The Kadison-Singer Problem in Mathematics and Engineering
Lecture 4: The Sundberg Problem, the Harmonic-Analysis Conjecture, KS in Number Theory and non-2-Pavable Projections

Master Course on the Kadison-Singer Problem
University of Copenhagen

Pete Casazza

The Frame Research Center
University of Missouri
casazzap@missouri.edu
October 15, 2013

Supported By

The Defense Threat Reduction Agency

NSF-DMS

The National Geospatial Intelligence Agency.
The Air Force Office of Scientific Research

Recall: The Bourgain-Tzafriri Conjecture

(strong) Bourgain-Tzafriri Conjecture
There exists a universal constant $A>0$ so that

Recall: The Bourgain-Tzafriri Conjecture

(strong) Bourgain-Tzafriri Conjecture
There exists a universal constant $A>0$ so that
for every $0<B$ there is a natural number $r=r(B)$

Recall: The Bourgain-Tzafriri Conjecture

(strong) Bourgain-Tzafriri Conjecture
There exists a universal constant $A>0$ so that
for every $0<B$ there is a natural number $r=r(B)$
so that for every natural number " n " and every operator $T: \ell_{2}^{n} \rightarrow \ell_{2}^{n}$ with $\left\|T e_{i}\right\|=1$ and $\|T\| \leq B$,

Recall: The Bourgain-Tzafriri Conjecture

(strong) Bourgain-Tzafriri Conjecture

There exists a universal constant $A>0$ so that
for every $0<B$ there is a natural number $r=r(B)$
so that for every natural number " n " and every operator $T: \ell_{2}^{n} \rightarrow \ell_{2}^{n}$ with $\left\|T e_{i}\right\|=1$ and $\|T\| \leq B$,
there exists a partition $\left(A_{j}\right)_{j=1}^{r}$ of $\{1,2, \ldots, n\}$ so that for all j and all scalars $\left(a_{i}\right)_{i \in A_{j}}$

$$
\left\|\sum_{i \in A_{j}} a_{i} T e_{i}\right\|^{2} \geq A \sum_{i \in A_{j}}\left|a_{i}\right|^{2}
$$

Recall: The Bourgain-Tzafriri Conjecture

(strong) Bourgain-Tzafriri Conjecture

There exists a universal constant $A>0$ so that
for every $0<B$ there is a natural number $r=r(B)$
so that for every natural number " n " and every operator $T: \ell_{2}^{n} \rightarrow \ell_{2}^{n}$ with $\left\|T e_{i}\right\|=1$ and $\|T\| \leq B$,
there exists a partition $\left(A_{j}\right)_{j=1}^{r}$ of $\{1,2, \ldots, n\}$ so that for all j and all scalars $\left(a_{i}\right)_{i \in A_{j}}$

$$
\left\|\sum_{i \in A_{j}} a_{i} T e_{i}\right\|^{2} \geq A \sum_{i \in A_{j}}\left|a_{i}\right|^{2}
$$

(weak) Bourgain-Tzafriri Conjecture
$A=f(B)$

Recall: The Feichtinger Conjecture

Definition

$\left\{\phi_{i}\right\}_{i \in I}$ is a Riesz Basic Sequence in H if there exist Riesz basis bounds $A, B>0$ so that for all scalars $\left(a_{i}\right)_{i \in I}$

$$
A \sum_{i \in I}\left|a_{i}\right|^{2} \leq\left\|\sum_{i \in I} a_{i} \phi_{i}\right\|^{2} \leq B \sum_{i \in I}\left|a_{i}\right|^{2}
$$

Recall: The Feichtinger Conjecture

Definition

$\left\{\phi_{i}\right\}_{i \in I}$ is a Riesz Basic Sequence in H if there exist Riesz basis bounds $A, B>0$ so that for all scalars $\left(a_{i}\right)_{i \in I}$

$$
A \sum_{i \in I}\left|a_{i}\right|^{2} \leq\left\|\sum_{i \in I} a_{i} \phi_{i}\right\|^{2} \leq B \sum_{i \in I}\left|a_{i}\right|^{2}
$$

If $a=1-\epsilon, B=1+\epsilon$ This is an ϵ-Riesz Basic Sequence

Recall: The Feichtinger Conjecture

Definition

$\left\{\phi_{i}\right\}_{i \in I}$ is a Riesz Basic Sequence in H if there exist Riesz basis bounds $A, B>0$ so that for all scalars $\left(a_{i}\right)_{i \in I}$

$$
A \sum_{i \in I}\left|a_{i}\right|^{2} \leq\left\|\sum_{i \in I} a_{i} \phi_{i}\right\|^{2} \leq B \sum_{i \in I}\left|a_{i}\right|^{2}
$$

If $a=1-\epsilon, B=1+\epsilon$ This is an ϵ-Riesz Basic Sequence

Feichtinger Conjecture

Every unit norm frame a finite union of Riesz basic sequences.

BT implies FC

Theorem
The Bourgain-Tzafriri Conjecture implies the Feichtinger Conjecture.

BT implies FC

Theorem
The Bourgain-Tzafriri Conjecture implies the Feichtinger Conjecture.

