Characterization of locally reflexive algebras

by an "inner" version of exactness

Eberhard Kirchberg

HU Berlin

Copenhagen, Nov 2011

Contents

- Locally reflexive C*-algebras
- 2 The C-norm and properties (C ') and (C ")
- 3 Reduction to separable, unital or stable cases
- Open problems concerning local reflexivity.
- 5 Inner exactness
- 6 A characterization of locally reflexive C*-algebras
- A noncommutative Egorov problem
- 8 Some References
- More details of the outlined proofs

2/32

Some Notation

Let A and B C*-algebras.

 $\|\cdot\| = \|\cdot\|_{\min}$ means the spatial tensor product norm on the *algebraic* tensor product $A^{**} \odot B^{**}$,

We denote $A^{**} \otimes B^{**}$ the the C*-algebra completion of $A^{**} \odot B^{**}$ with $\|\cdot\|$.

Let $X \subset \mathcal{L}(H_1)$ and $Y \subset \mathcal{L}(H_2)$ closed subspaces (operator spaces). $X \otimes Y$ is the operator space that is the closure of vector space tensor product $X \odot Y$ in $\mathcal{L}(H_1 \otimes H_2)$.

Locally reflexive C*-algebras

Let $X \subset \mathcal{L}(H)$ a unital linear subspace of finite dimension, and $V: X \to A^{**}$ a unital completely contractive map.

In general, it is not possible to find a family $\{V_{\gamma}\}$ of completely contractive maps $V_{\gamma} \colon X \to A$, such that *V* is the point- $\sigma(A^{**}, A^*)$ limit of the V_{γ} .

Definition (1)

A is **locally reflexive** (in a matricial sense) if, for every subspaces $X \subset A^{**}$ and $F \subset A^{*}$ of finite dimension and for every $\varepsilon > 0$ there exists a completely contractive linear map $T: X \to A$ with

 $|\mathbf{x}(f) - f(T(\mathbf{x}))| \le \varepsilon \|\mathbf{x}\| \cdot \|f\|$. $\forall \mathbf{x} \in \mathbf{X}, f \in \mathbf{F}$.

 $\mathcal{L}(\ell_2)$ and $C^*(SL(\mathbb{Z}))$ are not locally reflexive.

The C-norm $\|\cdot\|_C$ on $A^{**} \odot B^{**}$

The algebraic tensor product $A^{**} \odot B^{**}$ is a *-subalgebra of $(A \otimes B)^{**}$ in a natural way. The induced C*-norms on $A^{**} \odot B^{**}$, $A \odot B^{**}$ or $A^{**} \otimes B$ will be denoted by $\| \cdot \|_{C}$.

Lemma (2)

For
$$a_1, \ldots, a_n \in A^{**}$$
, $b_1, \ldots, b_n \in B^{**}$, and $w = \sum_k a_k \otimes b_k$ holds

$$\|w^*w\|_C = (\|w\|_C)^2 = \sup_{\lambda} \sum_{j,k} \lambda((a_j^*a_k) \otimes (b_j^*b_k)) = \sup_{\lambda} \lambda(w^*w)$$

where λ runs over all unital positive linear functionals λ on $A^{**} \odot B^{**}$ that are partially normal on A^{**} and on B^{**} , and are continuous on $A \odot B$ with respect to $\| \cdot \|_{min}$ on $A \odot B$. It means, that $\lambda(a \otimes b) = \langle d_1(a)d_2(b)x, x \rangle$ where $d_1 : A^{**} \to \mathcal{L}(H)$ and $d_2 : B^{**} \to \mathcal{L}(H)$ are commuting non-degenerate (= unital) normal *-representations of the von Neumann algebras A^{**} and B^{**} , and that the *-representation

$$\sum_k a_k \otimes b_k \mapsto \sum_k d_1(a_k) d_2(b_k)$$

is continuous on $A \odot B$ with respect to the minimal C*-norm on $A \odot B$, and the vector $x \in H$ has norm ||x|| = 1.

