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1. PART 1 - LECTURE FROM 16.NOVEMBER 2009
We consider C*-algebras A which are:

separable
unital
nuclear (which is equivalent to being amenable)

usually simple

A is nuclear if for any other C*-algebra B there is only one way to complete
the algebraic tensor product A ® B to get a C*-algebra.

1.1. Example (cross products): Any cross product A = C(X) x4 Z is
nuclear, where X is a compact Hausdorff space, o : X — X is a homeomor-
phism. Recall that C'(X) x4 Z = C*(C(X),u) where u is a unitary which
implements «, i.e. ufu* = foa ! for any f € C(X) C C(X) x4 Z.

1.2. Example (recursive subhomogeneous algebras):  Any recursive sub-
homogeneous algebras (RSH-algebra) A is nuclear. Recall that these are
defined as iterated pullbacks using the following data:

e compact metric spaces Xq,...,X]

e closed subspaces XZ-(O) C X;

e numbers ny,...,n; € N

e unital *-homomorphisms ¢ : A1 — Mnk(C(X,go))) (attaching
maps)

such that A; = M,,(C(X1)), and the following is a pullback (for k£ =
AR
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Ay, Ap1

Tk

My (C(X3) =2 M, (C(X))

Here 0 is induced by the inclusion X IEO) — X}. Such a pullback is often
L(C(x) M, (C(X%)), and the standard way to

define that pullback algebra is as follows:
A = {(a,b) ca€A_1,be Mnk(C(Xk)),gok(a) = 8k(b) = leIEO)}

written as A, = A1 Dy,

These algebras are interesting because one can try to extend results form
homogeneous to RSH-algebras. Possibly all stably finite C*-algebras are di-
rect limits of RSH-algebras. Note also that all RSH-algebras are of type I.

What kind of theorem do we want?

1.3. Theorem: Let A, B be simple, unital, separable, nuclear C*-algebras
in some class €. There exists a functor F : € — € such that if p : F(A) —
F(B) is an isomorphism, then there exists a x-isomorphism ® : A — B s.t.
F(®) = ¢.

What is F typically? It is K-theory and traces. (we do not need quasitraces,
since we only consider nuclear C*-algebras, where every quasitrace is auto-
matically a trace)

1.4 (Kop-group): For simplicity let us only consider the unital case. For
projections p,q € A ® K say

p ~ q < there exists some v € AR K s.t. p=0v*v,00" =¢q

Set V(A) := { the projections in A ® K} .. For a projection p € A ® K we
denote its equivalence class in V(A) by [p]. Define an addition on V(A) by
[p] + [q] = [(8 2)]. In this way V(A) becomes an abelian semigroup.

Use the Grothendieck completion process I' to define an abelian group
Ko(A) := Gr(V(A)). This comes with a natural map I' : V(A) — Ky(A)
and we denote its image as Ko(A)" := I'(V(A)). This is also called the
positive part (or positive cone) in Ko(A). Then (Ko(A), Ko(A)™,[14]) is a
pre-ordered, pointed abelian group.

A projection p is called infinite if it is equivalent to a proper subprojec-
tion, otherwise it is called finite. We call A stably finite, if all projections
in M, (A) are finite (for all n). In that case Ky is ordered.

1.5 (Ki-group): Let U(A) denote the set of unitaries in A, and Uy(A) C
U(A) its connected component containing 14. The map u (”@‘ 1?4) induces
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a homomorphism ¢,, : U(M,A) /Uy(M,A) — U(M,+1A)/Uy(My414). We
set K1(A) :== hAan(MnA)/L{O(MnA). This is an abelian group with addi-
tion defined via [u] + [v] = [uv].

1.6 (Traces): A tracial stat on A is a positive linear functional t : A — C
such that 7(14) = 1, and 7(zy) = 7(yx) for all z,y € A. The set T(A) of
all traces on A is a metrizable Choquet simplex. A trace defines a state on
Ky(A) as follows: first extend 7 to a trace T®tr on M, (A) using the canonical
trace tr : M,, — C, then for a projection p € M, (A) set 7([p]) := (T @tr)(p).
We get a map pa: T(A) — St(Ko(A), Ko(A), [14]).