Proof: Let $\left(e_{i}\right)$ be the unit vector basis for ℓ_{2}.

BT implies FC

Theorem

The Bourgain-Tzafriri Conjecture implies the Feichtinger Conjecture.

Proof: Let $\left(e_{i}\right)$ be the unit vector basis for ℓ_{2}.
Let $\left(\phi_{i}\right)$ be a unit norm frame for ℓ_{2} with analysis operator T and synthesis operator $T^{*}: \ell_{2} \rightarrow \ell_{2}$ with $T^{*} e_{i}=\phi_{i}$ for all $i=1,2, \ldots$.

BT implies FC

Theorem

The Bourgain-Tzafriri Conjecture implies the Feichtinger Conjecture.

Proof: Let $\left(e_{i}\right)$ be the unit vector basis for ℓ_{2}.
Let $\left(\phi_{i}\right)$ be a unit norm frame for ℓ_{2} with analysis operator T and synthesis operator $T^{*}: \ell_{2} \rightarrow \ell_{2}$ with $T^{*} e_{i}=\phi_{i}$ for all $i=1,2, \ldots$.

Fix $0<A$ as in BT , and let $B=\|T\|^{2}$ and choose $r=r(B)$.

BT implies FC

Theorem

The Bourgain-Tzafriri Conjecture implies the Feichtinger Conjecture.

Proof: Let $\left(e_{i}\right)$ be the unit vector basis for ℓ_{2}.
Let $\left(\phi_{i}\right)$ be a unit norm frame for ℓ_{2} with analysis operator T and synthesis operator $T^{*}: \ell_{2} \rightarrow \ell_{2}$ with $T^{*} e_{i}=\phi_{i}$ for all $i=1,2, \ldots$.

Fix $0<A$ as in BT, and let $B=\|T\|^{2}$ and choose $r=r(B)$.

For each $n=1,2, \ldots$, let $L_{n}: \ell_{2}^{n} \rightarrow \operatorname{span}\left(\phi_{i}\right)_{i=1}^{n}$ be $L e_{i}=\phi_{i}$.

BT implies FC

Theorem

The Bourgain-Tzafriri Conjecture implies the Feichtinger Conjecture.

Proof: Let $\left(e_{i}\right)$ be the unit vector basis for ℓ_{2}.
Let $\left(\phi_{i}\right)$ be a unit norm frame for ℓ_{2} with analysis operator T and synthesis operator $T^{*}: \ell_{2} \rightarrow \ell_{2}$ with $T^{*} e_{i}=\phi_{i}$ for all $i=1,2, \ldots$.

Fix $0<A$ as in BT, and let $B=\|T\|^{2}$ and choose $r=r(B)$.

For each $n=1,2, \ldots$, let $L_{n}: \ell_{2}^{n} \rightarrow \operatorname{span}\left(\phi_{i}\right)_{i=1}^{n}$ be $L e_{i}=\phi_{i}$.

Proof Continued

By BT, there exists a partition $\left(A_{j}^{n}\right)_{j=1}^{r}$ so that for all $j=1,2, \ldots, r$ and all scalars $\left(a_{i}\right)_{i \in A_{j}}$ we have

Proof Continued

By BT, there exists a partition $\left(A_{j}^{n}\right)_{j=1}^{r}$ so that for all $j=1,2, \ldots, r$ and all scalars $\left(a_{i}\right)_{i \in A_{j}}$ we have

$$
A \sum_{i \in A_{j}^{n}}\left|a_{i}\right|^{2} \leq\left\|\sum_{i \in A_{j}^{n}} a_{i} \phi_{i}\right\|^{2}
$$

Proof Continued

By BT, there exists a partition $\left(A_{j}^{n}\right)_{j=1}^{r}$ so that for all $j=1,2, \ldots, r$ and all scalars $\left(a_{i}\right)_{i \in A_{j}}$ we have

$$
A \sum_{i \in A_{j}^{n}}\left|a_{i}\right|^{2} \leq\left\|\sum_{i \in A_{j}^{n}} a_{i} \phi_{i}\right\|^{2}
$$

There is a $1 \leq j \leq r$ so that for infinitely many $n, 1 \in A_{j}^{n}$.

Proof Continued

By BT, there exists a partition $\left(A_{j}^{n}\right)_{j=1}^{r}$ so that for all $j=1,2, \ldots, r$ and all scalars $\left(a_{i}\right)_{i \in A_{j}}$ we have

$$
A \sum_{i \in A_{j}^{n}}\left|a_{i}\right|^{2} \leq\left\|\sum_{i \in A_{j}^{n}} a_{i} \phi_{i}\right\|^{2}
$$

There is a $1 \leq j \leq r$ so that for infinitely many $n, 1 \in A_{j}^{n}$.
There is another k so that for infinitely many of the above $n, 2 \in A_{k}^{n}$.

