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Signal Processing
The best way to understand signal processing is to attend a piano concert.

Pictures by: Music With Ease http://www.musicwithease.com/
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To the Pianist

We are hearing a continuous acoustical signal (If we ignore the banging of
the keys).

To the pianist, the concert is a collection of black dots on a piece of paper.

Sheet Music:

4
2

4
2
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In the Audience
If we were fast enough, we could write the sheet music as the concert is
being played.

Then, when we get home, we could use our sheet music to replay (i.e.
reconstruct) the concert.
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Correcting Mistakes?

But what if the pianist made a mistake?

What if she played some notes that did not belong in the concert?

Well, we could just erase the incorrect notes and play back a perfect
concert.

If she left out some notes, we could just add them.
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Dennis Gabor 1946

To Gabor, sheet music was made up of just one note.

Sheet Music:

4
2

4
2

We take that note and change its modulation, then shift it in time and
change its modulation and continue.
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Our Basic Note

 

 
(Pete Casazza) Frame Research Center October 15, 2013 8 / 37



We Change the Modulation of Our Note
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Change the Modulation again
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Shift our note in time and change modulation
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Gabor’s Idea

We will write sheet music for a signal.

Fix g ∈
(
L2(R) = {f : R→ C|

∫
R |f (t)|2 dt <∞}

)
∩ L∞(R)—our NOTE

Let f ∈ L2(R)–our SIGNAL

Fix 0 < a, b ≤ 1.

Take modulations of our “note” and compute the intensity of our signal
for each of these: (〈

f , e2πiantg(t)
〉)

n∈Z
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Continue

Now, take a translation in time of our note and for all modulations of our
“translated note”, compute the intensity of our signal for each of these:

(〈
f , e2πiantg(t − b)

〉)
n∈Z

Continuing, we digitalize our signal:

(〈
f , e2πiantg(t −mb)

〉)
m,n∈Z
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For This to Work We Need

1 Our “digits” are unique to the signal.

2 We have “fast” reconstruction of the signal from its digits.

This requires that
(e2πiantg(t −mb))m,n∈Z

is a frame for L2(R) called a Gabor Frame and denoted (g , a, b).
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What Did Gabor Do?

Gabor used Gaussians e−πt2
and a = b = 1.

Unfortunately for Gabor, this is a case which doesn’t work.
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Balian-Low

Balian-Low Theorem

If (g , 1, 1) is a Gabor frame for L2(R) then either tg(t) /∈ L2(R) or
g ′ /∈ L2(R).
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Time Frequency Analysis

Time frequency analysis is the mathematics of signal processing.

Major Problem

Classify all (g , a, b) which give Gabor frames.
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Classifying Gabor Frames is a Very Difficult Problem

Theorem (C/Kalton)

Classifying the Gabor Frames of the form (χE , 1, 1)

⇐⇒

Littlewood’s Problem

(1977) Classify the integer sets {n1 < n2 < . . . < nk} so that

f (z) =
k∑

j=1

znj

does not have any zeroes on the unit circle.
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Gabor Frames

Theorem (Rieffel)

If (g , a, b) is a Gabor frame then ab ≤ 1.

Theorem

If ab = 1 and (g , a, b) is a Gabor frame then it is a Riesz basis.
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How do we clean up a signal?

One Possibility: Thresholding.

i.e. Pick a threshold interval [A,B] and delete all frame coefficents, which
fall outside this interval.

See: K. Gröchenig, Foundations of Time FrequencyAnalysis, Birkhäser
(2000).
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Hans Feichtinger

(2004) e-mail: Hans to Pete

Every Gabor frame I know can be partitioned into a finite number of Riesz
basic sequences. Do you think this is always true?

(Pete Casazza) Frame Research Center October 15, 2013 21 / 37



Feichtinger Conjecture

Feichtinger Conjecture (FC)

Every unit norm frame is a finite union of Riesz Basic Sequences.
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Equivalent Formulations

Every unit norm Bessel sequence is a finite union of Riesz basic sequences.

Proof: Given a unit norm Bessel sequence (φi ) let (ei ) be an orthonormal
basis for H.
Then (φi ) ∪ (ei ) is a unit norm frame.
Partition this into a finite union of Riesz basic sequences.
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Partial Answer

Theorem (C/Christensen)

If ab is rational and (g , a, b) is a Gabor frame, then this is a finite union of
Riesz basic sequences.
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Kadison-Singer in Engineering: Internet Coding

“And again, the internet is not something you just dump something on.
It’s not a truck. It’s a series of tubes. And if you don’t understand those
tubes can be filled and if they are filled, when you put your message in, it
gets in line and its going to be delayed by anyone that puts into that tube
enormous amounts of material, enormous amounts of material.”

Ted Stevens, Senator, US Congress
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Internet Coding
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Internet Coding

information
bits

err
or control addressing

timing
Goyal/Kovac̆ević/Vetterly
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Speeding up the Internet

Problem: Can we speed up the internet by encoding with a frame instead
of an orthonormal basis?

Answer: Maybe!

What we need are frames which provide efficient reconstruction after
erasures.
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Erasures

Goyal-Kovac̆ević

An equal norm frame minimizes mean squared error after erasures if and
only if it is tight.

Definition

A frame (φm)m∈I is robust to k-erasures if for every J ⊂ I , |J| = k , the
family (φm)m∈I\J is still a frame.
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Major Problems

Problem

Find the equal-norm tight frames which are robust to k-erasures.

See C/Kovac̆ević/Bodmanm/Paulsen/Heath/Kutyniok/...

Bigger Problem

We need low computational complexity.