For a unital C*-algebra A the Elliott invariant is:
Ell(A) := (Ko(A), Ko(A), [La], K1(A),T(A), pa)

In good cases (Ko(A), Ko(A),[14],T(A), pa) is equivalent to the Cuntz semi-
group Cu(A), and then Ell(A) = (Cu(A), K1(A)), which amounts to a de-

composition in a positive and unitary part.

1.7 (The Cuntz semigroup): Let A be unital. For a,b € (A ® K); we
say a is Cuntz-dominated by b (denoted a = b) if there exists a sequence
(rn) C A® K st. rpbrpx — a (in norm). Say a is Cuntz-equivalent to b
(denoted a ~ b) if a 3 b and b 3 a. On projections this agrees with the
earlier defined equivalence for stably finite algebras. Note that for any A > 0
and a € (A ®K)4 we have a ~ Aa.

1.8. Example: M,
Let A = M,,. Then a 2 b iff rank(a) < rank(b).

1.9. Example: M, (CI0,1])
Let A = M,(C[0,1]). Then a 3 b iff rank(a)(t) < rank(b)(t) for all

t € [0,1]. The reason is that a and b can be approximately unitarily diago-
nalized.

1.10. Example: M, (C(X))

Let A = M,(C(X)) with X a CW-complex of dim(X) > 3 and n > 2.
Then there exist a,b € M,(C(X)) s.t. rank(a)(t) = rank(b)(t) for all
t € [0,1], yet a » b. The reason is that dim(X) > 3 ensures that we
can find S% in X. We can find projections p, ¢ in M(C(S?)) that both have
constant rank one, yet p » ¢ (e.g. the trivial line bundle, and the Bott
line bundle). Extend this to a small neighborhood of S? < X, and then to
positive elements a,b € My (C(X)) C M, (C(X)).
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1.11. Example: C(X)
Let A=C(X) and f,g € Ay. Then f 3 G iff supp(f) C supp(g).

1.12 (The Cuntz semigroup):  Define Cu(A) := { positive elements in A®
K} /.. We denote the equivalence class of a € (A ® K)4 in Cu(A) by (a).
As before we define an addition (a) + (b) := ((29)). If we define (a) < (b)
iff a = b, then we get an ordered abelian semigroup.

1.13. Example: M,
Let A = M,,. Then Cu(A) = NU{oo} with x4+ co = 00, 00+ 00 = 00 and
<1A> =né€eN.

1.14. Example: M, (C|0,1])

Let A = M, (C10,1]). Then Cu(A) consists of all functions f : [0,1] —
N U {oo} that are the supremum of an increasing sequence of functions
f™:0,1] = {0,...,n}}.

We denote by Aff(T'(A)) the continuous affine R-valued functions on T'(A),
and by L(T(A)) the functions T'(A) — R U {oo} that are the supremum of
an increasing sequence of functions f(™ € Aff(T(A)).

Why are we interested in Cu(A)?

e if Cu(A) is nice, you can prove classification theorems for such A
e Cu(A) is more sensitive that K-theory and traces

Assume A is unital, exact and T(A) # (). Then every 7 € T(A) extends
to an unbounded trace on A ® K as follows: if a € (A ® K)4, then define
d-(a) = lim, o 7(a'/™).

This is an example of a dimension function on A, i.e. an additive order-
preserving map ¢ : Cu(A4) — [0, 00] s.t. p((14)) = 1. (this gives exactly the
lower semicontinuous dimension functions).

1.15. Example: For a € (M,,)+ we get d,(a) = rank(a)/n.

For (a) € Cu(A) we define ¢({a)) : T(A) — [0,00] by ¢({a))(T) = d-(a).
Then:

e ((a)) is in L(T(A)) since 7 — 7(a'/™) is continuous and 7(a'/™) <
7(a*/"t1) (if ||la|| < 1, so rescale a)

eifa>0,fe C*a), f>0,then d.(f(a)) = p(supp(f) No(a))
where p, is the spectral measure induced by 7

e a 2biff Ve > 3§ > 0 such that (a—e)y 2 (b—19)4.
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Question: When is (a) = (p) for some projection p?

