple, unital ASH-algebra with slow dimension

growth, then Cu(A) ∼= C(A) ⊔ L(TA)>0

2.9. Definition: A has slow dimension growth (s.d.g.) if there exist RSH-

algebras Ak and connecting maps 'k : Ak → Ak+1 s.t. A ∼= lim−→k
Ak, and

for the underlying spaces Xk1, Xk2, . . . and matrix sizes nk1, nk2, . . . of the

RSH-algebras Ak we have:

lim sup
k

(max
i

dimXki/nki) = 0

How to prove strict comparison? Does s.d.g. imply Z-stability for ASH-

algebras?

For projections p, q ∈Mn(C(X)) with rank(p) + (dim(X)− 1)/2 < rank(q),

we have p ≾ q. We want to show that a similar result holds for positive

elements.

Assume A = lim−→Ak, Ak = Mnk
(C(Xk)). Then s.d.g. means dim(Xk)/nk →

0. Assume (n+ 1)⟨a⟩ ≤ n⟨b⟩ for a, b ∈ Ak. Does it follow that rank(a(x)) ≤
rank(b(x)) for all x ∈ Xk?

2.10. Theorem: If rank(a(x)) + dim(X)/2 < rank(b(x)) for all x ∈ Xk,

then a ≾ b.

The proceeding is a sketch why strict comparison holds for simple, unital

ASH-algebras with s.d.g.

Why is �(Cu(A)+) ”dense” in Aff(TA)>0 (in the above sense)? Consider

Mn(C(X)), and f ∈ Aff(T (Mn(C(X))))>0
∼= Cℝ(X) (since T (...) is a

Bauer simplex, with compact boundary X). We want a ∈ Mn(C(X))+
s.t. ∣d� (a) − f(�)∣ < 1/n. Can assume � = �x for some x ∈ X, so

d� (a) = rank(a(x))/n. Thus want ∣ rank(a(x))/n − f(x)∣ < 1/n. Take

p = e11 ⊗ idx, and fix f ∈ C(X) s.d. supp(fi) = Ui. Set ai = fi(p). Then

a = a1 ⊕ . . .⊕ an does the trick.
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3. Part 3 - Lecture from 18.November 2009

Are there simple, unital, separable, nuclear C*-algebras with the same K-

theory and traces, but which are not isomorphic?

Yes, first examples have been given by Rørdam, and there are even ex-

amples in the stably finite case.

Strategy: Construct A as inductive limit A = lim−→Mnk
(C(Xk)) with each

Xk contractible. Then K0(Ak) = ℤ and K1(Ak) = 0, so also K1(A) = 0.

Assume we can achieve that the elements of K0(Ak) get divisible in the

limit, i.e. for each n and k there is some N > k such that 1 ∈ K0(Ak) is

divisible by n in AN . Then K0(A) = ℚ, and hence St(K0(A)) = {�}, so the

pairing between traces and K0 is uninteresting.

Let Q be the universal UHF-algebra (i.e. K0(Q) = ℚ), then

(K0(A⊗Q),K1(A⊗Q), T (A⊗Q), �A⊗Q) ∼= (K0(A),K1(A), T (A), �A)

For a counterexample we just need A ≇ A ⊗ Q. We will show that AUP

(almost unperforation property) fails in Cu(A), but Cu(A⊗Q) has AUP.

Let us first see how AUP can fail in Mn(C(X)) using the fact that AUP is

equivalent to:

(n+ 1)x ≤ ny ⇒ x ≤ y

How do we show that p � q for projections p, q ∈ Mn(C(X))? View p, q as

VB (vector bundles) over X: the fibre of p at x ∈ X is p(x)ℂn. Villadsen

used Chern classes to get comparability obstructions.

3.1 (Chern classes): The (full) Chern class is a map c(⋅) : Vect(X) →
Hev(X : ℤ) with the following properties:

(i) c(� ⊕ �′) = c(�) ∪ c(�′)
(ii) c(er) = 1 ∈ H0(X) where er = X × ℂr is the trivial VB

(iii) if f : X → Y is continuous, then c(f∗(�)) = f∗(c(�))

(iv) c(�) = 1 + c1(�) + . . .+ cdim �(�) with ci(�) ∈ H2i(X)

3.2. Lemma: (Villadsen) Let , er be VB over X. Assume cj() ∕= 0 for

some k > dim()− r. Then er � .

Proof:

If er ≾ , then there exists ! s.t. er⊕! ∼= . Then c(er⊕!) = c(er)∪c(!) =

c(!) = c(), but dim(!) < dim()− i. □
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On the other hand, if rank(!) + (dim(X) − 1)/2 < rank(), then ! ≾ .

Thus, if rank(!) < rank(), then (n+ 1)⟨!⟩ ≤ n⟨⟩ for large enough n.

3.3. Example: Let � be the Bott bundle over S2. Then c(�) = 1 + 1 ∈
H0(S2)⊕H2(S2). �× � is a bundle over S2 × S2 defined by �∗1(�)⊕ �∗2(�)

where �i : S2 × S2 → S2 are the coordinate projections. Then

c(�∗1(�)⊕ �∗2(�)) = �∗1(c(�))�∗2(c(�))

′′ =′′ (1 + 1)(1 + 1)

in particular c2(�× �) ∕= 0: Thus e1 � �× �.

