
1 FIRST LECTURE

This is lecture notes of Marius Dadarlat’s talks during the Master class on clas-

sification of C∗-algebras at the University of Copenhagen. The material he covered

appears to be from the papers Continuous fields of C*-algebras over finite dimensional

spaces (Advances in Mathematics 222 (2009) 1850-1881) and Fiberwise KK-equivalence

of continuous fields of C*-algebras (J. K-Theory 3 (2009), 205-219).

1 First Lecture

In general A will denote a separable C∗-algebra and X will denote a locally
compact Hausdorff space.

Definition 1.1 (Kasparov). A is a C0(X) algebra if a ∗-homomorphism from
C0(X) to Z(M(A)) (the center of the multiplier algebra) is given (this means
we can multiply elements from C0(X) with elements from A) such that

C0(X)A = A.

Morphisms of C0(X)-algebras γ : A → B commutes with the multiplication, that
is γ(fa) = fγ(a).

An equivalent definition would be that a surjective ∗-homomorphism going
from C0(X)⊗A to A, which is A linear, is given.

Another equivalent definition is that a continuous map from Prim(A) to X
is given.

Remark 1.2. We can extend the map from C0(X) to Z(M(A)) to a map from
Cb(X) to Z(M(A)).

If U ⊆ X is open, then by Cohens lemma C0(U)A = C0(U)A. This is an
ideal in A and we denote it by A(U).

If Y ⊆ X is closed, then we let A(Y ) be the quotient A/A(X \Y ). If x ∈ X
then the set {x} is closed and A(x) denotes A({x}). This quotient is called the
fiber at x of A.

We let πx denote the quotient map from A to A(x). If a ∈ A then we
write a(x) for πx(a). We have a ∗-homomorphism A → Πx∈XA(x) given by
a 7→ (πx(a))x∈X .

Lemma 1.3. For all a ∈ A the map x 7→ ‖πx(a)‖ = ‖a(x)‖ is upper semi-
continuous.

Proof. We must show that for all α > 0 the set

U = {x ∈ X | ‖πx(a)‖ < α}

is open. We have

‖πx(a)‖ = inf{‖a+ z‖ | z ∈ A(X \ {x})}
= inf{‖a+ fb‖ | f ∈ C0(X \ {x}), b ∈ A}
= inf{‖a+ (g − g(x))hb‖ | g ∈ C0(X), b ∈ A, h ∈ C0(X)}.

If x ∈ U then ‖πx(a)‖ < α so then there must exist g ∈ C0(X), h ∈ C0(X), b ∈ A
such that

‖a+ (g − g(x))hb‖ < α.
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Since that expression is continuous in x, there exists an open set V , x ∈ V such
that for all y ∈ V

‖a+ (g − g(y))hb‖ < α.

Hence x ∈ V ⊆ U and therefore U is open.

Remark 1.4. For all x ∈ X, a ∈ A and f ∈ C0(X): πx(fa) = f(x)π(a) since
(f − f(x))a ∈ C0(X \ {x})A = ker(πx(a)).

Define for all a ∈ A the map N(a) : X → [0;∞[ by N(a)(x) = ‖πx(a)‖ =
‖a(x)‖ (N is for norm). By lemma 1.3 this map is lower semi-continuous and
by remark 1.4 we have N(fa)(x) = f(x)N(a)(x) for all x ∈ X.

Definition 1.5. A is a continuous C0(X)-algebra if N(a) is continuous for all
a ∈ A. In this case N(a) ∈ C0(X).

Such algebras are also called continuous field C∗-algebras.

This definition is equivalent to requiring that the map Prim(A) → X is
open.

1.1 Examples

Example 1.6. A = C0(X,D) = C0(X) ⊗ D. This is called the trivial field.
Note that A(x) ∼= D for all x ∈ X.

Example 1.7. Let D be a C∗-algebra and let ψ ∈ End(D). Let

A = {(α, d) ∈ C([0, 1], D)⊕D | α(1) = ψ(d)},

A is C([0, 1])-algebra with multiplication of an f ∈ C([0, 1]) given by

f(α, d) = (fα, f(1)d).

We will show that A(x) ∼= D for all x ∈ X. Observe that

C0([0, 1] \ {x})A =
{

(α, d) ∈ A with α(x) = 0, if 0 ≤ x < 1
C0([0, 1),D)⊕ 0, if x = 1 .