Lemma (3) (Reduction to separable case)

Suppose that $X \subset A$, $Y \subset A^*$ and $Z \subset A^{**}$ are (norm-)separable subspaces. Then there exist a separable C*-subalgebra B of A and a normal completely positive map

$$V: A^{**} \to B^{**} \cong \overline{B}^{\text{strong}}$$

and a projection $P \in V(A^{**})' \cap B^{**}$ such that

- $X \subset B$ and V(x) = x for all $x \in C^*(X)$,
- $\rho(V(a)) = \rho(a)$ for all $a \in A^{**}$ and $\rho \in Y$, i.e., V_* fixes Y,
- a → V(a)P is multiplicative on C*(X ∪ Z), and P is countably decomposable (in B**),

•
$$Py = y = yP$$
 for all $y \in Y$.

In particular, the separable *C**-subalgebra $B \subset A$ and the *C**-morphism $\phi: C^*(Z \cup X) \to B^{**} \subset A^{**}$ given by $\phi(a) := V(a)P$ satisfy $X \subset B$, $\rho(\phi(z)) = \rho(z)$ for $\rho \in Y$, $z \in Z$, and $\phi(x) = x$ for $x \in X$.

It yields (the non-trivial part of the proof of):

Lemma (4)

 $\|\cdot\|_{\mathcal{C}} = \|\cdot\|_{\min} \text{ on } A^{**} \odot B, \quad \text{if and only if,}$

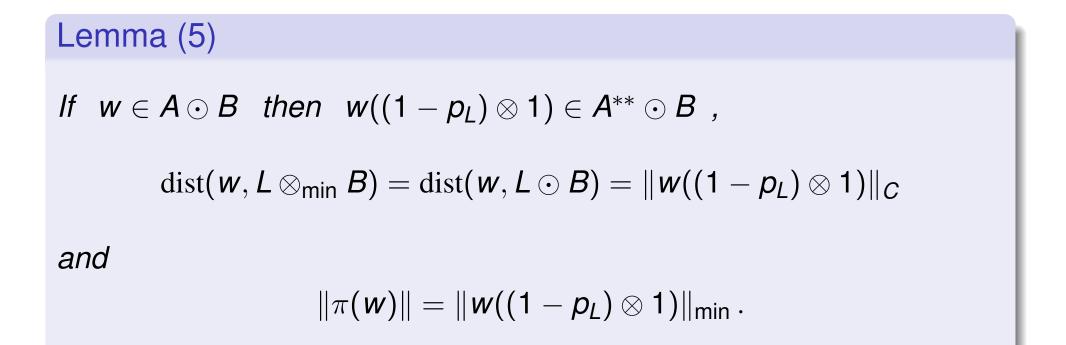
 $\| \cdot \|_{C} = \| \cdot \|_{min}$ on $D^{**} \odot E$ for all separable C*-subalgebras $D \subset A$ and $E \subset B$,

if and only if, $\| \cdot \|_{C} = \| \cdot \|_{\min}$ on $(\mathbb{K} \otimes A)^{**} \odot B$, if and only if, $\| \cdot \|_{C} = \| \cdot \|_{\min}$ on $(A + \mathbb{C} \cdot 1)^{**} \odot B$.

Notice that $\|\cdot\|_{C} = \|\cdot\|$ on $A \odot B$.

Let $L \subset A$ a closed left-ideal and $p_L \in A^{**}$ its open support projection, and define linear $\pi : A \odot B \to (A/L) \odot B \subset (A/L) \otimes_{min} B$ by

$$\pi(a \otimes b) := (a+L) \otimes b.$$



Properties (C), (C') and (C")

Definition (6)

The algebra A has property
(C) if
$$\| \cdot \|_C = \| \cdot \|_{min}$$
 on $A^{**} \odot B^{**}$ for every C*-algebra B,
(C') if $\| \cdot \|_C = \| \cdot \|_{min}$ on $A \odot B^{**}$ for every C*-algebra B,
(C'') if $\| \cdot \|_C = \| \cdot \|_{min}$ on $A^{**} \odot B$ for every C*-algebra B.

