MIKAEL RØRDAM'S TALK AT MASTERCLASS ON **CLASSIFICATION OF C*-ALGEBRAS**

1. SIMPLE C*-ALGEBRAS

Theorem 1. For a simple C^* -algebra $A \neq \mathbb{C}$ TFAE

(1) $\forall B \subset A$ heriditary subalgebra, $B \neq \{0\}$, B contains an infinite projection.

(2) $\forall a, b \in A \setminus \{0\} \exists x, y \in A : b = xay$

(3) RR(A) = 0 and all projections in A are properly infinite $(p \oplus p \leq p)$

(4) $W(A) = Cu(A) \cong [0, \infty]$

Definition 2. If one (and hence all) of the statements in the above theorem is true, we say that A is a purely infinite simple C^* -algebra.

Example 3. For $n \in \mathbb{N}$ set

(1.1)
$$\mathcal{O}_n = C^*(s_1, s_2, \dots, s_n | \forall j : s_j^* s_j = 1, \sum_{j=1}^n s_j s_j^* = 1)$$

and set

(1.2)
$$\mathcal{O}_{\infty} = C^*(s-1, s_2, \dots | \forall j : s_j^* s_j = 1, i \neq j \Rightarrow s_i s_i^* \perp s_j s_j^*).$$

Then \mathcal{O}_n is purely infinite and simple and $K_1(\mathcal{O}_n) = 0$ for all $n \in \mathbb{N} \cup \{\infty\}$ while $K_0(\mathcal{O}_n) = \mathbb{Z}_{n-1} \text{ for } n \in \mathbb{N} \text{ and } K_0(\mathcal{O}_\infty) = \mathbb{Z}.$

Theorem 4. For a simple C*-algebra A we have that A is purely infinite iff T(A) =Ø.

Theorem 5. It is possible to exhaust (K_0, K_1) by purely infinite simple C*-algebras of the following two types:

- A = lim_→ ⊕ⁿ_{j=1}M_{n_j}(O_{r_j}) ⊗ C(Π) where simple implies purely infinite.
 A ⋊ Z for some simple stable Π-algebra A.

Theorem 6. If A is a simple, separable, exact, stable C^* -algebra where $T(A) \neq \emptyset$ and $A \otimes \mathcal{Z} \cong A$, and $\alpha \in Aut(A)$ then $A \rtimes \mathbb{Z}$ purely infinite iff A has no α -invariant traces.

Definition 7. We say that a C^* -algebra A is a Kirchberg algebra if it is purely infinite, simple, separable and nuclear.

Definition 8. We say that a C^{*}-algebra has the SP if $\forall B \subset A$ hereditary subalgebra, $B \neq \{0\}$, B contains a nontrivial projection.

Theorem 9. There exists a stabely infinite simple C^* -algebra A with $RR(A) \neq 0$ and not beeing purely infinite having the SP.

Question 10. If A is a simple C^* -algebra, do RR(A) = 0 and A stabely infinite imply A purely infinite?

Date: 20/11/2009.

2 MIKAEL RØRDAM'S TALK AT MASTERCLASS ON CLASSIFICATION OF C*-ALGEBRAS

Question 11. If A is simple and all projections in A are infinite, does $P(A) \neq 0$ imply A purely infinite?

Question 12. If A is stabely infinite does that imply that A has the SP?

Theorem 13 (Kirchberg). If A, B simple not type I C*-algebras then if both are stabely infinite or one is stabely finite and the other stabely infinite $A \otimes_{min} B$ is purely infinite. If both are stabely finite and exact $A \otimes_{min} B$ is stabely finite, if they not both are exact the result is not known.

Theorem 14 (Kirchberg). If A is a simple, separable, nuclear C*-algebra A is purely infinite iff $A \cong A \otimes \mathcal{O}_{\infty}$.

Remark 15. $K_x(\mathcal{O}_\infty) \cong K_x(\mathbb{C})$

Theorem 16 (Kirchberg). A C*-algebra A is simple, separable, unitary and nuclear iff $A \otimes \mathcal{O}_2 \cong \mathcal{O}_2$.