The extensions
0→ C0([0, 1),D)→ A (α,d) 7→d−−−−−→ D → 0

and
0→ {(α, d) ∈ A | α(x) = 0} → A evx−−→ D → 0

show that indeed all A(x) are isomorphic to D.
In this example the norm function is

N(α, d) =
{
‖α(x)‖, if 0 ≤ x < 1
‖d‖, if x = 1 .

N is continuous if and only if ‖d‖ = ‖α(1)‖ = ‖ψ(d)‖ for all d ∈ D, that is
N is continuous if and only if ψ is injective. So we have a continuous field
C∗-algebra if and only if ψ is injective.

If ψ is injective, then

A ∼= {α ∈ C([0, 1],D) | α(1) ∈ ψ(D)},

by an isomorphism that sends (α, d) to α.
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We will now try to find out when the field in the second example is trivial,
i.e. when A ∼= C([0, 1],D).

Lemma 1.8. Suppose that ψ is injective. Then A ∼= C([0, 1],D) if and only if
there exists a continuous map θ : [0, 1]→ End(A) (where End(A) has the point
norm topology) such that θ(s) ∈ Aut(A) for all 0 ≤ s < 1 and θ(1) = ψ.

Proof. Suppose θ exists. By identifying A with {α ∈ C([0, 1],D) | α(1) ∈ ψ(D)}
we can define a map η : C([0, 1],D)→ A by

η(α)(s) = θ(s)(α(s)).

This maps into A since η(α)(1) = ψ(α(1)) ∈ ψ(D). One can check that η is an
isomorphism of C([0, 1])-algebras.

For the other implication, assume that η : C([0, 1],D) → A ⊆ C([0, 1],D)
is an isomorphism of C([0, 1])-algebras. This gives us a family of injective
homomorphisms (ηs)s∈[0,1] from D to D, such that s 7→ ηs is a continuous
map from [0, 1] to End(D), ηs is an automorphism of D if 0 ≤ s < 1 and
η1(D) = ψ(D). By the latter we can define γ ∈ Aut(D) by γ = η−1

1 ψ. We now
define θ : [0, 1] → End(D) by θ(s) = η−1

s γ. We note that if 0 ≤ s < 1 then
θ(s) ∈ Aut(D) and that θ(1) = η1η

−1
1 ψ = ψ.

We can say more if we know more about D.

Corollary 1.9. Suppose D is a stable Kirchberg algebra. Then A = {α ∈
C([0, 1],D) | α(1) ∈ ψ(D)} is trivial if and only if [ψ] ∈ KK(D,D)−1.

Proof. Suppose [ψ] ∈ KK(D,D)−1. Then by the Kirchberg-Phillips theorem,
there exists an automorphism φ of D and a family of unitaries us ∈ U(1C +
D), 0 ≤ s < 1 such that [ψ] = [φ] and

lim
s→1
‖usφ(d)u∗s − ψ(d)‖ = 0,

for all d ∈ D. Now the map θ : [0, 1]→ End(D) given by

θ(s)(d) =
{
usφ(d)u∗s, if 0 ≤ s < 1,
ψ(d), if s = 1 .

and the above lemma combines to give the desired conclusion.
The converse is also true, since, by lemma 1.8, we then have that ψ is

homotopic to an automorphism.

Remark 1.10. By the corollary we get: If ψ∗ : K∗(D) → K∗(D) is not bijective
then A is not a trivial field.

As a variation on this example we can fix x ∈ (0, 1) and define

A = {α ∈ C([0, 1],D) | α(x) ∈ ψ(D)}
= {(α, d) ∈ C([0, 1],D)⊕D | α(x) = ψ(D)}.

The short exact sequence

0→ C0([0, 1] \ {x},D)→ A −→
πx

D → 0
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where πx maps (α, d) to d, is split with the split s : D → A given by s(d) 7→
(ψ(d), d) (ψ(d) means a function constantly taking that value). Hence we get a
short exact sequence of K0-groups

0→ K0(C0([0, 1] \ {x}),D)→ K0(A) −−−→
(πx)∗

K0(D)→ 0

Since K0(C0([0, 1] \ {x}),D) = 0, we get that (πx)∗ is an isomorphism. It
must have inverse s∗. Consider now some point y 6= x. The quotient map
πy : A → A(y) is given by πy((α, d)) = α(x). Hence we have a map

(πy)∗ : K0(A)→ K0(A(y)) ∼= K0(D).