Effros and Haagerup: All this properties pass to subalgebras, $E \subset A$, and properties (C) and (C") pass to quotients A/J. A has property (C") if and only if A is locally reflexive.

E.K.(in Crelle J.): $(C') \Rightarrow$ exactness \Rightarrow (C). In particular, (C)=(C').

It is known:

- Each exact C*-algebra is locally reflexive.
- A C*-algebra is locally reflexive, if and only if, all its separable C*-subalgebras are locally reflexive.
- Locally reflexive C*-algebras with WEP (of Lance) are nuclear.
- Locally reflexive C*-algebras with a matricial variant of the Grothendieck approximation property are exact.
- Extensions of locally reflexive C*-algebras are locally reflexive, if and only if, the Busby invariant is locally liftable.
- Locally reflexive algebra A is exact, if and only if, A** is a weakly exact W*-algebra.

Open problems concerning local reflexivity:

Let A, $A_1 \subset A_2 \subset \cdots$ locally reflexive (=: I.r.) C*-algebras.

- (a) Is A exact? In particular: Let G a Gromov example (= discrete finitely presented group that is not uniformly embeddable into a Hilbert space with respect to its word length metric).
 Is C^{*}_r(G) not I.r.? (It is not exact by a result of Ozawa.)
- (b) Is $M_{2^{\infty}} \otimes A$ I.r.? (Equivalent to: Is $B \otimes A$ I.r. if B is exact?)
- (c) Are inductive limits of I.r. algebras A_n again I.r.?
- (d) Is the crossed product $A \rtimes_{\alpha} \mathbb{Z}$ of A by $\alpha \in Aut(A)$ again I.r.?
- (f) Are reduced free products of I.r. algebras again I.r.?
- (g) Suppose A does not have the WEP. Are there states λ on A and μ on C[0, 1] such that $A * 1 \subset A *_{\rho,\mu} C[0, 1]$ is *not* relatively weakly injective in the reduced free product $A *_{\rho,\mu} C[0, 1]$?
- (h) Is A embeddable into simple I.r. C*-algebra B?

Possible positive answers to questions (a - h) have the following implications:

 $(c) \Rightarrow (b),$ $(d) \Rightarrow (b, f),$ $(a) \Rightarrow (b - f, h),$ $(d) \Rightarrow (f),$ $(c, f, g) \Rightarrow (a),$ $(f) \Rightarrow (h).$

Definition (7)

We call a C*-algebra A inner exact for B, if the sequence

$$0 \to L \otimes B \to (\mathcal{K} \otimes A) \otimes B \to ((\mathcal{K} \otimes A)/L) \otimes B \to 0$$

is exact (in the metric sense) for every closed left-ideal $L \subset \mathcal{K} \otimes A$. The algebra A is **inner exact** if A is inner exact for *every* C*-algebra B.

By Lemma 5, $\|\cdot\|_C = \|\cdot\|_{\min}$ on $A^{**} \otimes B$ implies that A is *inner exact* for B.

A is inner exact $\Leftrightarrow \forall X \subset (\mathbb{K} \otimes A)/L$ with $Dim(X) < \infty$ and $\varepsilon > 0$, $\exists T : X \to \mathbb{K} \otimes A$ with $\pi_L \circ T = id_X$ and $\|T\|_{cb} \leq 1 + \varepsilon$.

Reduction to the separable and unital case

Lemma (8)

TFAE:

- A is inner exact for B.
- Every separable C*-subalgebra of A is inner exact for B.
- $\mathbb{K} \otimes A$ is inner exact for B.
- The unitization A is inner exact for B.