Biggest Problem

We also need good estimates on the behavior of reconstruction operators
after erasures as well as accounting for quantization errors.
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A Strengthening of KS

The following is a strengthening of Weaver’s Conjecture

C/Tremain Conjecture

There is a universal constant 0 < A and an integer K > 2 so that
every unit norm K -tight frame {φi}KN

i=1 for HN can be partitioned into two
subsets
each of which have lower frame bound A.
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C/Tremain Conjecture

That is:

there is a universal constant A > 0

so that if

‖φ‖2 =
KN∑
i=1

|〈φ, φi 〉|2, for all φ ∈ H,

then we can find J ∈ {1, 2, . . . ,KN} so that for all φ ∈ H,

A‖φ‖2 ≤
∑
i∈J

|〈φ, φi 〉|2 and A‖φ‖2 ≤
∑
i∈Jc

|〈φ, φi 〉|2.

Important: A,K must be independent of N.
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Restated Again

[C/Tremain Conjecture]

There is some K so that if (φi )
KN
i=1 are unit norm vectors in HN

satisfying
KN∑
i=1

φiφ
∗
i = K · I ,

then there is a subset J ⊂ {1, 2, . . . ,KN} so that

A · I ≤
∑
i∈J

φiφ
∗
i and A · I ≤

∑
i∈Jc

φiφ
∗
i .
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Equivalently

Note that

A‖φ‖2 ≤
∑
i∈J

|〈φ, φi 〉|2

=
KN∑
i=1

|〈φ, φi 〉|2 −
∑
i∈Jc

|〈φ, φi 〉|2

= K‖φ‖2 −
∑
i∈Jc

|〈φ, φi 〉|2,

if and only if

∑
i∈Jc

|〈φ, φi 〉|2 ≤ (K − A)‖φ‖2.

(Pete Casazza) Frame Research Center October 15, 2013 34 / 37



Equivalently

Note that

A‖φ‖2 ≤
∑
i∈J

|〈φ, φi 〉|2

=
KN∑
i=1

|〈φ, φi 〉|2 −
∑
i∈Jc

|〈φ, φi 〉|2

= K‖φ‖2 −
∑
i∈Jc

|〈φ, φi 〉|2,

if and only if

∑
i∈Jc

|〈φ, φi 〉|2 ≤ (K − A)‖φ‖2.

(Pete Casazza) Frame Research Center October 15, 2013 34 / 37



Equivalently

Note that

A‖φ‖2 ≤
∑
i∈J

|〈φ, φi 〉|2

=
KN∑
i=1

|〈φ, φi 〉|2 −
∑
i∈Jc

|〈φ, φi 〉|2

= K‖φ‖2 −
∑
i∈Jc

|〈φ, φi 〉|2,

if and only if

∑
i∈Jc

|〈φ, φi 〉|2 ≤ (K − A)‖φ‖2.

(Pete Casazza) Frame Research Center October 15, 2013 34 / 37



Equivalently

Note that

A‖φ‖2 ≤
∑
i∈J

|〈φ, φi 〉|2

=
KN∑
i=1

|〈φ, φi 〉|2 −
∑
i∈Jc

|〈φ, φi 〉|2

= K‖φ‖2 −
∑
i∈Jc

|〈φ, φi 〉|2,

if and only if

∑
i∈Jc

|〈φ, φi 〉|2 ≤ (K − A)‖φ‖2.

(Pete Casazza) Frame Research Center October 15, 2013 34 / 37



Equivalently

Note that

A‖φ‖2 ≤
∑
i∈J

|〈φ, φi 〉|2

=
KN∑
i=1

|〈φ, φi 〉|2 −
∑
i∈Jc

|〈φ, φi 〉|2

= K‖φ‖2 −
∑
i∈Jc

|〈φ, φi 〉|2,

if and only if

∑
i∈Jc

|〈φ, φi 〉|2 ≤ (K − A)‖φ‖2.

(Pete Casazza) Frame Research Center October 15, 2013 34 / 37



C/Tremain Conjecture

An equivalent formulation of the conjecture is:

There is a universal constant A > 0 so that whenever

‖φ‖2 =
KN∑
i=1

|〈φ, φi 〉|2, for all φ ∈ H,

then we can find J ∈ {1, 2, . . . ,KN} so that for all φ ∈ H,∑
i∈J

|〈φ, φi 〉|2 ≤ (K − A)‖φ‖2 and
∑
i∈Jc

|〈φ, φi 〉|2 ≤ (K − A)‖φ‖2.

Remark: It was shown that the CT conjecture implies the Kadison-Singer
Problem.
But we did not know if they were equivalent.
We thought that CT might actually be formally stronger than KS.
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A form of CT Equivalent to KS

[A form of CT Equivalent to KS]

There exists a δ > 0 and a natural number r so that:

for all large K and all equal norm Parseval frames (φi )
KN
i=1 in HN I.e.

KN∑
i=1

φiφ
∗
i = I ,

there is a partition (Aj)
r
j=1 of {1, 2, . . . ,Kn} so that∑

i∈Aj

φiφ
∗
i ≤ (1− δ) · I .
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Recent Announcement

A consortium led by Muriel Medard, a Professor at MIT’s Research
Laboratory of Electronics and a leader in the effort, includes researchers at
MIT, the University of Porto in Portugal, Harvard University, Caltech, and
the Technical University of Munich is licensing a new technology designed
to deal with lost packets (erasures) during wireless transmission and
expects this to be a quantum leap forward in the area. This work rests on
doing reconstruction in packet based wireless networks after erasures.
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