We have (πy)∗s∗ ≡ ψ∗ : K0(D)→ K0(D). Thus ψ∗ is not bijective. This implies
that A is not trivial since K0(A) ∼= K0(A(y)).

Example 1.11 (Dadarlat & Elliott). Let D be a unital Kirchberg algebra such
that K0(D) = Z⊕ Z, [1D] = (1, 0) and K1(D) = 0. Set

B = D⊗∞ = lim
→

(
D −−−−−−→

d7→d⊗1D
D ⊗D → D ⊗D ⊗D → · · ·

)
We will construct a continuous field A over [0, 1] such that A(x) ∼= B for all
x ∈ [0, 1] and such that for all closed intervals I = [a, b] ⊆ [0, 1], a < b,

A(I) 6∼= C(I,B).

Thus A has all fibers isomorphic but is not locally trivial at any point.
Let ψ be an endomorphism of D such that K0(ψ) = ψ∗ : K0(D)→ K0(D) is

given by

ψ∗ =
(

1 0
0 0

)
.

Let (xn) be a dense sequence in [0, 1] with xi 6= xj if i 6= j. Define

Dn = {α ∈ C([0, 1],D) | α(xn) ∈ ψ(D)}.
Then Dn(x) ∼= D for all x ∈ [0, 1]. Now define A by

A = ⊗∞n=1Dn = lim
→

(D1 ⊗D2 ⊗ · · · ⊗ Dn),

where all tensor products are taken over C[0, 1]. That is

D1 ⊗ · · · ⊗ Dn ∼= {α : [0, 1]→ D⊗n | for 1 ≤ i ≤ nα(xi) ∈ Ei},
where

Ei = D ⊗D ⊗ · · ·D ⊗ ψ(D)⊗D ⊗ · · · ⊗ D,
with the ψ(D) at the i’th place.

For any I = [a, b] ⊆ [0, 1] there exists an x /∈ {x1, x2, . . .} such that

(πx)∗ : K0(A(I))→ K0(D⊗∞)

is not injective. This shows that there can be no I such that A(I) is trivial,
since for such an I all the maps (πx)∗ would be isomorphisms.

Theorem 1.12. Let D be a stable Kirchberg algebra. Let A be a stable continu-
ous field of stable Kirchberg algebras over a finite dimensional compact Hausdorff
space. Suppose there exists σ ∈ KK(D,A) such that

[πx]σ ∈ KK(D,A)−1,

for all x ∈ X. Then A ∼= C(X,D).
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2 Second Lecture

Example 2.1 (Due to Hirshberg, Rørdam & Winter). Let f ∈ M2(C(S2)) be
the Bott projection and let e = 1C(S2). Denote by p the projection inM3(C(S2))
given by

p =
(
e 0
0 f

)
.

For any x ∈ S2 p(x) is a rank 2 projection. Define

A = ⊗∞n=1pM3(C(S2))p.

This is a continuous field C∗-algebra over Π∞n=1S
2 with fibers

⊗∞n=1M2(C) = UHF (2∞).

So all the fibers have Z[ 12 ] as their K0 group. We will now determine K0(A).
To ease the notation we put B = pM3(C(S2))p. Then K0(B) = K0(C(S2)).
Consider the map from C⊕C to B that sends (0, 1) to e and (0, 1) to f . It is a
unital ∗-homomorphism and it induces a bijection on K0 and K1. Hence it is a
KK-equivalence. So we get a KK-equivalence

⊗∞n=1 (C⊕ C)→ ⊗∞n=1B = A,

which sends [1] to [1]. Letting K denote the set Π∞n=1{0, 1} (Cantor set) we then
get a unital ∗-homomorphism from C(K) to A that induces a KK-equivalence
mapping the class of the unit of A to the class of the function constantly taking
the value 1. Hence

K0(A) ∼= K0(C(K)) = C(K,Z).

We now consider the C∗-algebra A ⊗ O3 (O3 is the Cuntz-algebra with
K0(O3) = Z/2Z and K1(O3) = 0). We have that

K0(A⊗O3) = C(K,Z)⊗ Z/2Z = C(K,Z/2Z).