1.16. Lemma: If A is unital, simple and T(A) # 0, then (a) = (p) for a
projection p iff 0 is not a limit point of o(a).
Proof:
<: then a ~ xx(a) where yx is the characteristic function on the set
(0,00) No(a), and xx(a) is a projection

=: thenp ~ (p—e)+ 3 (a—0)+ 2 a~ p, whence d,((a—0)4+) = d-(p) for
all § small enough. But (a—9)4+ < g(a)+(a—0d)+ < a for some small function
g with supp(g) C [0,9]. Then d,((a — 6)+) = d-(g(a)) + d-((a — 0)4+), and
therefore d;(g(a)) = 0 for all 7 while g(a) # 0. This is a contradiction. [

Now for A unital, simple with T'(A) # () we have
Cu(A) =V(A)UCu(A)+

where Cu(A)y = {(a) : 0is a limit point of o(a)}. Cu(A)+ is absorbing in
the sense that z + y € Cu(A); whenever y € Cu(A),..

1.17. Definition: Let A be unital. We say A has strict comparison of pos-
itive elements (often abbreviated by just saying ”strict comparison”) if X b

whenever d.(a) < d.(b) for all T € T(A) such that d(b) < co.
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2. PART 2 - LECTURE FROM 17.NOVEMBER 2009

Let A be simple, unital with T'(A4) # (). Then Cu(A) = V(A)UCu(A4),+. We
define a map

¢ :Cu(Ad) - V(A) UL(TA)

as ¢({a)) := [p] whenever a ~ p for a projection p, and for (a) € Cu(A);+
we set p((a)) := ¢({(a))(7) := d-(a). When is this map injective, when is it
surjective?

Suppose A has strict comparison, (a) € Cu(4)4, (b) € Cu(A), and d,(a) <
d-(b) for all T € T(A) with d(b) < co. Since 0 is a limit point of o(a), we
have d,((a—¢)+) < d-(b) for all ¢ > 0 small enough. From strict comparison
of A we get (a—e)4 2 bfor all € > 0 small enough, and therefore also a 3 b.

Thus, if (a), (b) € Cu(A)4, then (a) = (b) iff d-(a) = d,(b) for all 7. Now ¢
is at least injective if A has strict comparison.

When is im(¢) = LT(A)>o?

2.1. Proposition: Let A be simple, unital with strict comparison and T A #
(0. Suppose that for any f € Aff(TA), e > 0 there exists a € (AR K)4, s.t.
|d:(a) — f(7)] <& for all T € TA. Then for any g € LT(A)sq there exists
be (A K); s.t. dr(b) = g7().

Proof:

Let g be given. There exists a sequence (f,) C Aff(TA) s.t. f, > 0,
fn < fant+1 and sup,, fn(7) = g(7), Find a sequence &, > 0 s.t. f, — &, <
fn+1 — €nt1. Then find a, € (AR K); s.t. |dr(an) — fu(7)| < €. Then
d-(an) < dr(an+1) and sup,, d-(a,) = g(7). By strict comparison a,, 3 an41-
Suprema of increasing sequences in Cu(A) exist, and d, is sup-preserving.

Let (a) = sup(a,) € Cu(A). Then d-(a) = g(7). O

So when do we have density (in the sense of the proposition)?

2.2. Definition: We say Cu(A) is almost divisible if for any x € Cu(A),
n € N there exists y € Cu(A4) s.t. ny <z < (n+1)y.

2.3. Proposition: Let A be simple, unital with T(A) # () and Cu(A) almost
divisible. It follows that for any f € Aff(TA)sg, € > 0 there exists a €
(A®K)4, s.t. |d-(a) — f(1)| < e for all T € T(A).