Since the same happens for the property that $\| \cdot \|_C = \| \cdot \|_{\min}$ on $A^{**} \otimes B$, it suffices to prove the following Proposition 9 only for separable unital A.

Proposition (9)

 $\|\cdot\|_{\mathcal{C}} = \|\cdot\|_{\min}$ on $A^{**} \otimes B$, if and only if, A is inner exact for B.

If we combine this with the work of Effros and Haagerup, we get:

Theorem (10) (characterization of locally reflexive agebras)

A C*-algebra A is locally reflexive, if and only if, the sequence of operator spaces

 $0 \to L \otimes B \to (\mathcal{K} \otimes A) \otimes B \to ((\mathcal{K} \otimes A)/L) \otimes B \to 0$

is exact – in the complete metric sense – for every closed left-ideal L of $\mathcal{K} \otimes A$ and every C*-algebra B.

It is an open question if every locally reflexive algebra is exact. If this question would have a positive answer, then we could get from Theorem 10, or even better from a proof of the following Conjecture 11, an "algebraic" inner characterization of exactness.

Conjecture (11)

If, for every C*-subalgebra $E \subset A$ and every closed ideal J of E the Busby invariant of the extension $0 \rightarrow J \rightarrow E \rightarrow E/J \rightarrow 0$ is locally liftable, then A is locally reflexive.

On the Proof of Proposition 9:

Lemmata 4 and 8 show that it suffices to consider the case of **separable and unital** *A*.

Proof of " \Rightarrow " follows from Lemmata 4 and 5.

The proof of " \Leftarrow " needs some ideas related to the nc Lusin Theorem and to desired non-commutative versions of the Egorov theorem.

Lemma 2, repeated use of the nc Lusin Theorem (M.Tomita 1959, see book of G.K. Pedersen, Thm. 2.7.3), and $N(x^*x) = N(xx^*)$ for each *C**-norm *N* on *A*** \odot *B* together prove the following lemma.

Lemma (12)

If $||v^*(p \otimes 1)v||_C \le ||v^*(p \otimes 1)v||_{\min}$ for all $v \in A \odot B$ and all countably decomposable projections $p \in A^{**}$, then $|| \cdot ||_C = || \cdot ||_{\min}$ on $A^{**} \odot B$

Lemmata 12 and Lemma 2 show that $\|\cdot\|_{C} = \|\cdot\|_{\min}$ on $A^{**} \odot B$, if for each (fixed) $v \in A \odot B$ and each (fixed) positive partially normal state λ on $A^{**} \odot B^{**}$, that is continuous on $A \odot B$ with respect to $\|\cdot\|_{\min}$, holds

 $\lambda(v^*(p\otimes 1)v) \leq \|v^*(p\otimes 1)v\|_{\min}$

for *all* countably decomposable projection $p \in A^{**}$.

Fix $v \in A \odot B$, λ as above. Find countably decomposable projection c in the center of A^{**} with pc = p, $\lambda(c \otimes 1) = 1$, and ||ac|| = ||a|| for all $a \in A$. Then $A^{**}c$ has a faithful normal unital representation on a separable Hilbert space. Thus, the Up-Down Theorem of G.K. Pedersen applies. Since $A \cong Ac \subset A^{**}c$ is *unital*, we get that each element of A^{**}_+ with norm ≤ 1 (in particular our projection p) is in

$$((A^1_+)_{\sigma-\mathsf{down}})^{\sigma-\mathsf{up}}$$

We define the set $S = S(A, \lambda, v)$ of $a \in A^{**}$ with $0 \le a \le 1$ and the property and $\lambda(v^*(a \otimes 1)v) \le \|v^*(ac \otimes 1)v\|_{min}$.