If we let x ∈ Π∞n=1S
2 be given, then we can calculate the fiber at x as

(A⊗O3)(x) ∼= A(x)⊗O3
∼= UHF (2∞)⊗O3.

So all the fibers are Kirchberg algebras, and we can compute their K-theory as

K0(UHF (2∞)⊗O3) = Z
[
1
2

]
⊗ Z/2Z = 0,

and
K1(UHF (2∞)⊗O3) = 0.

Hence all the fibers are O2. However A ⊗ O3 is not a trivial continuous field
C∗-algebra as it has K0(A⊗O3) ∼= C(K,Z/2Z) 6= 0.

The space used in the example to get at non-trivial field with all fibers
isomorphic to O2 were quite large. The following theorems tells us that small
spaces can not exhibit that form of behavior.
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Theorem 2.2. Let A be a separable unital continuous field over a compact
Hausdorff space X of finite covering dimension. If A(x) ∼= O2 for all x ∈ X
then A ∼= C(X,O2).

Theorem 2.3 (Dadarlat-Mayer). Suppose A is a separable continuous field of
nuclear C∗-algebras over a compact Hausdorff space X. Suppose that for all
ideals J in A we have KK(J ,J ) = 0. Then

A ∼KKX
C(X,O2).

If A(x) is a Kirchberg algebra for all x ∈ X then A⊗O∞⊗K ∼= A⊗O2⊗K.
If we have a field of nuclear C∗-algebras then the continuous field C∗-algebra

will be nuclear.

The rest of the lecture was devoted to giving a explanation of why the first
theorem is true.

The key point is that O2 is semiprojective, which means that it has good
perturbation properties.

Definition 2.4. A separable C∗-algebra A is semiprojective, if for any C∗-
algebra B and any increasing chain of ideals J1 ⊆ J2 ⊆ · · · in B and any
∗-homomorphism φ : A → B/J , where J = ∪nJn, there exists an n ∈ N and a
∗-homomorphism ψ : A → B/Jn such that the following diagram commutes

B/J1
// B/J2

// · · · // B/Jn // · · · // B/J

A

φ

OO

ψ

hhRRRRRRRRRRRRRRRR

The definition is equivalent to requiring that for all B and Jn as above, the
canonical map from lim−→hom(A,B/Jn) to hom(A,B/J ) is surjective. We say
that an algebra is weakly semiprojective if the the map has dense image in the
point norm topology.

An algebra is said to be KK-semiprojective if the canonical map from the
inductive limit lim−→KK(A,B/Jn) to KK(A,B/J ) is surjective. It turns out
that this is equivalent to saying that the map is a bijection.

Example 2.5 (Examples of semiprojective C∗-algebras). If A is a Kirchberg
algebra satisfying the UCT, then A is weakly semiprojective if and only if K∗(A)
is finitely generated.

If K1(A) further is torsion free, then A is semiprojective. It is an open
question whether we need K1(A) to be torsion free.

From now on we will focus on a separable unital continuous field with fibers
O2 over [0, 1]. Fix x ∈ [0, 1] and define Un = [x − 1/n;x + 1/n] ∩ [0, 1]. Then
lim−→A(Un) = A(x) (non-trivial fact). By the semiprojectivity of O2 we can get
an n and a unital ∗-homomorphism ψ such that

A(U1) // A(U2) // · · · // A(Un) // · · · // A(x)

O2

��
∼=

OO

ψ

iiRRRRRRRRRRRRRRRR
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commutes.
Moreover, given any finite set F ⊆ A and any ε > 0 we can find a finite

set H ⊆ O2 such that the isomorphism from O2 to A(x) maps H to πx(F) and
such that ψ(H) ⊇ε πUn(F). We get the latter since lim−→A(Un) = A(x).

We can extend ψ to ψ̃ : C(Un) ⊗ O2 → A(Un) by C(Un) linearity, and we
will have πUn

(F) ⊆ε ψ̃(O2).
Doing this for other x we get closed sets Uk covering all of [0, 1] and maps

from C(Uk)⊗O2 into A(Uk) as above. The trick is the to paste them together.
For that we use elementary fields.