Proof:
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We can assume || f|| < 1. By a theorem of Lin / Cuntz, Pedersen there exists
be Ay st. 7(b) = f(7) and ||b|| < 1+ &. Then:

f(r) =7(b)
~ > 1/ (X ol (0))
=1

= Z 1/nd-(f;(b)) for functions f; with supp(f;) = (i/n,||b|[]
i=1
= Z d-(ci)
i=1
Set ¢ = @ ¢, then d;(c) = f(7). O

2.4. Theorem: Let A be simple, unital with strict comparison, T(A) # ()
and Cu(A) almost divisible. Then Cu(A) = V(A) U L(T'A)sq is an order-
isomorphism. Here addition on the right hand side is as usual in each of
V(A) and L(TA)so, and if v € V(A), y € L(TA)so then z +y = 1(x) + y.

Also, the order on the right hand side is the usual in each of V(A) and
L(TA)so, and if v € V(A), y € L(TA)so then z < y if 7(x) < y in
L(TA)>o, and y < x if y < ().

2.5. Example: If A is UHF-algebra with Kyo(A4) = Q, then Cu(A) =
Qt U (RT\ {0}) U {oo}. Also Cu(M,,) = NU {oo}.

2.6. Theorem: (Winter, Lin-Niu) Let A, B be simple, unital with UCT and
locally finite decomposition rank. Also suppose Cu(A) = V(A) U L(T'A)so
(similarly for B) and projections separate traces. If there exists an isomor-
phism ¢ : K.(A) = K.(B), then there exists a x-isomorphism ® : A — B
s.t. K(®) = .

Note that these algebras will have real rank zero after tensoring with an
UHF algebra.

2.7. Example: Let A be simple, unital, exact, finite, Z-stable. Then A
has strict comparison (the proof uses that strict comparison is equivalent to
almost unperforation of Cu(A4), i.e. if z,y € Cu(A) with (n + 1)z < yn for
some n, then x < y).

Also Cu(A) is almost divisible. The proof uses:

(1) Under the isomorphism A ® Z = A we have (a ® 1z) = (a)

(2) There exists an embedding v : C[0,1] < Z s.t. the image of 7 €
T(Z) = {7} is the Lebesgue measure on [0,1]. Thus, for any 0 <
A < 1 there exists ay € C[0,1] s.t. d-(ay) = A for all 7 € T(A)
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(3) Compute d,(a ® ay) = Ad,(a) (so Cu(A) is a cone)

2.8. Theorem: If A is a simple, unital ASH-algebra with slow dimension
growth, then Cu(A) = C(A) U L(TA)so

2.9. Definition: A has slow dimension growth (s.d.g.) if there exist RSH-
algebras Ay and connecting maps ¢y : Ay — Ag+q s.t. A= %ﬂk Ay, and
for the underlying spaces Xp1, Xpo, ... and matriz sizes ngi, Nk, ... of the
RSH-algebras Ay, we have:

lim sup(max dim Xy; /ng;) = 0
k K2

How to prove strict comparison? Does s.d.g. imply Z-stability for ASH-
algebras?

For projections p,q € M,(C(X)) with rank(p) + (dim(X) —1)/2 < rank(q),
we have p 3 ¢q. We want to show that a similar result holds for positive
elements.

Assume A = lim Ay, Ay = My, (C(Xk)). Then s.d.g. means dim(Xy)/ni —
0. Assume (n+ 1){a) < n(b) for a,b € Ai. Does it follow that rank(a(z)) <
rank(b(z)) for all x € X7

2.10. Theorem: If rank(a(z)) + dim(X)/2 < rank(b(z)) for all x € Xk,
then a 3 b.

The proceeding is a sketch why strict comparison holds for simple, unital
ASH-algebras with s.d.g.

Why is ¢(Cu(A)+) "dense” in Aff(TA)~¢ (in the above sense)? Consider
M,(C(X)), and f € Aff(T(M,(C(X))))so = Cr(X) (since T(...) is a
Bauer simplex, with compact boundary X). We want a € M,(C(X))+
st. |d-(a) — f(7)] < 1/n. Can assume 7 = ¢, for some z € X, so
d-(a) = rank(a(z))/n. Thus want |rank(a(z))/n — f(z)| < 1/n. Take
p = e11 ®idy, and fix f € C(X) s.d. supp(f;) = U;. Set a; = fi(p). Then
a=a1P...Pay, does the trick.
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3. PART 3 - LECTURE FROM 18.NOVEMBER 2009

Are there simple, unital, separable, nuclear C*-algebras with the same K-
theory and traces, but which are not isomorphic?

