This is lecture notes of Marius Dadarlat's talks during the Master class on classification of C^* -algebras at the University of Copenhagen. The material he covered appears to be from the papers *Continuous fields of C*-algebras over finite dimensional spaces* (Advances in Mathematics 222 (2009) 1850-1881) and *Fiberwise KK-equivalence of continuous fields of C*-algebras* (J. K-Theory 3 (2009), 205-219).

1 First Lecture

In general \mathcal{A} will denote a separable C^* -algebra and X will denote a locally compact Hausdorff space.

Definition 1.1 (Kasparov). \mathcal{A} is a $C_0(X)$ algebra if a *-homomorphism from $C_0(X)$ to $Z(\mathcal{M}(\mathcal{A}))$ (the center of the multiplier algebra) is given (this means we can multiply elements from $C_0(X)$ with elements from \mathcal{A}) such that

$$\overline{C_0(X)\mathcal{A}} = \mathcal{A}.$$

Morphisms of $C_0(X)$ -algebras $\gamma \colon \mathcal{A} \to \mathcal{B}$ commutes with the multiplication, that is $\gamma(fa) = f\gamma(a)$.

An equivalent definition would be that a surjective *-homomorphism going from $C_0(X) \otimes \mathcal{A}$ to \mathcal{A} , which is \mathcal{A} linear, is given.

Another equivalent definition is that a continuous map from $\operatorname{Prim}(\mathcal{A})$ to X is given.

Remark 1.2. We can extend the map from $C_0(X)$ to $Z(\mathcal{M}(\mathcal{A}))$ to a map from $C_b(X)$ to $Z(\mathcal{M}(\mathcal{A}))$.

If $U \subseteq X$ is open, then by Cohens lemma $\overline{C_0(U)A} = C_0(U)A$. This is an ideal in \mathcal{A} and we denote it by $\mathcal{A}(U)$.

If $Y \subseteq X$ is closed, then we let $\mathcal{A}(Y)$ be the quotient $\mathcal{A}/\mathcal{A}(X \setminus Y)$. If $x \in X$ then the set $\{x\}$ is closed and $\mathcal{A}(x)$ denotes $\mathcal{A}(\{x\})$. This quotient is called the fiber at x of \mathcal{A} .

We let π_x denote the quotient map from \mathcal{A} to $\mathcal{A}(x)$. If $a \in \mathcal{A}$ then we write a(x) for $\pi_x(a)$. We have a *-homomorphism $\mathcal{A} \to \prod_{x \in X} \mathcal{A}(x)$ given by $a \mapsto (\pi_x(a))_{x \in X}$.

Lemma 1.3. For all $a \in A$ the map $x \mapsto ||\pi_x(a)|| = ||a(x)||$ is upper semicontinuous.

Proof. We must show that for all $\alpha > 0$ the set

$$U = \{ x \in X \mid ||\pi_x(a)|| < \alpha \}$$

is open. We have

$$\begin{aligned} \|\pi_x(a)\| &= \inf\{\|a+z\| \mid z \in \mathcal{A}(X \setminus \{x\})\} \\ &= \inf\{\|a+fb\| \mid f \in C_0(X \setminus \{x\}), b \in \mathcal{A}\} \\ &= \inf\{\|a+(g-g(x))hb\| \mid g \in C_0(X), b \in \mathcal{A}, h \in C_0(X)\}. \end{aligned}$$

If $x \in U$ then $\|\pi_x(a)\| < \alpha$ so then there must exist $g \in C_0(X), h \in C_0(X), b \in \mathcal{A}$ such that

$$\|a + (g - g(x))hb\| < \alpha.$$

Since that expression is continuous in x, there exists an open set $V, x \in V$ such that for all $y \in V$ $(a - a(u))bb \parallel d$

$$\|a + (g - g(y))hb\| < \alpha$$

Hence $x \in V \subseteq U$ and therefore U is open.

Remark 1.4. For all $x \in X$, $a \in \mathcal{A}$ and $f \in C_0(X)$: $\pi_x(fa) = f(x)\pi(a)$ since $(f - f(x))a \in C_0(X \setminus \{x\})\mathcal{A} = \ker(\pi_x(a)).$

Define for all $a \in \mathcal{A}$ the map $N(a): X \to [0; \infty[$ by $N(a)(x) = ||\pi_x(a)|| =$ ||a(x)|| (N is for norm). By lemma 1.3 this map is lower semi-continuous and by remark 1.4 we have N(fa)(x) = f(x)N(a)(x) for all $x \in X$.

Definition 1.5. A is a continuous $C_0(X)$ -algebra if N(a) is continuous for all $a \in \mathcal{A}$. In this case $N(a) \in C_0(X)$.

Such algebras are also called continuous field C^* -algebras.