Suppose we have 3 unital C∗-algebras E1,D, E2, and ∗-homomorphisms
γ1 : D → E1 and γ2 : D → E2. Then the algebra

A = {(α, β, γ) | α ∈ C([0, 1], E1), β ∈ C([1, 2],D), γ ∈ C([2, 3], E2) such that
α(1) = γ1(β(1)), γ2(β(2)) = γ(2)}

is built from elementary fields.
In our case we then have that for all finite sets F ⊆ A and all ε > 0 there

exists an elementary field E ⊆ A such that E(x) ∼= O2. The gluing morphisms
γ : O2 → O2 are KK-equivalent. We have seen that E ∼= C([0, 1],O2). The
idea is then to write A as an inductive limit of elementary fields, and show that
things extend nicely.
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3 Third Lecture

The main theme of this lecture was the structure of continuous fields, restricted
to the case where the fibers are Kirchberg algebras satisfying the UCT.

Definition 3.1. A sequence of sub-C∗-algebras (Dn) of a C∗-algebra D is called
exhaustive if for all finite subsets F ⊆ D and all ε > 0 there exists n such that
F ⊆ε Dn.

Note that we do not assume D1 ⊆ D2 ⊆ · · · . If we did, then (Dn) would be
exhaustive if and only if ∪nDn = D.

We will now define n-pullbacks. They are continuous fields obtained by
gluing n+ 1 locally trivial fields together.

Definition 3.2. Suppose we have

X = Y0 ∪ Y1 ∪ · · · ∪ Yn,

where each Yi is closed. Suppose also that we have locally trivial C(Yi) algebras
Ei and fiberwise injective C(Yi ∩ Yj) maps γij : Ei|Yi∩Yj → Ej |Yi∩Yj such that

(γjk)x ◦ (γij)x = (γik)x,

for all x ∈ Yi ∩ Yj ∩ Yk, i ≤ j ≤ k.
Then we define the n-pullback E as

E = {(e0, . . . , en) ∈ E0 ⊕ · · · ⊕ En | ej(x) = (γij)x(ei(x)) for all x ∈ Yi ∩ Yj}.

Theorem 3.3. Let A be a separable nuclear continuous C(X)-algebra over a
compact metrizable space X of finite covering dimension, dim(X) = n.

Suppose each fiber A(x) is a Kirchberg algebra which is KK-equivalent to a
commutative C∗-algebra (i.e. satisfies the UCT). Then A admits an exhaustive
sequence (Am), where each Am is an n-pullback. Moreover, if K1(A(x)) is
torsion free for all x, then one can get A1 ⊆ A2 ⊆ · · · . Hence, A = ∪mAm.

Outline. Fix a fiber A(x). Write A(x) = lim−→Dk, where the Dk are Kirchberg
algebras with finitely generated K-theory. By choice of the Dk they are weakly
semiprojective. So for a given k we can find a closed neighborhood V of A and
an approximate lifting ρ : Dk → A(V ) such that the diagram

A(V )

��
Dk

ρ
<<z

z
z

z
// A(x)

commutes. Using these liftings in a clever way, we can get n-pullbacks.
If K1 is torsion free then we can choose the Dk such that they also have

torsion free K1. Then they will be semiprojective, and the liftings will be
exact.

You do not need Kirchberg algebras. One only needs that every fiber is a
limit of direct sums of simple semiprojective algebras, e.g. AF -algebras.
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What is KKX? A and B two C(X)-algebras, X a compact Hausdorff
space, then if φ is a C(X)-linear ∗-homomorphism it will induce a class [φ] ∈
KKX(A,B). KKX is a sort of fiberwise KK-theory. It consists of Fredholm-
Kasparov bimodules AEB subject to the condition (fa)ξb = (a)ξ(fb) for all
a ∈ A, b ∈ B, ξ ∈ E, f ∈ C(X).