Since $a \in A_{+}^{**} \mapsto ||v^{*}(a \otimes 1)v||$ is order preserving, and since $a \in A^{**} \to \lambda(v^{*}(a \otimes 1)v)$ is a normal positive functional, we get that $a \in S$ if $a = \sup_{n} a_{n}$ for $a_{1} \leq a_{2} \leq \cdots \in S$.

Intermediate result:

If $\lambda(v^*(a \otimes 1)v) \leq \|v^*((ca) \otimes 1)v\|_{\min}$ with *c* as above selected (depending on λ and *v*) for all $a \in (A_+^{-1})_{\sigma-\text{down}}$, each λ and $v \in A \odot B$, then $\|\cdot\|_C = \|\cdot\|_{\min}$ on $A^{**} \odot B$.

The proof of Proposition 9 becomes complete, if we can find a *closed* projection $q \in (\mathbb{K} \otimes A)^{**}$ such that $e_{11} \otimes (v^*(a \otimes 1)v) = (e_{11} \otimes v)(q \otimes 1)(e_{11} \otimes v).$

Let *A* a unital C*-algebra and $0 \le a_1 \le a_2 \le \cdots$ an increasing sequence of contractions in A_+ , and $b := \sup_n a_n \in A^{**}$ its $\sigma(A^{**}, A^*)$ -limit (i.e., weak limit). Denote by e_{ii} the matrix units in \mathcal{K} .

Lemma (13) (Dilation of increasing sequences)

There is a untal *-morphism

$$h: \ \widetilde{\mathcal{K}} := \mathcal{K} + \mathbb{C} \cdot \mathbf{1} \to \mathcal{M}(\mathcal{K} \otimes \boldsymbol{A})$$

such that

$$e_{11} \otimes a_n = (e_{11} \otimes 1) h(p_n) (e_{11} \otimes 1),$$

with $p_n := e_{11} + e_{22} + \cdots + e_{nn}$ for all $n \in \mathbb{N}$.

Idea of proof: Modify the Stinespring dilation of the unital c.p. map $V : \widetilde{\mathcal{K}} \to A$ with $V(e_{ij}) := (a_j - a_{j-1})\delta_{ij}$. Here $a_{-1} := 0$.

Remark (14)

Consider the hereditary C*-subalgebra

$$D:=\bigcup_n h(p_n)(\mathcal{K}\otimes A)h(p_n)\subset \mathcal{K}\otimes A$$

The open projection $p_D \in (\mathcal{K} \otimes A)^{**} \cong \mathcal{L}(\ell_2) \overline{\otimes} A^{**}$ corresponding to D satisfies $(e_{11} \otimes 1)p_D(e_{11} \otimes 1) = e_{11} \otimes b$ and, for $w \in A \odot B$:

$$e_{11}\otimes (w^*((1-b)\otimes 1)w)=(e_{11}\otimes w)^*((1-p_D)\otimes 1)(e_{11}\otimes w).$$

The last equation **completes the proof** of Proposition 9.

A noncommutative Egorov problem

Let *A* a unital or stable separable *C**-algebra, and let $\mu \in A^*$ a positive linear functional on *A*. The **central support** $c \in \mathcal{Z}(A^{**})$ of μ is defined as the smallest projection *c* in the center $\mathcal{Z}(A^{**})$ of A^{**} with $\mu(c) = \|\mu\|$. The usual support projection $p_{\mu} \in A^{**}$ of μ is not necessarily in the center of A^{**} .

Question (15) (nc Egorov)

Let $p \in A^{**}$ a projection, $\varepsilon > 0$.

Does there exists a *closed* projection $q \in A^{**}$ such that

$$qc \leq p$$
 and $\mu(q) + \varepsilon > \mu(p)$.

Recall here that a projection $q \in A^{**}$ is *closed* if 1 - q is the *open* support projection p_D of a closed hereditary C*-subalgebra $D \subset A$.

If $A = C(\Omega)$ is commutative and unital, then the answer is positive and is equivalent to a theorem of Egorov in Measure theory.