This definition is equivalent to requiring that the map $\operatorname{Prim}(\mathcal{A}) \to X$ is open.

Examples 1.1

Example 1.6. $\mathcal{A} = C_0(X, \mathcal{D}) = C_0(X) \otimes \mathcal{D}$. This is called the trivial field. Note that $\mathcal{A}(x) \cong \mathcal{D}$ for all $x \in X$.

Example 1.7. Let \mathcal{D} be a C^* -algebra and let $\psi \in End(\mathcal{D})$. Let

 $\mathcal{A} = \{ (\alpha, d) \in C([0, 1], D) \oplus \mathcal{D} \mid \alpha(1) = \psi(d) \},\$

A is C([0,1])-algebra with multiplication of an $f \in C([0,1])$ given by

$$f(\alpha, d) = (f\alpha, f(1)d).$$

We will show that $\mathcal{A}(x) \cong \mathcal{D}$ for all $x \in X$. Observe that

$$C_0([0,1] \setminus \{x\})\mathcal{A} = \begin{cases} (\alpha, d) \in \mathcal{A} \text{ with } \alpha(x) = 0, & \text{if } 0 \le x < 1\\ C_0([0,1], \mathcal{D}) \oplus 0, & \text{if } x = 1 \end{cases}.$$

The extensions

$$0 \to C_0([0,1), \mathcal{D}) \to \mathcal{A} \xrightarrow{(\alpha,d) \mapsto d} \mathcal{D} \to 0$$

and

$$0 \to \{(\alpha, d) \in \mathcal{A} \mid \alpha(x) = 0\} \to \mathcal{A} \xrightarrow{\mathrm{ev}_x} \mathcal{D} \to 0$$

show that indeed all $\mathcal{A}(x)$ are isomorphic to \mathcal{D} .

In this example the norm function is

$$N(\alpha, d) = \begin{cases} \|\alpha(x)\|, & \text{ if } 0 \le x < 1 \\ \|d\|, & \text{ if } x = 1 \end{cases}.$$

N is continuous if and only if $||d|| = ||\alpha(1)|| = ||\psi(d)||$ for all $d \in \mathcal{D}$, that is N is continuous if and only if ψ is injective. So we have a continuous field C^* -algebra if and only if ψ is injective.

If ψ is injective, then

$$\mathcal{A} \cong \{ \alpha \in C([0,1], \mathcal{D}) \mid \alpha(1) \in \psi(\mathcal{D}) \},\$$

by an isomorphism that sends (α, d) to α .

We will now try to find out when the field in the second example is trivial, i.e. when $\mathcal{A} \cong C([0, 1], \mathcal{D})$.

Lemma 1.8. Suppose that ψ is injective. Then $\mathcal{A} \cong C([0,1], \mathcal{D})$ if and only if there exists a continuous map $\theta \colon [0,1] \to End(\mathcal{A})$ (where $End(\mathcal{A})$ has the point norm topology) such that $\theta(s) \in Aut(\mathcal{A})$ for all $0 \leq s < 1$ and $\theta(1) = \psi$.

Proof. Suppose θ exists. By identifying \mathcal{A} with $\{\alpha \in C([0,1], \mathcal{D}) \mid \alpha(1) \in \psi(\mathcal{D})\}$ we can define a map $\eta : C([0,1], \mathcal{D}) \to \mathcal{A}$ by

$$\eta(\alpha)(s) = \theta(s)(\alpha(s)).$$

This maps into \mathcal{A} since $\eta(\alpha)(1) = \psi(\alpha(1)) \in \psi(\mathcal{D})$. One can check that η is an isomorphism of C([0,1])-algebras.

For the other implication, assume that $\eta : C([0,1], \mathcal{D}) \to \mathcal{A} \subseteq C([0,1], \mathcal{D})$ is an isomorphism of C([0,1])-algebras. This gives us a family of injective homomorphisms $(\eta_s)_{s\in[0,1]}$ from \mathcal{D} to \mathcal{D} , such that $s \mapsto \eta_s$ is a continuous map from [0,1] to $\operatorname{End}(\mathcal{D})$, η_s is an automorphism of \mathcal{D} if $0 \leq s < 1$ and $\eta_1(\mathcal{D}) = \psi(\mathcal{D})$. By the latter we can define $\gamma \in \operatorname{Aut}(\mathcal{D})$ by $\gamma = \eta_1^{-1}\psi$. We now define $\theta : [0,1] \to \operatorname{End}(\mathcal{D})$ by $\theta(s) = \eta_s^{-1}\gamma$. We note that if $0 \leq s < 1$ then $\theta(s) \in \operatorname{Aut}(\mathcal{D})$ and that $\theta(1) = \eta_1 \eta_1^{-1}\psi = \psi$. \Box

We can say more if we know more about \mathcal{D} .