Observe that while

KK(C0((0; 1]), C0((0; 1])) = 0,

we have
KK[0,1](C0((0; 1]), C0((0; 1])) = Z[id],

since one cannot contract fiberwise.
We record the following fact. Suppose A, (Bn)∞n=1 are nuclear and separable

continuous C(X)-algebras with injections

B1
γ1
↪→ B2

γ2
↪→ · · ·

and B = lim−→Bn. Then we have the following short exact sequence

0→ lim←−
1KK1

X(Bi)→ KKX(B,A)→ lim←−KKX(Bi,A)→ 0

Recall that if
G1

λ1← G2
λ2← · · · λi← Gi+1

λi+1← · · ·

and we define a map id−S : Π∞i=1Gi → Π∞i=1Gi by

(g1, g2, . . .) 7→ (g1 − λ1(g2), g2 − λ2(g3), . . .),

then
ker(id−S) = lim←−(Gi, λi)

and
coker(id−S) = lim←−

1(Gi, λi).

Proposition 3.4. Let A be a separable and nuclear continuous field over a
compact metriziable space X. Then there exists A# a separable nuclear contin-
uous field over X with A#(x) Kirchberg for all x ∈ X and C(X)-linear map
φ : A ↪→ A# such that

[φ] ∈ KKX(A,A#)−1.

Theorem 3.5. Let A,B be separable nuclear continuous C(X)-algebras over
a finite dimensional compact metrizable space X. Let σ ∈ KKX(A,B) (e.g.
σ = [φ] where φ is C(X) linear map from A to B). Suppose that for all x ∈ X
we have σx ∈ KK(A(x),B(x))−1, then σ ∈ KKX(A,B).

Proof. Consider the mapping cone

Cφ = {(f, a) | f ∈ C0((0; 1],B), a ∈ A, f(1) = φ(a)}.

It is a continuous C(X)-algebra with fibers (Cφ)x = Cφx . We have a Puppe
sequence

KKX(C,Cφ)→ KKX(C,A)→ KKX(C,B)→ KK1
X(C,Cφ)
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for all nuclear and separable continuous C(X)-algebras C. We have a similar
sequence for each φx:

KK(C(x), Cφx
)→ KK(C(x),A(x))

(φx)∗→ KK(C(x),B(x))

By assumption (φx)∗ is bijective, so KK(C(x), Cφx
) = 0. Hence Cφx

∼KK
O2 ⊗ K. Now Cφ ∼KK C#

φ . The latter will be a field over O2 ⊗ K. Therefore
we have

Cφx ∼KK (C#
φ )x ∼= O2 ⊗K.

By a trivialisation result, we get C#
φ
∼= C(X)⊗O2 ⊗K.

Corollary 3.6. Let B be as in the previous theorem. Suppose D is a sep-
arable nuclear C∗-algebra with an element σ ∈ KK(D,B) such that σx ∈
KK(D,B(x))−1 for all x, then C(X)⊗D ∼KKX

B.

Proof.
KKX(C(X)⊗D,B) ∼= KK(D,B).

Corollary 3.7. Let A be a unital separable continuous field over a finite di-
mensional compact metrizable space X. Suppose A(x) ∼= On for all x (n fixed,
2 ≤ n ≤ ∞). Then

1. If n = 2 or n =∞ then A ∼= C(X)⊗On.

2. In all cases A is locally trivial. Moreover A ∼= C(X) ⊗ On if and only if
(n− 1)[1A] = 0 in K0(A).

”Proof”. Locally trivial: Fix x0 ∈ X. It suffices to find V a closed neighborhood
of x0 such that C(V )⊗On ∼σKKX

A(V ) and σx[1] = [1]. For that it suffices to
find a closed neighborhood V and a unital ∗-homomorphism φ : On → A(V ).
Indeed if that is the case, then [φ] ∈ KK(On,A(V )), and if x ∈ X then

φx ∈ KK(On,A(x))−1 since the map K0(On)
(φx)∗→ K0(A(x)) ∼= Z/(n − 1)Z

is bijective (it is unital). As there is no K1 φ is a KK-equivalence.
To get such a V , we consider a decreasing set of neighborhoods V1 ⊇ V2 ⊇ · · ·

such that ∩mVm = {x}. Then, by the semiprojectivity of On, we get an n and
a unital ∗-homomorphism ψ such that the following diagram commutes

A(V1) // A(V2) // · · · // A(Vm) // · · · // A(x)

On
��
∼=

OO

ψ

iiRRRRRRRRRRRRRRRR

To get global triviality we need to find unital φ : On → A. For that it is
enough to find a map K0(On) → K0(A) mapping [1] to [1] and then lift it up
to the level of algebras.
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