Proof Continued

By BT, there exists a partition $\left(A_{j}^{n}\right)_{j=1}^{r}$ so that for all $j=1,2, \ldots, r$ and all scalars $\left(a_{i}\right)_{i \in A_{j}}$ we have

$$
A \sum_{i \in A_{j}^{n}}\left|a_{i}\right|^{2} \leq\left\|\sum_{i \in A_{j}^{n}} a_{i} \phi_{i}\right\|^{2}
$$

There is a $1 \leq j \leq r$ so that for infinitely many $n, 1 \in A_{j}^{n}$.
There is another k so that for infinitely many of the above $n, 2 \in A_{k}^{n}$.
CONTINUE.

The Sundberg Problem

Sundberg Problem

Can every unit norm Bessel sequence be partitioned into a finite number of non-spanning sets?

FC implies the Sundberg Problem

Theorem
The Feichtinger Conjecture implies the Sundberg Problem.

FC implies the Sundberg Problem

Theorem
The Feichtinger Conjecture implies the Sundberg Problem.
Proof: Let $\left(\phi_{i}\right)_{i=1}^{\infty}$ be a unit norm Bessel sequence for ℓ_{2}.

FC implies the Sundberg Problem

Theorem

The Feichtinger Conjecture implies the Sundberg Problem.
Proof: Let $\left(\phi_{i}\right)_{i=1}^{\infty}$ be a unit norm Bessel sequence for ℓ_{2}.
If $\left(e_{i}\right)_{i=1}^{\infty}$ is an orthonormal basis for ℓ_{2} then $\left(e_{i}\right) \cup\left(\phi_{i}\right)$ is a unit norm frame for ℓ_{2}.

FC implies the Sundberg Problem

Theorem

The Feichtinger Conjecture implies the Sundberg Problem.
Proof: Let $\left(\phi_{i}\right)_{i=1}^{\infty}$ be a unit norm Bessel sequence for ℓ_{2}.
If $\left(e_{i}\right)_{i=1}^{\infty}$ is an orthonormal basis for ℓ_{2} then $\left(e_{i}\right) \cup\left(\phi_{i}\right)$ is a unit norm frame for ℓ_{2}.

By FC, we can partition this set (and hence we can partition $\left(\phi_{i}\right)$) into a finite number of Riesz basic sequences say $\left(\phi_{i}\right)_{i \in A_{j}}$ for $j=1,2, \ldots, r$.

FC implies the Sundberg Problem

Theorem

The Feichtinger Conjecture implies the Sundberg Problem.
Proof: Let $\left(\phi_{i}\right)_{i=1}^{\infty}$ be a unit norm Bessel sequence for ℓ_{2}.
If $\left(e_{i}\right)_{i=1}^{\infty}$ is an orthonormal basis for ℓ_{2} then $\left(e_{i}\right) \cup\left(\phi_{i}\right)$ is a unit norm frame for ℓ_{2}.

By FC, we can partition this set (and hence we can partition $\left(\phi_{i}\right)$) into a finite number of Riesz basic sequences say $\left(\phi_{i}\right)_{i \in A_{j}}$ for $j=1,2, \ldots, r$.

But if we remove one vector from each family $\left(\phi_{i}\right)_{i \in A_{j}}$ then the resulting sets do not span.

End Proof

KS in Harmonic Analysis

Historical Note:

Jean Baptiste Joseph Fourier is credited with the discovery in 1824 that gases in the atmosphere might increase the surface temperature of the earth. Today, we call this the greenhouse effect.

Laurent Operators

Laurent Operators

If $\phi \in L^{\infty}[0,1]$, let

$$
T_{\phi} f=\phi \cdot f \quad \forall f \in L^{2}[0,1] .
$$

Laurent Operators

Laurent Operators

If $\phi \in L^{\infty}[0,1]$, let

$$
T_{\phi} f=\phi \cdot f \quad \forall f \in L^{2}[0,1] .
$$

Much work was done in 1980's to solve PC for Laurant Operators by:
Bourgain/Tzafriri
Halpern/Kaftal/Weiss

An Example

Example
 If $f=e^{2 \pi i n t}$ then for every measurable set $E \subseteq[0,1]$

An Example

Example

If $f=e^{2 \pi i n t}$ then for every measurable set $E \subseteq[0,1]$

$$
\left\|\chi_{E} f\right\|^{2}=|E|=|E| \cdot\|f\|^{2}
$$

and

An Example

Example

If $f=e^{2 \pi i n t}$ then for every measurable set $E \subseteq[0,1]$

$$
\left\|\chi_{E} f\right\|^{2}=|E|=|E| \cdot\|f\|^{2}
$$

and

$$
\left\|\chi_{E^{c}} f\right\|^{2}=\left|E^{c}\right|=\left|E^{c}\right|\|f\|^{2}
$$

Paving Exponentials

Definition
 If $A \subseteq \mathbb{Z}$, let

$$
S(A)=\operatorname{span}\left\{e^{2 \pi i n t}\right\}_{n \in A} \subseteq L^{2}[0,1] .
$$

Paving Exponentials

Definition

If $A \subseteq \mathbb{Z}$, let

$$
S(A)=\operatorname{span}\left\{e^{2 \pi i n t}\right\}_{n \in A} \subseteq L^{2}[0,1] .
$$

Known: Berman, Halpern, Kaftal and Weiss
For every $\epsilon>0$ and for every $E=[a, b] \subset[0,1]$