Corollary 1.9. Suppose \mathcal{D} is a stable Kirchberg algebra. Then $\mathcal{A} = \{\alpha \in C([0,1],\mathcal{D}) \mid \alpha(1) \in \psi(\mathcal{D})\}$ is trivial if and only if $[\psi] \in KK(\mathcal{D},\mathcal{D})^{-1}$.

Proof. Suppose $[\psi] \in KK(\mathcal{D}, \mathcal{D})^{-1}$. Then by the Kirchberg-Phillips theorem, there exists an automorphism ϕ of \mathcal{D} and a family of unitaries $u_s \in \mathcal{U}(1\mathbb{C} + \mathcal{D}), 0 \leq s < 1$ such that $[\psi] = [\phi]$ and

$$\lim_{s \to 1} \|u_s \phi(d) u_s^* - \psi(d)\| = 0,$$

for all $d \in \mathcal{D}$. Now the map $\theta \colon [0,1] \to \operatorname{End}(\mathcal{D})$ given by

$$\theta(s)(d) = \begin{cases} u_s \phi(d) u_s^*, & \text{if } 0 \le s < 1, \\ \psi(d), & \text{if } s = 1 \end{cases}$$

and the above lemma combines to give the desired conclusion.

The converse is also true, since, by lemma 1.8, we then have that ψ is homotopic to an automorphism.

Remark 1.10. By the corollary we get: If $\psi_* \colon K_*(\mathcal{D}) \to K_*(\mathcal{D})$ is not bijective then \mathcal{A} is not a trivial field.

As a variation on this example we can fix $x \in (0, 1)$ and define

$$\mathcal{A} = \{ \alpha \in C([0,1], \mathcal{D}) \mid \alpha(x) \in \psi(\mathcal{D}) \} \\ = \{ (\alpha, d) \in C([0,1], \mathcal{D}) \oplus \mathcal{D} \mid \alpha(x) = \psi(\mathcal{D}) \}.$$

The short exact sequence

$$0 \to C_0([0,1] \setminus \{x\}, \mathcal{D}) \to \mathcal{A} \xrightarrow[\pi_x]{} \mathcal{D} \to 0$$

where π_x maps (α, d) to d, is split with the split $s: \mathcal{D} \to \mathcal{A}$ given by $s(d) \mapsto (\psi(d), d) \ (\psi(d)$ means a function constantly taking that value). Hence we get a short exact sequence of K_0 -groups

$$0 \to K_0(C_0([0,1] \setminus \{x\}), \mathcal{D}) \to K_0(\mathcal{A}) \xrightarrow[(\pi_x)_*]{} K_0(\mathcal{D}) \to 0$$

Since $K_0(C_0([0,1] \setminus \{x\}), \mathcal{D}) = 0$, we get that $(\pi_x)_*$ is an isomorphism. It must have inverse s_* . Consider now some point $y \neq x$. The quotient map $\pi_y: \mathcal{A} \to \mathcal{A}(y)$ is given by $\pi_y((\alpha, d)) = \alpha(x)$. Hence we have a map

$$(\pi_y)_* \colon K_0(\mathcal{A}) \to K_0(\mathcal{A}(y)) \cong K_0(\mathcal{D}).$$

We have $(\pi_y)_* s_* \equiv \psi_* \colon \mathcal{K}_0(\mathcal{D}) \to K_0(\mathcal{D})$. Thus ψ_* is not bijective. This implies that \mathcal{A} is not trivial since $K_0(\mathcal{A}) \cong K_0(\mathcal{A}(y))$.

Example 1.11 (Dadarlat & Elliott). Let \mathcal{D} be a unital Kirchberg algebra such that $K_0(\mathcal{D}) = \mathbb{Z} \oplus \mathbb{Z}$, $[1_{\mathcal{D}}] = (1, 0)$ and $K_1(\mathcal{D}) = 0$. Set

$$\mathcal{B} = \mathcal{D}^{\otimes \infty} = \lim_{\to} \left(\mathcal{D} \xrightarrow[d \mapsto d \otimes 1_{\mathcal{D}}]{} \mathcal{D} \otimes \mathcal{D} \to \mathcal{D} \otimes \mathcal{D} \otimes \mathcal{D} \to \cdots \right)$$

We will construct a continuous field \mathcal{A} over [0,1] such that $\mathcal{A}(x) \cong \mathcal{B}$ for all $x \in [0,1]$ and such that for all closed intervals $I = [a,b] \subseteq [0,1]$, a < b,

$$\mathcal{A}(I) \not\cong C(I, \mathcal{B})$$

Thus \mathcal{A} has all fibers isomorphic but is not locally trivial at any point.

