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Recall: The Bourgain-Tzafriri Conjecture

(strong) Bourgain-Tzafriri Conjecture

There exists a universal constant A > 0 so that

for every 0 < B there is a natural number r = r(B)

so that for every natural number ”n” and every operator T : `n2 → `n2 with
‖Tei‖ = 1 and ‖T‖ ≤ B,

there exists a partition (Aj)
r
j=1 of {1, 2, . . . , n} so that for all j and all

scalars (ai )i∈Aj ∥∥∥∥∥∥
∑
i∈Aj

aiTei

∥∥∥∥∥∥
2

≥ A
∑
i∈Aj

|ai |2

(weak) Bourgain-Tzafriri Conjecture

A = f (B)
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Recall: The Feichtinger Conjecture

Definition

{φi}i∈I is a Riesz Basic Sequence in H if there exist Riesz basis bounds
A,B > 0 so that for all scalars (ai )i∈I

A
∑
i∈I

|ai |2 ≤

∥∥∥∥∥∑
i∈I

aiφi

∥∥∥∥∥
2

≤ B
∑
i∈I

|ai |2

If a = 1− ε, B = 1 + ε This is an ε-Riesz Basic Sequence

Feichtinger Conjecture

Every unit norm frame a finite union of Riesz basic sequences.
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BT implies FC

Theorem

The Bourgain-Tzafriri Conjecture implies the Feichtinger Conjecture.

Proof: Let (ei ) be the unit vector basis for `2.
Let (φi ) be a unit norm frame for `2 with analysis operator T and
synthesis operator T ∗ : `2 → `2 with T ∗ei = φi for all i = 1, 2, . . ..

Fix 0 < A as in BT, and let B = ‖T‖2 and choose r = r(B).

For each n = 1, 2, . . . , let Ln : `n2 → span (φi )
n
i=1 be Lei = φi .
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Proof Continued

By BT, there exists a partition (An
j )r

j=1 so that for all j = 1, 2, . . . , r and
all scalars (ai )i∈Aj

we have

A
∑
i∈An

j

|ai |2 ≤ ‖
∑
i∈An

j

aiφi‖2.

There is a 1 ≤ j ≤ r so that for infinitely many n, 1 ∈ An
j .

There is another k so that for infinitely many of the above n, 2 ∈ An
k .

CONTINUE.
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The Sundberg Problem

Sundberg Problem

Can every unit norm Bessel sequence be partitioned into a finite number of
non-spanning sets?
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FC implies the Sundberg Problem

Theorem

The Feichtinger Conjecture implies the Sundberg Problem.

Proof: Let (φi )
∞
i=1 be a unit norm Bessel sequence for `2.

If (ei )
∞
i=1 is an orthonormal basis for `2 then (ei ) ∪ (φi ) is a unit norm

frame for `2.

By FC, we can partition this set (and hence we can partition (φi )) into a
finite number of Riesz basic sequences say (φi )i∈Aj

for j = 1, 2, . . . , r .

But if we remove one vector from each family (φi )i∈Aj
then the resulting

sets do not span.

End Proof
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KS in Harmonic Analysis

Historical Note:

Jean Baptiste Joseph Fourier is credited with the discovery in 1824 that
gases in the atmosphere might increase the surface temperature of the
earth. Today, we call this the greenhouse effect.
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Laurent Operators

Laurent Operators

If φ ∈ L∞[0, 1], let
Tφf = φ · f ∀f ∈ L2[0, 1].

Much work was done in 1980’s to solve PC for Laurant Operators by:

Bourgain/Tzafriri

Halpern/Kaftal/Weiss
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An Example

Example

If f = e2πint then for every measurable set E ⊆ [0, 1]

‖χE f ‖2 = |E | = |E | · ‖f ‖2

and
‖χE c f ‖2 = |E c | = |E c |‖f ‖2
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Paving Exponentials

Definition

If A ⊆ Z, let
S(A) = span{e2πint}n∈A ⊆ L2[0, 1].