Remark 17. $K_x(\mathcal{O}_2) = 0$

Theorem 18 (Kirchberg). A C^{*}-algebra A is separable and exact iff $A \hookrightarrow \mathcal{O}_2$.

Theorem 19 (Kirchberg, Phillips). If A, B are Kirchberg algebras:

- $A \otimes \mathcal{K} \cong B \otimes \mathcal{K} \Leftrightarrow A \sim_{KK} B$
- If A, B have the UCT then $A \otimes \mathcal{K} \cong B \otimes \mathcal{K} \Leftrightarrow (K_0(A), K_1(A)) \cong (K_0(B), K_1(B)).$

2. Non-simple C*-algebras

Theorem 20. If A is a C^* -algebra with no nonzero abelian quotient TFAE

- (1) $\forall a, b \in A_+ : a \in \overline{AbA} \Leftrightarrow a \leq b$
- (2) $\forall a \in A_+ \ a \ is \ properly \ infitite \ (a \oplus a \lesssim a)$

Definition 21. If A fullfils one (and hence all) of the statements in the theorem we say that A is purely infinite.

Definition 22. If $x \in W(A)$ the we say that x is properly infinite if $2x \leq x$.

Definition 23. We say that $x \in W(A)$ is infinite if $\exists y \neq 0 \in W(A).x + y \leq x \Rightarrow x + y = x$

Remark 24. A is purely infinite iff W(A) is properly infinite, where W(A) is properly infinite iff $\forall x \in W(A) x$ is properly infinite.

Remark 25. The function $W(A) \rightarrow Ideal(A)$ defined by $\langle a \rangle \rightarrow \overline{AaA}$ is welldefined and surjective. And this map is injective (equivalent: this map is an order isomorphism) iff A is purely infinite.

Example 26. If $A \in M_n(\{0,1\})$ then is the Cuntz-Kneyr-algebra

(2.1)
$$\mathcal{O}_A = C^*(s_1, s_2, \dots, s_n | \sum_{j=1}^n s_j s_j^* = 1, s_j^* s_j = \sum_{i=1}^n A_{i,j} s_i s_i^*)$$

properly infinite.

Example 27. If A is a C*-algebra then $A \otimes \mathcal{O}_{\infty}$ is purely infinite.

Example 28. $C_0(\mathbb{R}) \otimes \mathcal{O}_{\infty}$ is purely infinite.

- **Theorem 29.** (1) If we have $0 \to I \to A \to B \to 0$ then I, B are purely infinite iff A is purely infinite.
 - (2) If $A = \lim_{\to} A_i$ and all A_i are purely infinite then A is purely infinite.
 - (3) If A, B are purely inifinite and A is exact then $A \otimes_{min} B$ is purely infinite.

Question 30. Does A or B purely infinite imply that $A \otimes_{min} B$ is purely infinite?

Question 31. Does A purely infinite imply that $A \otimes_{min} C([0,1])$ is purely infinite?

Definition 32. We say that A is strongly purely infinite if

(2.2)
$$\begin{aligned} \forall \begin{pmatrix} a & \lambda^* \\ \lambda & b \end{pmatrix} &\in M_2(A)_+ \forall \epsilon > 0 \exists d_1, d_2 \in A : \\ & \| \begin{pmatrix} d_1 & 0 \\ 0 & d_2 \end{pmatrix}^* \begin{pmatrix} a & \lambda^* \\ \lambda & b \end{pmatrix} \begin{pmatrix} d_1 & 0 \\ 0 & d_2 \end{pmatrix} - \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}^* \| < \epsilon \end{vmatrix}$$

Definition 33. We say that A is weakly purely infinite if $\exists k \in \mathbb{N} \forall x \in W(A) : kx$ properly infinite.

Remark 34. W(A) has no dimension function iff $\forall x \in W(A) \exists k \in \mathbb{N} : kx$ is properly infinite.