There exists partial results that are related to a possible positive answer of question 15. But they are only generalization of a theorem of Lusin.

The above Lemma 13 (together with Remark 14) is a step towards a partial result, but only after stabilizing *A* with the compact operators.

We obtain in a similar way a "stable" version of a non-commutative Egorov theorem (where we identify $e_{11} \otimes a$ with $a \in A^{**}$):

Theorem (16) (nc Egorov)

Let A a separable unital C*-algebra and $\mu \in A^*$ a positive linear functional with central support (-projection) $c \in Z(A^{**})$, $T \in A^{**}_+$ with $||T|| \leq 1$. Then, for every $\varepsilon > 0$, there exists a **closed** projection $q \in (\mathcal{K} \otimes A)^{**}$ (*i.e.*, 1 - q is the open support projection of an hereditary C^* -subalgebra $D \subset \mathcal{K} \otimes A$) such that

 $(e_{11}\otimes c)q(e_{11}\otimes c)\leq T$ and $\mu((e_{11}\otimes 1)q(e_{11}\otimes 1))+\varepsilon>\mu(T)$.

What about a non-stable version of the characterization of local reflexivity, or only of $\|\cdot\|_C = \|\cdot\|$ on $A^{**} \otimes B$? (We may assume again that A is unital and separable.)

The basic assumption is (equivalent to the assumption), that there is a universal constant $\rho < \infty$ with the property $\|(q \otimes 1)w\|_C \le \rho \|(q \otimes 1)w\|$ for all closed projections $p \in A^{**}$ and all $w \in A \odot B$.

Then we need as a property of *A* that, for each countably decomposable projection $z \in \mathcal{Z}(A^{**})$ and each $b \in (A^1_+)_{\sigma-\text{down}}$, normal state $\mu \in A^* = (A^{**})_*$ on A^{**} and every $\varepsilon > 0$, there is a closed projection $q \in A^{**}$ and an element $a \in A$ (both depending on ε) such that $za^*qa \le \varepsilon 1 + (1 + \varepsilon) \sup_n b^{1/n}$ and $\mu(b) \le 2\varepsilon + \mu(a^*qa)$.

The proof of the conclusion $\|\cdot\|_{C} = \|\cdot\|_{\min}$ on $A^{**} \odot B$ under this assumptions is similar to the above given proof of Proposition 9.

[AB] Archbold, R.J., Batty, J.K., *C*–tensor norms and slice maps*, J. London Math. Soc. **22** [1980], 127–138. (Theorem 2.4.3)

[EH] E.Effros and U.Haagerup, *Lifting problems and local reflexivity for C*–algebras*, Duke Math. J. **52** [1985], no. 1, 103–128.

[Kas] G.Kasparov, *Hilbert C*–modules: theorems of Stinespring and Voiculescu*, J. Operator Theory **4** [1980], 133–150.

[Pe] G.K. Pedersen, *C*–algebras and their automorphism groups*, Academic Press, London [1979].

[Wa] S. Wassermann, *Exact C*-algebras*, monograph.

[Ki] E. Kirchberg, *Commutants of unitaries in UHF algebras and functorial properties of exactness*, J. reine angew. Math. (Crelle Journal) **453** [1994], 39–77.

Proof of " \Rightarrow **" for Proposition** 9:

If $\|\cdot\|_C = \|\cdot\|_{\min}$ on $A^{**} \otimes B$, then $\|\cdot\|_C = \|\cdot\|_{\min}$ on $(\mathcal{K} \otimes A)^{**} \otimes B$, by Lemma 4.

For closed left-ideals $L \subset \mathcal{K} \otimes A$ with open support projection $p_L \in (\mathcal{K} \otimes A)^{**}$ and $w \in (\mathcal{K} \odot A)) \odot B$ holds $\operatorname{dist}(w, L \odot B) = \|w((1 - p_L) \otimes 1)\|_C$ and $\|w((1 - p_L) \otimes 1)\|_{\min} = \|(\pi_L \otimes \operatorname{id}_B)(x)\|$, by Lemma 5.