Known: Berman, Halpern, Kaftal and Weiss

For every ε > 0 and for every E = [a, b] ⊂ [0, 1]
there exists a partition of Z into arithmetric progressions (Aj)

r
j=1 so that

for all j and f ∈ S(Aj) we have

(1− ε)(b − a)‖f ‖2 ≤ ‖PE f ‖2 ≤ (1 + ε)(b − a)‖f ‖2

PE f = χE · f
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The Harmonic Analysis Conjecture

H.A. Conjecture

For every measurable E ⊆ [0, 1]

and for every ε > 0
there exists a partition (Aj)

r
j=1 of Z such that

for every j and f ∈ S(Aj)

(1− ε)|E |‖f ‖2 ≤ ‖PE f ‖2 ≤ (1 + ε)|E |‖f ‖2

PE f = f · χE

If we replace 1± ε by universal 0 < A < 1 < B <∞, we call this weak
H.A..
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Equivalence of our Conjectures

Theorem (C/Fickus/Tremain/Weber)

The following are equivalent:

1 H.A. Conjecture

2 Every Tφ is pavable

3 There is a universal constant K such that for every measurable subset
E ⊆ [0, 1]
there exists a partition (Aj)

r
j=1 of Z so that

for all f ∈ span(e2πint)n∈Aj

‖f · χE‖2 ≤ K |E |‖f ‖2

Moreover: We may assume |E | = 1
2 .

(B) Weak HA is equivalent to FC for Laurant operators.
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KS in Number Theory

Van der Waerden’s Theorem:

Given a partition of the integers (Aj)
r
j=1, there is an 1 ≤ i ≤ r so that Ai

has arbitrarily long arithmetic progressions.

Question:

Does there exist a quantitative version of Van der Waerden’s theorem?
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Gowers’ Theorem

We use the notation a ↑ b to denote ab.

Theorem: [Gowers]

Let 0 < γ ≤ 1/2, let k be a positive integer, let

P ≥ 2 ↑ 2 ↑ γ−1 ↑ 2 ↑ 2 ↑ (k + 9),

and let A be a subset of {1, 2, . . . ,P} of size γP.

Then A contains an arithmetic progression of length k .
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Quantative Arithmetic Progressions

Definition

Let g : N→ [0,∞). We say that A ⊂ Z satisfies the g(N) arithmetic
progression condition if for every δ > 0 there exists M ∈ Z and n, ` ∈ N
such that
(i) ` < δg(N)
and
(ii) {M,M + `,M + 2`, . . . ,M + N`} ⊂ A.
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Bownik and Speegle

Theorem (Bownik/Speegle)

There exists a set U ⊂ [0, 1] such that if A ⊂ Z satisfies the
g(N) = N1/2log−3N arithmetic condition,

then {f (x + k) : k ∈ A} is NOT a Riesz basic sequence where f̂ = χU .

Remark:

This means that there is no quantative van der Waerden theorem with sets
of size N1/2log−3N.
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The Paving Conjecture - Revisited

Anderson’s Paving Conjecture

For every ε > 0 there exists an r ∈ N so that

for all n and all T : `n2 → `n2 whose matrix has zero diagonal

there exists a partition (Aj)
r
j=1 (called a paving) of {1, 2, . . . , n} so that

‖QAj
TQAj

‖ ≤ ε‖T‖, for all j = 1, 2, . . . , r .

QAj
the orthogonal projection onto span (ei )i∈Aj

Important: r depends only on ε and not on n or T .
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Two Paving Fails

[Discrete Fourier Transform - DFTn]

Choose a primitive nth-root of unity ω and define

DFTn =
(
ωij
)n
i ,j=1

.

Then
1√
n

DFTn, is a unitary matrix.

(Pete Casazza) Frame Research Center October 15, 2013 20 / 25
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The Construction

Step 1: Take DFT2n and multiply the first (n-1)-columns by
√

2
2n .

Now multiply the remaining columns by
√

1
n(n+1) to get a new matrix B1.

Step 2: Take a second DFT2n and multiply the first (n-1)-columns by 0,

and the remaining columns by
√

1
2n(n+1) to get a new matrix B2.