Paving Exponentials

Definition

If $A \subseteq \mathbb{Z}$, let

$$
S(A)=\operatorname{span}\left\{e^{2 \pi i n t}\right\}_{n \in A} \subseteq L^{2}[0,1] .
$$

Known: Berman, Halpern, Kaftal and Weiss
For every $\epsilon>0$ and for every $E=[a, b] \subset[0,1]$
there exists a partition of \mathbb{Z} into arithmetric progressions $\left(A_{j}\right)_{j=1}^{r}$ so that

Paving Exponentials

Definition

If $A \subseteq \mathbb{Z}$, let

$$
S(A)=\operatorname{span}\left\{e^{2 \pi i n t}\right\}_{n \in A} \subseteq L^{2}[0,1] .
$$

Known: Berman, Halpern, Kaftal and Weiss
For every $\epsilon>0$ and for every $E=[a, b] \subset[0,1]$
there exists a partition of \mathbb{Z} into arithmetric progressions $\left(A_{j}\right)_{j=1}^{r}$ so that for all j and $f \in S\left(A_{j}\right)$ we have

Paving Exponentials

Definition

If $A \subseteq \mathbb{Z}$, let

$$
S(A)=\operatorname{span}\left\{e^{2 \pi i n t}\right\}_{n \in A} \subseteq L^{2}[0,1] .
$$

Known: Berman, Halpern, Kaftal and Weiss
For every $\epsilon>0$ and for every $E=[a, b] \subset[0,1]$
there exists a partition of \mathbb{Z} into arithmetric progressions $\left(A_{j}\right)_{j=1}^{r}$ so that for all j and $f \in S\left(A_{j}\right)$ we have

$$
(1-\epsilon)(b-a)\|f\|^{2} \leq\left\|P_{E} f\right\|^{2} \leq(1+\epsilon)(b-a)\|f\|^{2}
$$

$P_{E} f=\chi_{E} \cdot f$

The Harmonic Analysis Conjecture

H.A. Conjecture

For every measurable $E \subseteq[0,1]$

The Harmonic Analysis Conjecture

H.A. Conjecture

For every measurable $E \subseteq[0,1]$ and for every $\epsilon>0$

The Harmonic Analysis Conjecture

H.A. Conjecture

For every measurable $E \subseteq[0,1]$
and for every $\epsilon>0$
there exists a partition $\left(A_{j}\right)_{j=1}^{r}$ of \mathbb{Z} such that

The Harmonic Analysis Conjecture

H.A. Conjecture

For every measurable $E \subseteq[0,1]$
and for every $\epsilon>0$ there exists a partition $\left(A_{j}\right)_{j=1}^{r}$ of \mathbb{Z} such that for every j and $f \in S\left(A_{j}\right)$

The Harmonic Analysis Conjecture

H.A. Conjecture

For every measurable $E \subseteq[0,1]$
and for every $\epsilon>0$ there exists a partition $\left(A_{j}\right)_{j=1}^{r}$ of \mathbb{Z} such that for every j and $f \in S\left(A_{j}\right)$

$$
(1-\epsilon)|E|\|f\|^{2} \leq\left\|P_{E} f\right\|^{2} \leq(1+\epsilon)|E|\|f\|^{2}
$$

$P_{E} f=f \cdot \chi_{E}$

The Harmonic Analysis Conjecture

H.A. Conjecture

For every measurable $E \subseteq[0,1]$
and for every $\epsilon>0$
there exists a partition $\left(A_{j}\right)_{j=1}^{r}$ of \mathbb{Z} such that for every j and $f \in S\left(A_{j}\right)$

$$
(1-\epsilon)|E|\|f\|^{2} \leq\left\|P_{E} f\right\|^{2} \leq(1+\epsilon)|E|\|f\|^{2}
$$

$P_{E} f=f \cdot \chi_{E}$
If we replace $1 \pm \epsilon$ by universal $0<A<1<B<\infty$, we call this weak H.A.

Equivalence of our Conjectures

Theorem (C/Fickus/Tremain/Weber)

The following are equivalent:

Equivalence of our Conjectures

Theorem (C/Fickus/Tremain/Weber)
The following are equivalent:
(1) H.A. Conjecture

Equivalence of our Conjectures

Theorem (C/Fickus/Tremain/Weber)

The following are equivalent:
(1) H.A. Conjecture
(2) Every T_{ϕ} is pavable

Equivalence of our Conjectures

Theorem (C/Fickus/Tremain/Weber)

The following are equivalent:
(1) H.A. Conjecture
(2) Every T_{ϕ} is pavable
(3) There is a universal constant K such that for every measurable subset $E \subseteq[0,1]$

Equivalence of our Conjectures

Theorem (C/Fickus/Tremain/Weber)

The following are equivalent:
(1) H.A. Conjecture
(2) Every T_{ϕ} is pavable
(3) There is a universal constant K such that for every measurable subset $E \subseteq[0,1]$ there exists a partition $\left(A_{j}\right)_{j=1}^{r}$ of \mathbb{Z} so that

Equivalence of our Conjectures

Theorem (C/Fickus/Tremain/Weber)