Theorem 35. Let A be a separable, exact C^* -algebra and look at these properties:

- (1) $A \cong A \otimes < mathcalO_{\infty}$
- (2) A strongly purely infinite
- (3) A purely infinite
- (4) A weakly purely infinite
- (5) $l_{\infty}(A)/C_0(A)$ traceless
- (6) A traceless

We have that

- In general $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Leftrightarrow (5) \Rightarrow (6)$.
- If A is separable and nuclear $(2) \Rightarrow (1)$, but not true in general.
- If A is simple, RR(A) = 0 or $A \cong A \otimes \mathcal{Z}$ (4) \Rightarrow (3) \Rightarrow (2), unknown if true in general.
- If $A \cong A \otimes \mathcal{Z}$ (6) \Rightarrow (5), but not in general.

Definition 36. Let A be a C*-algebra the we define $Prim(A) = \{ ker(\pi) | \pi irreducibel representation of A \}$, and enquip it with the Jacobsen topology giving us a T_0 -space.

Example 37. If X is a locally compact Hausdorff space then Prim(C(X)) = X.

Theorem 38 (Kirchberg). If A, B are separable nuclear C*-algebras and X := Prim(A) = Prim(B) we have that $A \otimes \mathcal{O}_{\infty} \otimes \mathcal{K} \cong B \otimes \mathcal{O}_{\infty} \otimes \mathcal{K}$ iff $A \sim_{KK} B$. If A, B are strongly purely infinite we can skip \mathcal{O}_{∞} .

Corollary 39. If A, B are separabel nuclear C*-algebras TFAE

- (1) $A \otimes \mathcal{O}_2 \otimes \mathcal{K} \cong B \otimes \mathcal{O}_2 \otimes \mathcal{K}$
- (2) $Prim(A) \cong Prim(B)$
- (3) $Ideal(A) \cong Ideal(B)$

Question 40. Which T_0 -spaces can arise as Prim(A) for A a separable C^* -algebra? Which if A is nuclear? **Example 41.** Let $(t_n)_{n \in \mathbb{N}} \subseteq]0,1[$ and look at the sequence

(2.3)
$$C_0(]0,1]) \rightarrow_{\phi_1} M_2(C_0(]0,1])) \rightarrow_{\phi_2} M_4(C_0(]0,1])) \rightarrow_{\phi_4} \dots$$

where

(2.4)
$$\phi_n(f)(t) = \begin{pmatrix} f(t) & 0\\ 0 & f(t \wedge t_n) \end{pmatrix}.$$

Let A be the inductive limit of this sequence, then A is a AH_0 -algebra and $Ideal(A) \approx [0,1]$ totally ordered.

We have $A \cong A \otimes M_{2^{\infty}} \Rightarrow A \cong A \otimes \mathcal{Z}$ and $A \cong A \otimes \mathcal{O}_{\infty} \Leftrightarrow A$ traceless, which is the case, so we have that A is purely infinite.

(2.5)

$$A \sim_{h,ideal} 0 \Leftrightarrow_{def} \exists \phi_t : A \to A, \phi_t \leq h, t \in [0,1], \phi_1 = id, \phi_0 = 0, \forall J \lhd A, \phi_t(j) \subseteq J$$

A strongly purely infinite, separable, nuclear then $A \sim_{h,ideal} 0 \Rightarrow A \cong A \otimes \mathcal{O}_2$.

Fact 42. If A has no projections then $\forall I \lhd A : A/I$ has no projections.

Theorem 43. If A is nuclear, separable, stable, strongly purely infinite C*-algebra then $A \sim_{h, id eal} 0$ implies that $A \cong A \otimes \mathcal{O}_2$ and A is an AH_0 -algebra.

Fact 44. If A is an AH_0 -algebra then A can be embedded in an AF-agebra D and A is quasidiagonal. If $A \cong A \otimes \mathcal{O}_2$ and B separabel and exact then $CB \hookrightarrow C\mathcal{O}_2 \hookrightarrow A \hookrightarrow D$.