Yes, first examples have been given by Rgrdam, and there are even ex-
amples in the stably finite case.

Strategy: Construct A as inductive limit A = hgnMnk(C(Xk)) with each
X}, contractible. Then Ky(Ai) = Z and K;(A;) = 0, so also K;(A) = 0.
Assume we can achieve that the elements of Ky(Ay) get divisible in the
limit, i.e. for each n and k there is some N > k such that 1 € Ky(A) is
divisible by n in Ay. Then Ky(A) = Q, and hence St(Ky(A)) = {7}, so the
pairing between traces and Ky is uninteresting.

Let @ be the universal UHF-algebra (i.e. Ko(Q) = Q), then

(KO(A ® Q)vKl(A ® Q):T(A ® Q):pAQZJQ) = (KO(A)v KI(A>7T(A)7:0A)

For a counterexample we just need A 2 A ® Q. We will show that AUP
(almost unperforation property) fails in Cu(A), but Cu(4A ® @) has AUP.

Let us first see how AUP can fail in M,,(C(X)) using the fact that AUP is
equivalent to:

m+1z<ny =xz<y

How do we show that p £ ¢ for projections p,q € M,(C(X))? View p,q as
VB (vector bundles) over X: the fibre of p at z € X is p(z)C". Villadsen
used Chern classes to get comparability obstructions.

3.1 (Chern classes): The (full) Chern class is a map ¢(-) : Vect(X) —
H*® (X :7Z) with the following properties:

) €@ E) = e(€) Ue(e)

(i) c(er) =1 € HY(X) where e, = X x C" is the trivial VB
i) if f: X — Y is continuous, then c¢(f*(€)) = f*(c(§))
) (&) =1+c1(&) + ...+ came(§) with ¢;(¢) € H¥(X)

Q

3.2. Lemma: (Villadsen) Let v,e, be VB over X. Assume cj(y) # 0 for
some k > dim(y) —r. Then e, £ .

Proof:

If e, = 7, then there exists w s.t. e, ®w = . Then c(e, Bw) = c¢(e,)Uc(w) =
c(w) = ¢(), but dim(w) < dim(vy) — 1. O
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On the other hand, if rank(w) + (dim(X) — 1)/2 < rank(y), then w 3 7.
Thus, if rank(w) < rank(v), then (n + 1)(w) < n(y) for large enough n.

3.3. Example: Let p be the Bott bundle over S?. Then c(p) =1+ 1 €
HY(S?) @ H?(S?). p x pis a bundle over S? x S? defined by 7} (p) @ 73 (p)
where 7; : S? x §2 — S? are the coordinate projections. Then
c(mi(p) & my(p)) = mi(c(p))m3(c(p))
" :/l (1 + 1)(1 + 1)
in particular ca(p X p) # 0: Thus e; £ p X p.

Consider S% x $2 c [0,1]* x [0,1]®> = X;. Extend p x p to an open
neighborhood U of S? x 2%, choose f : X; — [0,1] with f =1 on S% x §?
and f =0 on U¢ (the complement of U). Set a = f-e1, b= f-px p. Then
a,b € M,(C(X1))+ and (n + 1)(a) < n(b) for large n, but (a) £ (b) since
otherwise (a|s2yg2) = (€1) < (p X p) = (bjg2x52)-

Set X5 := X2, Define @1 : My, (C(X1)) = My, (C(X2)) as:

fom

o1(f) = o
[ ()

Note that we add the evaluations at points x; to ensure simplicity of the
limit. (so want these points to be eventually dense). Then:

Xmi

©1(0)|(s2x52)xm1 = (p X p)

and com, ((p X p)*™) # 0. Thus (p1(a)) £ (@1(b)). If we proceed this
way, a similar result will hold for all forward images. In fact there ex-

ists 6 > 0 such that for all ¢ and = € A;: ||xp1(b)z* — ¢14(a)]| > 6, so
{(¢1,00(a)) £ (p1,00(b)). Thus AUP fails in A.