The following are equivalent:
(1) H.A. Conjecture
(2) Every T_{ϕ} is pavable
(3) There is a universal constant K such that for every measurable subset $E \subseteq[0,1]$ there exists a partition $\left(A_{j}\right)_{j=1}^{r}$ of \mathbb{Z} so that for all $f \in \operatorname{span}\left(e^{2 \pi i n t}\right)_{n \in A_{j}}$

Equivalence of our Conjectures

Theorem (C/Fickus/Tremain/Weber)

The following are equivalent:
(1) H.A. Conjecture
(2) Every T_{ϕ} is pavable
(3) There is a universal constant K such that for every measurable subset $E \subseteq[0,1]$ there exists a partition $\left(A_{j}\right)_{j=1}^{r}$ of \mathbb{Z} so that for all $f \in \operatorname{span}\left(e^{2 \pi i n t}\right)_{n \in A_{j}}$

$$
\left\|f \cdot \chi_{E}\right\|^{2} \leq K|E|\|f\|^{2}
$$

Equivalence of our Conjectures

Theorem (C/Fickus/Tremain/Weber)

The following are equivalent:
(1) H.A. Conjecture
(2) Every T_{ϕ} is pavable
(3) There is a universal constant K such that for every measurable subset $E \subseteq[0,1]$ there exists a partition $\left(A_{j}\right)_{j=1}^{r}$ of \mathbb{Z} so that for all $f \in \operatorname{span}\left(e^{2 \pi i n t}\right)_{n \in A_{j}}$

$$
\left\|f \cdot \chi_{E}\right\|^{2} \leq K|E|\|f\|^{2}
$$

Moreover: We may assume $|E|=\frac{1}{2}$.

Equivalence of our Conjectures

Theorem (C/Fickus/Tremain/Weber)

The following are equivalent:
(1) H.A. Conjecture
(2) Every T_{ϕ} is pavable
(3) There is a universal constant K such that for every measurable subset $E \subseteq[0,1]$ there exists a partition $\left(A_{j}\right)_{j=1}^{r}$ of \mathbb{Z} so that for all $f \in \operatorname{span}\left(e^{2 \pi i n t}\right)_{n \in A_{j}}$

$$
\left\|f \cdot \chi_{E}\right\|^{2} \leq K|E|\|f\|^{2}
$$

Moreover: We may assume $|E|=\frac{1}{2}$.
(B) Weak HA is equivalent to FC for Laurant operators.

KS in Number Theory

Van der Waerden's Theorem:
Given a partition of the integers $\left(A_{j}\right)_{j=1}^{r}$, there is an $1 \leq i \leq r$ so that A_{i} has arbitrarily long arithmetic progressions.

KS in Number Theory

Van der Waerden's Theorem:
Given a partition of the integers $\left(A_{j}\right)_{j=1}^{r}$, there is an $1 \leq i \leq r$ so that A_{i} has arbitrarily long arithmetic progressions.

Question:

Does there exist a quantitative version of Van der Waerden's theorem?

Gowers' Theorem

We use the notation $a \uparrow b$ to denote a^{b}.

Gowers' Theorem

We use the notation $a \uparrow b$ to denote a^{b}.

Theorem: [Gowers]
Let $0<\gamma \leq 1 / 2$, let k be a positive integer, let

$$
P \geq 2 \uparrow 2 \uparrow \gamma^{-1} \uparrow 2 \uparrow 2 \uparrow(k+9)
$$

and let A be a subset of $\{1,2, \ldots, P\}$ of size γP.

Gowers' Theorem

We use the notation $a \uparrow b$ to denote a^{b}.

Theorem: [Gowers]
Let $0<\gamma \leq 1 / 2$, let k be a positive integer, let

$$
P \geq 2 \uparrow 2 \uparrow \gamma^{-1} \uparrow 2 \uparrow 2 \uparrow(k+9)
$$

and let A be a subset of $\{1,2, \ldots, P\}$ of size γP.
Then A contains an arithmetic progression of length k.

Quantative Arithmetic Progressions

Definition

Let $g: \mathbb{N} \rightarrow[0, \infty)$. We say that $A \subset \mathbb{Z}$ satisfies the $g(N)$ arithmetic progression condition if for every $\delta>0$ there exists $M \in \mathbb{Z}$ and $n, \ell \in \mathbb{N}$ such that
(i) $\ell<\delta g(N)$
and
(ii) $\{M, M+\ell, M+2 \ell, \ldots, M+N \ell\} \subset A$.

Bownik and Speegle

Theorem (Bownik/Speegle)
There exists a set $U \subset[0,1]$ such that if $A \subset \mathbb{Z}$ satisfies the $g(N)=N^{1 / 2} \log ^{-3} N$ arithmetic condition,

Bownik and Speegle

Theorem (Bownik/Speegle)

There exists a set $U \subset[0,1]$ such that if $A \subset \mathbb{Z}$ satisfies the $g(N)=N^{1 / 2} \log ^{-3} N$ arithmetic condition,
then $\{f(x+k): k \in A\}$ is NOT a Riesz basic sequence where $\hat{f}=\chi_{U}$.