Let ψ be an endomorphism of \mathcal{D} such that $K_0(\psi) = \psi_* \colon K_0(\mathcal{D}) \to K_0(\mathcal{D})$ is given by

$$\psi_* = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}.$$

Let (x_n) be a dense sequence in [0,1] with $x_i \neq x_j$ if $i \neq j$. Define

$$\mathcal{D}_n = \{ \alpha \in C([0,1], \mathcal{D}) \mid \alpha(x_n) \in \psi(\mathcal{D}) \}.$$

Then $\mathcal{D}_n(x) \cong \mathcal{D}$ for all $x \in [0,1]$. Now define \mathcal{A} by

$$\mathcal{A} = \otimes_{n=1}^{\infty} \mathcal{D}_n = \lim (\mathcal{D}_1 \otimes \mathcal{D}_2 \otimes \cdots \otimes \mathcal{D}_n),$$

where all tensor products are taken over C[0,1]. That is

$$\mathcal{D}_1 \otimes \cdots \otimes \mathcal{D}_n \cong \{ \alpha \colon [0,1] \to \mathcal{D}^{\otimes n} \mid \text{ for } 1 \le i \le n \, \alpha(x_i) \in E_i \}$$

where

$$E_i = \mathcal{D} \otimes \mathcal{D} \otimes \cdots \mathcal{D} \otimes \psi(\mathcal{D}) \otimes \mathcal{D} \otimes \cdots \otimes \mathcal{D},$$

with the $\psi(\mathcal{D})$ at the *i*'th place.

For any $I = [a, b] \subseteq [0, 1]$ there exists an $x \notin \{x_1, x_2, \ldots\}$ such that

$$(\pi_x)_* \colon K_0(\mathcal{A}(I)) \to K_0(\mathcal{D}^{\otimes \infty})$$

is not injective. This shows that there can be no I such that $\mathcal{A}(I)$ is trivial, since for such an I all the maps $(\pi_x)_*$ would be isomorphisms.

Theorem 1.12. Let \mathcal{D} be a stable Kirchberg algebra. Let \mathcal{A} be a stable continuous field of stable Kirchberg algebras over a finite dimensional compact Hausdorff space. Suppose there exists $\sigma \in KK(\mathcal{D}, \mathcal{A})$ such that

$$[\pi_x]\sigma \in KK(\mathcal{D},\mathcal{A})^{-1},$$

for all $x \in X$. Then $\mathcal{A} \cong C(X, \mathcal{D})$.

2 Second Lecture

Example 2.1 (Due to Hirshberg, Rørdam & Winter). Let $f \in \mathcal{M}_2(C(S^2))$ be the Bott projection and let $e = 1_{C(S^2)}$. Denote by p the projection in $\mathcal{M}_3(C(S^2))$ given by

$$p = \begin{pmatrix} e & 0\\ 0 & f \end{pmatrix}.$$

For any $x \in S^2$ p(x) is a rank 2 projection. Define

$$\mathcal{A} = \otimes_{n=1}^{\infty} p \mathcal{M}_3(C(S^2)) p.$$

This is a continuous field C^* -algebra over $\prod_{n=1}^{\infty} S^2$ with fibers

$$\otimes_{n=1}^{\infty} \mathcal{M}_2(\mathbb{C}) = UHF(2^{\infty}).$$

So all the fibers have $\mathbb{Z}[\frac{1}{2}]$ as their K_0 group. We will now determine $K_0(\mathcal{A})$. To ease the notation we put $\mathcal{B} = p\mathcal{M}_3(C(S^2))p$. Then $K_0(\mathcal{B}) = K_0(C(S^2))$. Consider the map from $\mathbb{C} \oplus \mathbb{C}$ to \mathcal{B} that sends (0, 1) to e and (0, 1) to f. It is a unital *-homomorphism and it induces a bijection on K_0 and K_1 . Hence it is a KK-equivalence. So we get a KK-equivalence

$$\otimes_{n=1}^{\infty} (\mathbb{C} \oplus \mathbb{C}) \to \otimes_{n=1}^{\infty} \mathcal{B} = \mathcal{A},$$

which sends [1] to [1]. Letting K denote the set $\prod_{n=1}^{\infty} \{0,1\}$ (Cantor set) we then get a unital *-homomorphism from C(K) to \mathcal{A} that induces a KK-equivalence mapping the class of the unit of \mathcal{A} to the class of the function constantly taking the value 1. Hence

$$K_0(\mathcal{A}) \cong K_0(C(K)) = C(K, \mathbb{Z}).$$

We now consider the C^* -algebra $\mathcal{A} \otimes \mathcal{O}_3$ (\mathcal{O}_3 is the Cuntz-algebra with $K_0(\mathcal{O}_3) = \mathbb{Z}/2\mathbb{Z}$ and $K_1(\mathcal{O}_3) = 0$). We have that

$$K_0(\mathcal{A} \otimes \mathcal{O}_3) = C(K, \mathbb{Z}) \otimes \mathbb{Z}/2\mathbb{Z} = C(K, \mathbb{Z}/2\mathbb{Z}).$$