Consider S2 × S2 ⊂ [0, 1]3 × [0, 1]3 = X1. Extend � × � to an open

neighborhood U of S2 × S2, choose f : X1 → [0, 1] with f = 1 on S2 × S2

and f = 0 on U c (the complement of U). Set a = f ⋅ e1, b = f ⋅ �× �. Then

a, b ∈ Mn(C(X1))+ and (n + 1)⟨a⟩ ≤ n⟨b⟩ for large n, but ⟨a⟩ ≰ ⟨b⟩ since

otherwise ⟨a∣S2×S2⟩ = ⟨e1⟩ ≤ ⟨�× �⟩ = ⟨b∣S2×S2⟩.
Set X2 := X×m2

1 . Define '1 : Mn1(C(X1))→Mn2(C(X2)) as:

'1(f) =

⎛⎜⎜⎜⎜⎜⎝
f ∘ �1

. . .

f ∘ �m1

f(xi)

. . .

⎞⎟⎟⎟⎟⎟⎠
Note that we add the evaluations at points xi to ensure simplicity of the

limit. (so want these points to be eventually dense). Then:

'1(b)∣(S2×S2)×m1 = (�× �)×m1

and c2m1((� × �)×m1) ∕= 0. Thus ⟨'1(a)⟩ ≰ ⟨'1(b)⟩. If we proceed this

way, a similar result will hold for all forward images. In fact there ex-

ists � > 0 such that for all i and x ∈ Ai: ∥x'1,i(b)x
∗ − '1,i(a)∥ ≥ �, so

⟨'1,∞(a)⟩ ≰ ⟨'1,∞(b)⟩. Thus AUP fails in A.

3.4. Definition: Let A be unital, exact. Define the radius of comparison for

A to be:

rc(A) := inf{r > 0 : a ≾ b whenever d� (a) + r < d� (b)∀�}

(where � runs over all normalized traces, and a, b ∈ (A⊗K)+).

One can show that

rc(A) = inf{m/n : a ≾ b whenever na+m⟨1A⟩ ≤ ny}

3.5. Proposition: If X is a CW-complex with dim(X) = d <∞, then:

(d− 2)/2 ≤ rc(C(X)) ≤ (d− 1)/2
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Proof:

The upper bound was already discussed (and it works for all X, not just

CW-complexes). To get the lower bound note that one can immerse S2d′

into X (for some large d′). □

If A is simple, then rc(A) = 0 if and only if Cu(A) is almost unperforated.

We also have the following properties:

(i) rc(lim−→k
Ak) ≤ lim infk rc(Ak)

(ii) rc(A/I) ≤ rc(A)

(iii) rc(Mn(A)) = 1/n rc(A)

3.6. Theorem: There exists a family Ar of simple AH-algebras indexed over

r ∈ [0,∞] s.t.:

(1) The Elliott invariant of Ar (K-theory and traces) is the same for all

r

(2) rc(Ar) = r, so the algebras are pairwise not isomorphic

The algebras Ar of the theorem are all shape equivalent, since they are con-

structed as AH-algebras over contractible spaces, so all homotopy invariant

continuous functors agree on the Ar. Further K0(Ar) = ℚ and sr(Ar) = 1.

This means we have uncountably many different Morita equivalence classes

among the Ar.

3.7 (Mean dimension): Let X be compact, metric, � : X → X a homeo-

morphism, and U an open cover of X. Define

ord(U) := sup{(
∑
U∈U

�U (x))− 1 : x ∈ X}

and write V > U if V refines U . Set:

D(U) := min{ord(V) : V > U}

We have D(U ∪ V) ≤ D(U) + D(V), since one can show that D(U) ≤ d

if and only if there exists a continuous map f : X → K with dim(K) ≤ d

such that f is compatible with U .

Set Un := U ∨ �−1(U) ∨ . . . ∨ �−(n−1)(U) where V ∨W means the union

and also all intersections of set in V,W. Set

mdim(X,�) := sup
U

lim
n→∞

D(Un)/n

3.8. Example: Let Y be a CW-complex, X = Y ℤ, and � : X → X the

bilateral shift. Then mdim(X,�) = dim(Y ).

Problem: If dim(X) <∞, then mdim(X,�) = 0 for all �.
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3.9. Theorem: (Kerr, Giol) For any k > 0 there exists a minimal system

(Xk, �k) s.t. k ≤ rc(C(Xk)⋊�k
ℤ). Also mdim(X,�)/2 ≈ k.

If � : Y∞ → Y∞ is the bilateral shift, then let Y2n be the 2n-periodic points.

Then:

C(Y2n)⋊� ℤ

vvmmmmmmmmmm

((RRRRRRRRRRR

. . . // C(Y2n)⋊� ℤ // C(Y2n+1)⋊� ℤ // . . .

Proposal: Define a dynamical dimension ddim(X,G) for a countable, dis-

crete group G acting on X via:

ddim(X,�) := rc(C(X)⋊� G)

The reasons are:

(1) It looks like one could recover mdim for the bilateral shift

(2) If G = {1}, then ddim(X,G) ≈ dim(X)/2

(3) If G = ℤ acting trivially, then ddim(X,G) = (dim(X) + 1)/2

(4) If X = Y m with � the cyclic shift, then ddim(X,�) ≈ dim(Y )/2

Outlook: Hopefully for minimal systems (X,�) we have ddim(X,�) ≤
mdim(X,�)/2 and that this is sharp (see results of Kerr and Giol). Why

are we hopeful?

We have that C∗(C(X), uC(X ∖ {y})) = A{y} is ASH, but the RSH-

subalgebras have infinite dimension. Idea: fix a, b ∈ A{y}+, a =
∑N

i=1 fiu.

Take U a finite open cover, iterate under �−1, get covers Vn s.t. ord(Vn) =

n ⋅ ddim, thus u corresponds to the size of the matrices.