Bownik and Speegle

Theorem (Bownik/Speegle)
There exists a set $U \subset[0,1]$ such that if $A \subset \mathbb{Z}$ satisfies the $g(N)=N^{1 / 2} \log ^{-3} N$ arithmetic condition,
then $\{f(x+k): k \in A\}$ is NOT a Riesz basic sequence where $\hat{f}=\chi_{U}$.

Remark:

This means that there is no quantative van der Waerden theorem with sets of size $N^{1 / 2} \log ^{-3} N$.

The Paving Conjecture - Revisited

Anderson's Paving Conjecture
For every $\epsilon>0$ there exists an $r \in \mathbb{N}$ so that

The Paving Conjecture - Revisited

Anderson's Paving Conjecture
For every $\epsilon>0$ there exists an $r \in \mathbb{N}$ so that
for all n and all $T: \ell_{2}^{n} \rightarrow \ell_{2}^{n}$ whose matrix has zero diagonal

The Paving Conjecture - Revisited

Anderson's Paving Conjecture

For every $\epsilon>0$ there exists an $r \in \mathbb{N}$ so that
for all n and all $T: \ell_{2}^{n} \rightarrow \ell_{2}^{n}$ whose matrix has zero diagonal
there exists a partition $\left(A_{j}\right)_{j=1}^{r}$ (called a paving) of $\{1,2, \ldots, n\}$ so that

The Paving Conjecture - Revisited

Anderson's Paving Conjecture

For every $\epsilon>0$ there exists an $r \in \mathbb{N}$ so that
for all n and all $T: \ell_{2}^{n} \rightarrow \ell_{2}^{n}$ whose matrix has zero diagonal
there exists a partition $\left(A_{j}\right)_{j=1}^{r}$ (called a paving) of $\{1,2, \ldots, n\}$ so that

$$
\left\|Q_{A_{j}} T Q_{A_{j}}\right\| \leq \epsilon\|T\|, \quad \text { for all } j=1,2, \ldots, r .
$$

$Q_{A_{j}}$ the orthogonal projection onto span $\left(e_{i}\right)_{i \in A_{j}}$

The Paving Conjecture - Revisited

Anderson's Paving Conjecture

For every $\epsilon>0$ there exists an $r \in \mathbb{N}$ so that
for all n and all $T: \ell_{2}^{n} \rightarrow \ell_{2}^{n}$ whose matrix has zero diagonal
there exists a partition $\left(A_{j}\right)_{j=1}^{r}$ (called a paving) of $\{1,2, \ldots, n\}$ so that

$$
\left\|Q_{A_{j}} T Q_{A_{j}}\right\| \leq \epsilon\|T\|, \quad \text { for all } j=1,2, \ldots, r .
$$

$Q_{A_{j}}$ the orthogonal projection onto span $\left(e_{i}\right)_{i \in A_{j}}$

Important: r depends only on ϵ and not on n or T.

Two Paving Fails

[Discrete Fourier Transform - DFT ${ }_{n}$]
Choose a primitive $n^{\text {th }}$-root of unity ω and define

$$
D F T_{n}=\left(\omega^{i j}\right)_{i, j=1}^{n} .
$$

Two Paving Fails

[Discrete Fourier Transform - DFT ${ }_{n}$]
Choose a primitive $n^{\text {th }}$-root of unity ω and define

$$
D F T_{n}=\left(\omega^{i j}\right)_{i, j=1}^{n} .
$$

Then

$$
\frac{1}{\sqrt{n}} D F T_{n}, \text { is a unitary matrix. }
$$

The Construction

Step 1: Take $D F T_{2 n}$ and multiply the first ($n-1$)-columns by $\sqrt{\frac{2}{2 n}}$.

The Construction

Step 1: Take $D F T_{2 n}$ and multiply the first ($\mathrm{n}-1$)-columns by $\sqrt{\frac{2}{2 n}}$. Now multiply the remaining columns by $\sqrt{\frac{1}{n(n+1)}}$ to get a new matrix B_{1}.

The Construction

Step 1: Take $D F T_{2 n}$ and multiply the first ($\mathrm{n}-1$)-columns by $\sqrt{\frac{2}{2 n}}$.
Now multiply the remaining columns by $\sqrt{\frac{1}{n(n+1)}}$ to get a new matrix B_{1}.
Step 2: Take a second $D F T_{2 n}$ and multiply the first ($\mathrm{n}-1$)-columns by 0 ,

The Construction

Step 1: Take $D F T_{2 n}$ and multiply the first ($\mathrm{n}-1$)-columns by $\sqrt{\frac{2}{2 n}}$. Now multiply the remaining columns by $\sqrt{\frac{1}{n(n+1)}}$ to get a new matrix B_{1}. Step 2: Take a second $D F T_{2 n}$ and multiply the first ($\mathrm{n}-1$)-columns by 0 , and the remaining columns by $\sqrt{\frac{1}{2 n(n+1)}}$ to get a new matrix B_{2}.