If we let $x \in \prod_{n=1}^{\infty} S^2$ be given, then we can calculate the fiber at x as

$$(\mathcal{A} \otimes \mathcal{O}_3)(x) \cong \mathcal{A}(x) \otimes \mathcal{O}_3 \cong UHF(2^\infty) \otimes \mathcal{O}_3$$

So all the fibers are Kirchberg algebras, and we can compute their K-theory as

$$K_0(UHF(2^\infty)\otimes\mathcal{O}_3)=\mathbb{Z}\left[\frac{1}{2}\right]\otimes\mathbb{Z}/2\mathbb{Z}=0,$$

and

$$K_1(UHF(2^\infty)\otimes\mathcal{O}_3)=0.$$

Hence all the fibers are \mathcal{O}_2 . However $\mathcal{A} \otimes \mathcal{O}_3$ is not a trivial continuous field C^* -algebra as it has $K_0(\mathcal{A} \otimes \mathcal{O}_3) \cong C(K, \mathbb{Z}/2\mathbb{Z}) \neq 0$.

The space used in the example to get at non-trivial field with all fibers isomorphic to \mathcal{O}_2 were quite large. The following theorems tells us that small spaces can not exhibit that form of behavior.

Theorem 2.2. Let \mathcal{A} be a separable unital continuous field over a compact Hausdorff space X of finite covering dimension. If $\mathcal{A}(x) \cong \mathcal{O}_2$ for all $x \in X$ then $\mathcal{A} \cong C(X, \mathcal{O}_2)$.

Theorem 2.3 (Dadarlat-Mayer). Suppose \mathcal{A} is a separable continuous field of nuclear C^* -algebras over a compact Hausdorff space X. Suppose that for all ideals \mathcal{J} in \mathcal{A} we have $KK(\mathcal{J}, \mathcal{J}) = 0$. Then

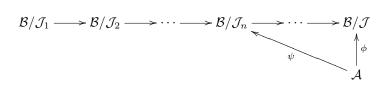
$$\mathcal{A} \sim_{KK_X} C(X, \mathcal{O}_2).$$

If $\mathcal{A}(x)$ is a Kirchberg algebra for all $x \in X$ then $\mathcal{A} \otimes \mathcal{O}_{\infty} \otimes \mathcal{K} \cong \mathcal{A} \otimes \mathcal{O}_2 \otimes \mathcal{K}$. If we have a field of nuclear C^* -algebras then the continuous field C^* -algebra will be nuclear.

The rest of the lecture was devoted to giving a explanation of why the first theorem is true.

The key point is that \mathcal{O}_2 is semiprojective, which means that it has good perturbation properties.

Definition 2.4. A separable C^* -algebra \mathcal{A} is semiprojective, if for any C^* algebra \mathcal{B} and any increasing chain of ideals $\mathcal{J}_1 \subseteq \mathcal{J}_2 \subseteq \cdots$ in \mathcal{B} and any *-homomorphism $\phi: \mathcal{A} \to \mathcal{B}/\mathcal{J}$, where $\mathcal{J} = \bigcup_n \mathcal{J}_n$, there exists an $n \in \mathbb{N}$ and a *-homomorphism $\psi: \mathcal{A} \to \mathcal{B}/\mathcal{J}_n$ such that the following diagram commutes



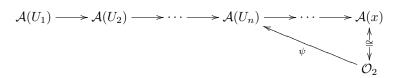
The definition is equivalent to requiring that for all \mathcal{B} and \mathcal{J}_n as above, the canonical map from $\liminf_{n \to \infty} \hom(\mathcal{A}, \mathcal{B}/\mathcal{J}_n)$ to $\hom(\mathcal{A}, \mathcal{B}/\mathcal{J})$ is surjective. We say that an algebra is weakly semiprojective if the map has dense image in the point norm topology.

An algebra is said to be KK-semiprojective if the canonical map from the inductive limit $\varinjlim KK(\mathcal{A}, \mathcal{B}/\mathcal{J}_n)$ to $KK(\mathcal{A}, \mathcal{B}/\mathcal{J})$ is surjective. It turns out that this is equivalent to saying that the map is a bijection.

Example 2.5 (Examples of semiprojective C^* -algebras). If \mathcal{A} is a Kirchberg algebra satisfying the UCT, then \mathcal{A} is weakly semiprojective if and only if $K_*(\mathcal{A})$ is finitely generated.

If $K_1(\mathcal{A})$ further is torsion free, then \mathcal{A} is semiprojective. It is an open question whether we need $K_1(\mathcal{A})$ to be torsion free.