3.4. Definition: Let A be unital, exact. Define the radius of comparison for
A to be:

rc(A) :=inf{r >0 : a X b whenever d-(a) +r < d.(b)V7}

(where T runs over all normalized traces, and a,b € (A ®K); ).
One can show that

rc(A) = inf{m/n : a 3 b whenever na +m(l4) < ny}

3.5. Proposition: If X is a CW-complex with dim(X) = d < co, then:
(d—2)/2<rc(C(X))<(d—1)/2
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Proof:

The upper bound was already discussed (and it works for all X, not just
CW-complexes). To get the lower bound note that one can immerse S2¢
into X (for some large d'). O

If A is simple, then rc(A) = 0 if and only if Cu(A) is almost unperforated.
We also have the following properties:

(i) rc(liﬂk Ap) < liminfy rc(Ag)

(ii) rc(A/I) <rc(A)

(iii) rc(Mn(A)) =1/nrc(A)
3.6. Theorem: There exists a family A, of simple AH-algebras indexed over
r € [0,00] s.t.:

(1) The Elliott invariant of A, (K-theory and traces) is the same for all

”
(2) rc(A,) =r, so the algebras are pairwise not isomorphic

The algebras A, of the theorem are all shape equivalent, since they are con-
structed as AH-algebras over contractible spaces, so all homotopy invariant
continuous functors agree on the A,. Further Ky(4,) = Q and sr(A4,) = 1.
This means we have uncountably many different Morita equivalence classes
among the A,.

3.7 (Mean dimension): Let X be compact, metric, « : X — X a homeo-
morphism, and I/ an open cover of X. Define

ord(U) := sup{(z xv(z))—1:zeX}
veld

and write V > U if V refines U. Set:
D(U) := min{ord(V) : V > U}

We have D(U UV) < D(U) + D(V), since one can show that D(U) < d
if and only if there exists a continuous map f : X — K with dim(K) < d
such that f is compatible with .

Set U™ :=UV a ' U) V...V a~ " D) where V VW means the union
and also all intersections of set in V, W. Set

mdim(X, &) :=sup lim DU")/n
Uu n—o0

3.8. Example: Let Y be a CW-complex, X = Y%, and a : X — X the
bilateral shift. Then mdim(X, o) = dim(Y).

Problem: If dim(X) < oo, then mdim(X, «) = 0 for all a.
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3.9. Theorem: (Kerr, Giol) For any k > 0 there exists a minimal system
(Xk, ar) s.t. k <1c(C(Xg) Xay Z). Also mdim(X, a)/2 = k.

If o : Y°° — Y is the bilateral shift, then let Yon be the 2™-periodic points.
Then:

0(1/271) NQZ
HC’(i/é'ﬂ) NQZ 0(3/27%1»1) >40[ZH

Proposal: Define a dynamical dimension ddim(X,G) for a countable, dis-

crete group G acting on X via:
ddim(X, a) :=rc(C(X) x4 G)
The reasons are:

(1) It looks like one could recover mdim for the bilateral shift

(2) If G = {1}, then ddim(X, G) ~ dim(X)/2

(3) If G = Z acting trivially, then ddim(X, G) = (dim(X) + 1)/2

(4) If X =Y™ with « the cyclic shift, then ddim(X, o) ~ dim(Y")/2

Outlook: Hopefully for minimal systems (X,«) we have ddim(X,«a) <
mdim (X, «)/2 and that this is sharp (see results of Kerr and Giol). Why
are we hopeful?

We have that C*(C(X),uC(X \ {y})) = Ay, is ASH, but the RSH-
subalgebras have infinite dimension. Idea: fix a,b € Ay, a = Ef\; 1 fiw.
Take U a finite open cover, iterate under a~!, get covers V, s.t. ord(V,) =
n - ddim, thus u corresponds to the size of the matrices.