The Construction

Step 1: Take $D F T_{2 n}$ and multiply the first ($\mathrm{n}-1$)-columns by $\sqrt{\frac{2}{2 n}}$.
Now multiply the remaining columns by $\sqrt{\frac{1}{n(n+1)}}$ to get a new matrix B_{1}. Step 2: Take a second $D F T_{2 n}$ and multiply the first ($\mathrm{n}-1$)-columns by 0 , and the remaining columns by $\sqrt{\frac{1}{2 n(n+1)}}$ to get a new matrix B_{2}.

Now form

$$
B_{n}=\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right]
$$

Properties of the Matrix B_{n}

The Matrix B_{n} satisfies:

Properties of the Matrix B_{n}

The Matrix B_{n} satisfies:
(1) The columns are orthogonal.

Properties of the Matrix B_{n}

The Matrix B_{n} satisfies:
(1) The columns are orthogonal.
(2) The square sum of the coefficients of every column equals 2 .

Properties of the Matrix B_{n}

The Matrix B_{n} satisfies:
(1) The columns are orthogonal.
(2) The square sum of the coefficients of every column equals 2 .
(3) The square sum of the coefficients of every row equals 1 .

Properties of the Matrix B_{n}

The Matrix B_{n} satisfies:
(1) The columns are orthogonal.
(2) The square sum of the coefficients of every column equals 2 .
(3) The square sum of the coefficients of every row equals 1 .
(9) Hence, the rows of this matrix form a unit norm two-tight frame,

Properties of the Matrix B_{n}

The Matrix B_{n} satisfies:
(1) The columns are orthogonal.
(2) The square sum of the coefficients of every column equals 2 .
(3) The square sum of the coefficients of every row equals 1 .
(9) Hence, the rows of this matrix form a unit norm two-tight frame, and so the rows of $\frac{1}{\sqrt{2}} B$ form an equal norm Parseval frame

Properties of the Matrix B_{n}

The Matrix B_{n} satisfies:
(1) The columns are orthogonal.
(2) The square sum of the coefficients of every column equals 2 .
(3) The square sum of the coefficients of every row equals 1 .
(9) Hence, the rows of this matrix form a unit norm two-tight frame, and so the rows of $\frac{1}{\sqrt{2}} B$ form an equal norm Parseval frame I.e. This is the matrix of a rank $2 n$ projection on $\mathbb{C}^{4 n}$ with constant diagonal $1 / 2$.

The Rows of B_{n}

Theorem

The matrices B_{n} are not uniformly 2-Riesable and hence $I-B_{n}$ are not uniformly 2-pavable.

The Rows of B_{n}

Theorem

The matrices B_{n} are not uniformly 2-Riesable and hence $I-B_{n}$ are not uniformly 2-pavable.

Proof: Let $\left(\phi_{i}\right)_{i=1}^{4 n}$ be the row vectors of the matrix B_{n}.

The Rows of B_{n}

Theorem

The matrices B_{n} are not uniformly 2-Riesable and hence I- B_{n} are not uniformly 2-pavable.

Proof: Let $\left(\phi_{i}\right)_{i=1}^{4 n}$ be the row vectors of the matrix B_{n}. If we partition the rows of B_{n} into two sets A, A^{c}, without loss of generality we may assume:

The Rows of B_{n}

Theorem

The matrices B_{n} are not uniformly 2-Riesable and hence I- B_{n} are not uniformly 2-pavable.

Proof: Let $\left(\phi_{i}\right)_{i=1}^{4 n}$ be the row vectors of the matrix B_{n}. If we partition the rows of B_{n} into two sets A, A^{c}, without loss of generality we may assume:
A contains n of the first 2 n rows of B_{n}.

The Rows of B_{n}

Theorem

The matrices B_{n} are not uniformly 2-Riesable and hence I- B_{n} are not uniformly 2-pavable.

Proof: Let $\left(\phi_{i}\right)_{i=1}^{4 n}$ be the row vectors of the matrix B_{n}.
If we partition the rows of B_{n} into two sets A, A^{c}, without loss of generality we may assume:
A contains n of the first 2 n rows of B_{n}.
Let P_{n-1} be the projection onto the first $n-1$ coordinates.

The Rows of B_{n}

Theorem

The matrices B_{n} are not uniformly 2-Riesable and hence $I-B_{n}$ are not uniformly 2-pavable.

Proof: Let $\left(\phi_{i}\right)_{i=1}^{4 n}$ be the row vectors of the matrix B_{n}.
If we partition the rows of B_{n} into two sets A, A^{c}, without loss of generality we may assume:
A contains n of the first 2 n rows of B_{n}.
Let P_{n-1} be the projection onto the first $n-1$ coordinates.
Choose $\left(a_{i}\right)_{i \in A}$ with $\sum_{i \in A}\left|a_{i}\right|^{2}=1$ and so that

$$
P_{n-1}\left(\sum_{i \in A} a_{i} f_{i}\right)=0 .
$$

Proof Continued

Letting $\left(g_{i}\right)_{i=1}^{2 n}$ be the original rows of the $D F T_{n}$ we have:

Proof Continued

Letting $\left(g_{i}\right)_{i=1}^{2 n}$ be the original rows of the $D F T_{n}$ we have:

$$
\left\|\sum_{i \in A} a_{i} \phi_{i}\right\|^{2}=\left\|\left(I-P_{n-1}\right)\left(\sum_{i \in A} a_{i} \phi_{i}\right)\right\|^{2}
$$