From now on we will focus on a separable unital continuous field with fibers \mathcal{O}_2 over [0,1]. Fix $x \in [0,1]$ and define $U_n = [x - 1/n; x + 1/n] \cap [0,1]$. Then $\lim_{n \to \infty} \mathcal{A}(U_n) = \mathcal{A}(x)$ (non-trivial fact). By the semiprojectivity of \mathcal{O}_2 we can get an n and a unital *-homomorphism ψ such that



commutes.

Moreover, given any finite set $\mathcal{F} \subseteq \mathcal{A}$ and any $\varepsilon > 0$ we can find a finite set $\mathcal{H} \subseteq \mathcal{O}_2$ such that the isomorphism from \mathcal{O}_2 to $\mathcal{A}(x)$ maps \mathcal{H} to $\pi_x(\mathcal{F})$ and such that $\psi(\mathcal{H}) \supseteq_{\varepsilon} \pi_{U_n}(\mathcal{F})$. We get the latter since $\underline{\lim} \mathcal{A}(U_n) = \mathcal{A}(x)$.

We can extend ψ to $\tilde{\psi}: C(U_n) \otimes \mathcal{O}_2 \to \mathcal{A}(U_n)$ by $C(U_n)$ linearity, and we will have $\pi_{U_n}(\mathcal{F}) \subseteq_{\varepsilon} \tilde{\psi}(\mathcal{O}_2)$.

Doing this for other x we get closed sets U_k covering all of [0, 1] and maps from $C(U_k) \otimes \mathcal{O}_2$ into $\mathcal{A}(U_k)$ as above. The trick is the to paste them together. For that we use elementary fields.

Suppose we have 3 unital C^* -algebras E_1, \mathcal{D}, E_2 , and *-homomorphisms $\gamma_1 \colon \mathcal{D} \to E_1$ and $\gamma_2 \colon \mathcal{D} \to E_2$. Then the algebra

$$\mathcal{A} = \{ (\alpha, \beta, \gamma) \mid \alpha \in C([0, 1], E_1), \beta \in C([1, 2], \mathcal{D}), \gamma \in C([2, 3], E_2) \text{ such that} \\ \alpha(1) = \gamma_1(\beta(1)), \gamma_2(\beta(2)) = \gamma(2) \}$$

is built from elementary fields.

In our case we then have that for all finite sets $\mathcal{F} \subseteq \mathcal{A}$ and all $\varepsilon > 0$ there exists an elementary field $E \subseteq \mathcal{A}$ such that $E(x) \cong \mathcal{O}_2$. The gluing morphisms $\gamma \colon \mathcal{O}_2 \to \mathcal{O}_2$ are *KK*-equivalent. We have seen that $E \cong C([0, 1], \mathcal{O}_2)$. The idea is then to write \mathcal{A} as an inductive limit of elementary fields, and show that things extend nicely.

3 Third Lecture

The main theme of this lecture was the structure of continuous fields, restricted to the case where the fibers are Kirchberg algebras satisfying the UCT.

Definition 3.1. A sequence of sub- C^* -algebras (\mathcal{D}_n) of a C^* -algebra \mathcal{D} is called exhaustive if for all finite subsets $\mathcal{F} \subseteq \mathcal{D}$ and all $\varepsilon > 0$ there exists n such that $\mathcal{F} \subseteq_{\varepsilon} D_n$.

Note that we do not assume $\mathcal{D}_1 \subseteq \mathcal{D}_2 \subseteq \cdots$. If we did, then (\mathcal{D}_n) would be exhaustive if and only if $\overline{\bigcup_n \mathcal{D}_n} = \mathcal{D}$.

We will now define *n*-pullbacks. They are continuous fields obtained by gluing n + 1 locally trivial fields together.

Definition 3.2. Suppose we have

$$X = Y_0 \cup Y_1 \cup \cdots \cup Y_n,$$

where each Y_i is closed. Suppose also that we have locally trivial $C(Y_i)$ algebras E_i and fiberwise injective $C(Y_i \cap Y_j)$ maps $\gamma_{ij} \colon E_i|_{Y_i \cap Y_j} \to E_j|_{Y_i \cap Y_j}$ such that

$$(\gamma_{jk})_x \circ (\gamma_{ij})_x = (\gamma_{ik})_x,$$

for all $x \in Y_i \cap Y_j \cap Y_k$, $i \leq j \leq k$.

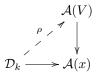
Then we define the n-pullback E as

$$E = \{(e_0, \ldots, e_n) \in E_0 \oplus \cdots \oplus E_n \mid e_j(x) = (\gamma_{ij})_x(e_i(x)) \text{ for all } x \in Y_i \cap Y_j\}.$$

Theorem 3.3. Let \mathcal{A} be a separable nuclear continuous C(X)-algebra over a compact metrizable space X of finite covering dimension, $\dim(X) = n$.