Now form

Bn =

[
B1

B2

]
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The Construction

Step 1: Take DFT2n and multiply the first (n-1)-columns by
√

2
2n .

Now multiply the remaining columns by
√

1
n(n+1) to get a new matrix B1.

Step 2: Take a second DFT2n and multiply the first (n-1)-columns by 0,

and the remaining columns by
√

1
2n(n+1) to get a new matrix B2.

Now form

Bn =

[
B1

B2

]

(Pete Casazza) Frame Research Center October 15, 2013 21 / 25



The Construction

Step 1: Take DFT2n and multiply the first (n-1)-columns by
√

2
2n .

Now multiply the remaining columns by
√

1
n(n+1) to get a new matrix B1.

Step 2: Take a second DFT2n and multiply the first (n-1)-columns by 0,

and the remaining columns by
√

1
2n(n+1) to get a new matrix B2.

Now form

Bn =

[
B1

B2

]

(Pete Casazza) Frame Research Center October 15, 2013 21 / 25



The Construction

Step 1: Take DFT2n and multiply the first (n-1)-columns by
√

2
2n .

Now multiply the remaining columns by
√

1
n(n+1) to get a new matrix B1.

Step 2: Take a second DFT2n and multiply the first (n-1)-columns by 0,

and the remaining columns by
√

1
2n(n+1) to get a new matrix B2.

Now form

Bn =

[
B1

B2

]

(Pete Casazza) Frame Research Center October 15, 2013 21 / 25



The Construction

Step 1: Take DFT2n and multiply the first (n-1)-columns by
√

2
2n .

Now multiply the remaining columns by
√

1
n(n+1) to get a new matrix B1.

Step 2: Take a second DFT2n and multiply the first (n-1)-columns by 0,

and the remaining columns by
√

1
2n(n+1) to get a new matrix B2.

Now form

Bn =

[
B1

B2

]

(Pete Casazza) Frame Research Center October 15, 2013 21 / 25



Properties of the Matrix Bn

The Matrix Bn satisfies:

1 The columns are orthogonal.

2 The square sum of the coefficients of every column equals 2.

3 The square sum of the coefficients of every row equals 1.

4 Hence, the rows of this matrix form a unit norm two-tight frame, and
so the rows of 1√

2
B form an equal norm Parseval frame

I.e. This is the matrix of a rank 2n projection on C4n with constant
diagonal 1/2.
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The Rows of Bn

Theorem

The matrices Bn are not uniformly 2-Riesable and hence I − Bn are not
uniformly 2-pavable.

Proof: Let (φi )
4n
i=1 be the row vectors of the matrix Bn.

If we partition the rows of Bn into two sets A,Ac , without loss of
generality we may assume:
A contains n of the first 2n rows of Bn.
Let Pn−1 be the projection onto the first n − 1 coordinates.
Choose (ai )i∈A with

∑
i∈A |ai |2 = 1 and so that

Pn−1

(∑
i∈A

ai fi

)
= 0.
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Proof Continued
Letting (gi )

2n
i=1 be the original rows of the DFTn we have:

‖
∑
i∈A

aiφi‖2 = ‖(I − Pn−1)

(∑
i∈A

aiφi

)
‖2

=
2

n + 1
‖(I − Pn−1)

(∑
i∈A

aigi

)
‖2

≤ 2

n + 1
‖
∑
i∈A

aigi‖2

=
2

n + 1

∑
i∈A

|ai |2

=
2

n + 1
.

Letting n→∞ we have that this class of matrices is not (δ, 2)-Riesable
for any δ > 0.
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Proof Continued
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Our Tour of the Kadison-Singer Problem

Marcus/Spielman/Srivastava ⇒ Casazza/Tremain Conjecture

and Weaver Conjecture KSr

⇒ Weaver Conjecture

⇒ Paving Conjecture

⇒ Rε-Conjecture

⇒ Bourgain-Tzafriri Conjecture

⇒ Feichtinger Conjecture

⇒ Sundberg Problem

Finally:

Bourgain-Tzafriri Conjecture ⇒ Weaver Conjecture

⇔ Paving Conjecture

⇔ The Kadison-Singer Problem
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