Proof Continued

Letting $\left(g_{i}\right)_{i=1}^{2 n}$ be the original rows of the $D F T_{n}$ we have:

$$
\begin{aligned}
\left\|\sum_{i \in A} a_{i} \phi_{i}\right\|^{2} & =\left\|\left(I-P_{n-1}\right)\left(\sum_{i \in A} a_{i} \phi_{i}\right)\right\|^{2} \\
& =\frac{2}{n+1}\left\|\left(I-P_{n-1}\right)\left(\sum_{i \in A} a_{i} g_{i}\right)\right\|^{2}
\end{aligned}
$$

Proof Continued

Letting $\left(g_{i}\right)_{i=1}^{2 n}$ be the original rows of the $D F T_{n}$ we have:

$$
\begin{aligned}
\left\|\sum_{i \in A} a_{i} \phi_{i}\right\|^{2} & =\left\|\left(I-P_{n-1}\right)\left(\sum_{i \in A} a_{i} \phi_{i}\right)\right\|^{2} \\
& =\frac{2}{n+1}\left\|\left(I-P_{n-1}\right)\left(\sum_{i \in A} a_{i} g_{i}\right)\right\|^{2} \\
& \leq \frac{2}{n+1}\left\|\sum_{i \in A} a_{i} g_{i}\right\|^{2}
\end{aligned}
$$

Proof Continued

Letting $\left(g_{i}\right)_{i=1}^{2 n}$ be the original rows of the $D F T_{n}$ we have:

$$
\begin{aligned}
\left\|\sum_{i \in A} a_{i} \phi_{i}\right\|^{2} & =\left\|\left(I-P_{n-1}\right)\left(\sum_{i \in A} a_{i} \phi_{i}\right)\right\|^{2} \\
& =\frac{2}{n+1}\left\|\left(I-P_{n-1}\right)\left(\sum_{i \in A} a_{i} g_{i}\right)\right\|^{2} \\
& \leq \frac{2}{n+1}\left\|\sum_{i \in A} a_{i} g_{i}\right\|^{2} \\
& =\frac{2}{n+1} \sum_{i \in A}\left|a_{i}\right|^{2}
\end{aligned}
$$

Proof Continued

Letting $\left(g_{i}\right)_{i=1}^{2 n}$ be the original rows of the $D F T_{n}$ we have:

$$
\begin{aligned}
\left\|\sum_{i \in A} a_{i} \phi_{i}\right\|^{2} & =\left\|\left(I-P_{n-1}\right)\left(\sum_{i \in A} a_{i} \phi_{i}\right)\right\|^{2} \\
& =\frac{2}{n+1}\left\|\left(I-P_{n-1}\right)\left(\sum_{i \in A} a_{i} g_{i}\right)\right\|^{2} \\
& \leq \frac{2}{n+1}\left\|\sum_{i \in A} a_{i} g_{i}\right\|^{2} \\
& =\frac{2}{n+1} \sum_{i \in A}\left|a_{i}\right|^{2} \\
& =\frac{2}{n+1}
\end{aligned}
$$

Proof Continued

Letting $\left(g_{i}\right)_{i=1}^{2 n}$ be the original rows of the $D F T_{n}$ we have:

$$
\begin{aligned}
\left\|\sum_{i \in A} a_{i} \phi_{i}\right\|^{2} & =\left\|\left(I-P_{n-1}\right)\left(\sum_{i \in A} a_{i} \phi_{i}\right)\right\|^{2} \\
& =\frac{2}{n+1}\left\|\left(I-P_{n-1}\right)\left(\sum_{i \in A} a_{i} g_{i}\right)\right\|^{2} \\
& \leq \frac{2}{n+1}\left\|\sum_{i \in A} a_{i} g_{i}\right\|^{2} \\
& =\frac{2}{n+1} \sum_{i \in A}\left|a_{i}\right|^{2} \\
& =\frac{2}{n+1}
\end{aligned}
$$

Letting $n \rightarrow \infty$ we have that this class of matrices is not $(\delta, 2)$-Riesable for any $\delta>0$.

Our Tour of the Kadison-Singer Problem

$$
\begin{aligned}
\text { Marcus/Spielman/Srivastava } & \Rightarrow \text { Casazza/Tremain Conjecture } \\
& \text { and Weaver Conjecture } K S_{r} \\
& \Rightarrow \text { Weaver Conjecture } \\
& \Rightarrow \text { Paving Conjecture } \\
& \Rightarrow R_{\epsilon} \text {-Conjecture } \\
& \Rightarrow \text { Bourgain-Tzafriri Conjecture } \\
& \Rightarrow \text { Feichtinger Conjecture } \\
& \Rightarrow \text { Sundberg Problem }
\end{aligned}
$$

Finally:

$$
\begin{aligned}
\text { Bourgain-Tzafriri Conjecture } & \Rightarrow \text { Weaver Conjecture } \\
& \Leftrightarrow \text { Paving Conjecture } \\
& \Leftrightarrow \text { The Kadison-Singer Problem }
\end{aligned}
$$