Suppose each fiber $\mathcal{A}(x)$ is a Kirchberg algebra which is KK-equivalent to a commutative C^* -algebra (i.e. satisfies the UCT). Then \mathcal{A} admits an exhaustive sequence (\mathcal{A}_m) , where each \mathcal{A}_m is an n-pullback. Moreover, if $K_1(\mathcal{A}(x))$ is torsion free for all x, then one can get $\mathcal{A}_1 \subseteq \mathcal{A}_2 \subseteq \cdots$. Hence, $\mathcal{A} = \bigcup_m \mathcal{A}_m$.

Outline. Fix a fiber $\mathcal{A}(x)$. Write $\mathcal{A}(x) = \lim_{K \to \infty} \mathcal{D}_k$, where the \mathcal{D}_k are Kirchberg algebras with finitely generated K-theory. By choice of the \mathcal{D}_k they are weakly semiprojective. So for a given k we can find a closed neighborhood V of \mathcal{A} and an approximate lifting $\rho: \mathcal{D}_k \to \mathcal{A}(V)$ such that the diagram



commutes. Using these liftings in a clever way, we can get n-pullbacks.

If K_1 is torsion free then we can choose the \mathcal{D}_k such that they also have torsion free K_1 . Then they will be semiprojective, and the liftings will be exact.

You do not need Kirchberg algebras. One only needs that every fiber is a limit of direct sums of simple semiprojective algebras, e.g. AF-algebras.

What is KK_X ? \mathcal{A} and \mathcal{B} two C(X)-algebras, X a compact Hausdorff space, then if ϕ is a C(X)-linear *-homomorphism it will induce a class $[\phi] \in KK_X(\mathcal{A},\mathcal{B})$. KK_X is a sort of fiberwise KK-theory. It consists of Fredholm-Kasparov bimodules $_{\mathcal{A}}E_{\mathcal{B}}$ subject to the condition $(fa)\xi b = (a)\xi(fb)$ for all $a \in \mathcal{A}, b \in \mathcal{B}, \xi \in E, f \in C(X)$.

Observe that while

$$KK(C_0((0;1]), C_0((0;1])) = 0,$$

we have

$$KK_{[0,1]}(C_0((0;1]), C_0((0;1])) = \mathbb{Z}[id],$$

since one cannot contract fiberwise.

We record the following fact. Suppose \mathcal{A} , $(\mathcal{B}_n)_{n=1}^{\infty}$ are nuclear and separable continuous C(X)-algebras with injections

$$\mathcal{B}_1 \stackrel{\gamma_1}{\hookrightarrow} \mathcal{B}_2 \stackrel{\gamma_2}{\hookrightarrow} \cdots$$

and $\mathcal{B} = \lim \mathcal{B}_n$. Then we have the following short exact sequence

$$0 \to \underline{\lim} {}^{1}KK^{1}_{X}(\mathcal{B}_{i}) \to KK_{X}(\mathcal{B}, \mathcal{A}) \to \underline{\lim} KK_{X}(\mathcal{B}_{i}, \mathcal{A}) \to 0$$

Recall that if

$$G_1 \stackrel{\lambda_1}{\leftarrow} G_2 \stackrel{\lambda_2}{\leftarrow} \cdots \stackrel{\lambda_i}{\leftarrow} G_{i+1} \stackrel{\lambda_{i+1}}{\leftarrow} \cdots$$

and we define a map id $-S: \prod_{i=1}^{\infty} G_i \to \prod_{i=1}^{\infty} G_i$ by

$$(g_1, g_2, \ldots) \mapsto (g_1 - \lambda_1(g_2), g_2 - \lambda_2(g_3), \ldots),$$

then

$$\ker(\operatorname{id} -S) = \varprojlim(G_i, \lambda_i)$$

and

$$\operatorname{coker}(\operatorname{id} - S) = \varprojlim^{1}(G_{i}, \lambda_{i}).$$

Proposition 3.4. Let \mathcal{A} be a separable and nuclear continuous field over a compact metriziable space X. Then there exists $\mathcal{A}^{\#}$ a separable nuclear continuous field over X with $\mathcal{A}^{\#}(x)$ Kirchberg for all $x \in X$ and C(X)-linear map $\phi: \mathcal{A} \hookrightarrow \mathcal{A}^{\#}$ such that

$$[\phi] \in KK_X(\mathcal{A}, \mathcal{A}^{\#})^{-1}.$$

Theorem 3.5. Let \mathcal{A}, \mathcal{B} be separable nuclear continuous C(X)-algebras over a finite dimensional compact metrizable space X. Let $\sigma \in KK_X(\mathcal{A}, \mathcal{B})$ (e.g. $\sigma = [\phi]$ where ϕ is C(X) linear map from \mathcal{A} to \mathcal{B}). Suppose that for all $x \in X$ we have $\sigma_x \in KK(\mathcal{A}(x), \mathcal{B}(x))^{-1}$, then $\sigma \in KK_X(\mathcal{A}, \mathcal{B})$.

Proof. Consider the mapping cone

$$C_{\phi} = \{ (f, a) \mid f \in C_0((0; 1], \mathcal{B}), a \in \mathcal{A}, f(1) = \phi(a) \}.$$

It is a continuous C(X)-algebra with fibers $(C_{\phi})_x = C_{\phi_x}$. We have a Puppe sequence

$$KK_X(C, C_\phi) \to KK_X(C, \mathcal{A}) \to KK_X(C, \mathcal{B}) \to KK_X^1(C, C_\phi)$$

for all nuclear and separable continuous C(X)-algebras C. We have a similar sequence for each ϕ_x :

$$KK(C(x), C_{\phi_x}) \to KK(C(x), \mathcal{A}(x)) \stackrel{(\phi_x)_*}{\to} KK(C(x), \mathcal{B}(x))$$

By assumption $(\phi_x)_*$ is bijective, so $KK(C(x), C_{\phi_x}) = 0$. Hence $C_{\phi_x} \sim_{KK} \mathcal{O}_2 \otimes \mathcal{K}$. Now $C_{\phi} \sim_{KK} C_{\phi}^{\#}$. The latter will be a field over $\mathcal{O}_2 \otimes \mathcal{K}$. Therefore we have

$$C_{\phi_x} \sim_{KK} (C_{\phi}^{\#})_x \cong \mathcal{O}_2 \otimes \mathcal{K}.$$

By a trivialisation result, we get $C_{\phi}^{\#} \cong C(X) \otimes \mathcal{O}_2 \otimes \mathcal{K}$.

Corollary 3.6. Let \mathcal{B} be as in the previous theorem. Suppose \mathcal{D} is a separable nuclear C^* -algebra with an element $\sigma \in KK(\mathcal{D},\mathcal{B})$ such that $\sigma_x \in KK(\mathcal{D},\mathcal{B}(x))^{-1}$ for all x, then $C(X) \otimes \mathcal{D} \sim_{KK_X} \mathcal{B}$.

Proof.

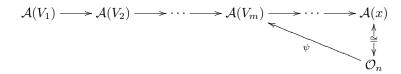
$$KK_X(C(X)\otimes \mathcal{D},\mathcal{B})\cong KK(\mathcal{D},\mathcal{B}).$$

Corollary 3.7. Let \mathcal{A} be a unital separable continuous field over a finite dimensional compact metrizable space X. Suppose $\mathcal{A}(x) \cong \mathcal{O}_n$ for all x (n fixed, $2 \le n \le \infty$). Then

- 1. If n = 2 or $n = \infty$ then $\mathcal{A} \cong C(X) \otimes \mathcal{O}_n$.
- 2. In all cases \mathcal{A} is locally trivial. Moreover $\mathcal{A} \cong C(X) \otimes \mathcal{O}_n$ if and only if $(n-1)[1_{\mathcal{A}}] = 0$ in $K_0(\mathcal{A})$.

"Proof". Locally trivial: Fix $x_0 \in X$. It suffices to find V a closed neighborhood of x_0 such that $C(V) \otimes \mathcal{O}_n \sim_{KK_X}^{\sigma} \mathcal{A}(V)$ and $\sigma_x[1] = [1]$. For that it suffices to find a closed neighborhood V and a unital *-homomorphism $\phi : \mathcal{O}_n \to \mathcal{A}(V)$. Indeed if that is the case, then $[\phi] \in KK(\mathcal{O}_n, \mathcal{A}(V))$, and if $x \in X$ then $\phi_x \in KK(\mathcal{O}_n, \mathcal{A}(x))^{-1}$ since the map $K_0(\mathcal{O}_n) \xrightarrow{(\phi_x)_*} \mathcal{K}_0(\mathcal{A}(x)) \cong \mathbb{Z}/(n-1)\mathbb{Z}$ is bijective (it is unital). As there is no $K_1 \phi$ is a KK-equivalence.

To get such a V, we consider a decreasing set of neighborhoods $V_1 \supseteq V_2 \supseteq \cdots$ such that $\cap_m V_m = \{x\}$. Then, by the semiprojectivity of \mathcal{O}_n , we get an n and a unital *-homomorphism ψ such that the following diagram commutes



To get global triviality we need to find unital $\phi: \mathcal{O}_n \to \mathcal{A}$. For that it is enough to find a map $K_0(\mathcal{O}_n) \to \mathcal{K}_0(\mathcal{A})$ mapping [1] to [1] and then lift it up to the level of algebras.