Proof of Lemma 12:

We make repeated use of the non-commutative Lusin theorem (from M.Tomita in 1959, see book of G.K. Pedersen, Thm. 2.7.3): Given $x \in H, a_1, \ldots, a_n \in A^{**}, d_1 \colon A^{**} \to \mathcal{L}(H)$ normal *-representation $\varepsilon > 0$, then exist countably decomposable $p \in A^{**}, a'_k \in A$ with $a'_k p = a_k p$ and $||x - px|| < \varepsilon$. Then $w = \sum_k a_k \otimes b_k \in A^{**} \odot B$ and $v := \sum_k a'_k \otimes b_k \in A \odot B$ satisfy $w(p \otimes 1) = v(p \otimes 1)$.

The distance $|\rho(w^*w) - \rho((p \otimes 1)w^*w(p \otimes 1))|$ between $||(d_1 \cdot d_2)(w)x||^2$ and $||(d_1 \cdot d_2)(w(p \otimes 1))x||^2$ is $\leq \varphi(\varepsilon)$ for some increasing continuous function φ with $\varphi(0) = 0$ (if given x and w are fixed).

$$\lambda((p\otimes 1)w^*w(p\otimes 1))^{1/2} \leq \|w(p\otimes 1)\|_C = \|v(p\otimes 1)\|_C = \|v(p\otimes 1)\|_C = \|v(p\otimes 1)\|.$$

Since $||v(p \otimes 1)|| = ||w(p \otimes 1)|| \le ||w||$ it implies

 $\lambda(\mathbf{w}^*\mathbf{w}) \leq f(\varepsilon) + \|\mathbf{w}^*\mathbf{w}\|_{\min},$

for each $\varepsilon > 0$, hence $\lambda(w^*w) \le ||w^*w||_{\min}$. Now Lemma 2 says $||w||_C = ||w||_{\min}$. More about the proof of Lemma 13: Consider the unital c.p. map $V: \mathcal{K} \to A$ with $V(e_{ij}) := (a_j - a_{j-1})\delta_{ij}$. Here $a_{-1} := 0$.

The Kasparov-Stinespring dilation defines a countably generated Hilbert *A*-module *H* and a unital *-representation $k_1 : \widetilde{\mathcal{K}} \to \mathcal{L}(H)$ and a vector $x \in \mathcal{H}$ such that $\langle x, k(c)x \rangle = V(c)$ for all $c \in \widetilde{\mathcal{K}}$.

Then Kasparov triviality theorem gives an Hilbert *A*-modul isomorphism γ from $H \oplus H_A$ onto the Kasparov standard module H_A . Consider H_A as the set $(\mathcal{K} \otimes A)(e_{11} \otimes 1)$ of first columns $\sum e_{n1} \otimes y_n$ in $\mathcal{K} \otimes A$. Then $\mathcal{L}(H_A)$ becomes naturally isomorphic with the multiplier algebra $\mathcal{M}(\mathcal{K} \otimes A)$ of $\mathcal{K} \otimes A$. Define $k_2 \colon \widetilde{\mathcal{K}} \to \mathcal{L}(H_A)$ by

$$k_2(c) := \gamma(k_1(c) \oplus \chi(c)\mathbf{1})\gamma^{-1},$$

where $\chi \colon \widetilde{\mathcal{K}} \to \mathbb{C}$ is the unique non-zero character.

The element $w := \gamma(x)$ is a partial isometry in $\mathcal{K} \otimes A$ with $w^*w = e_{11} \otimes 1$. Since *A* is unital, its stabilization $\mathcal{K} \otimes A$ has stable rank one, and – therefore – we find a unitary

$$U \in (\mathcal{K} \otimes \mathcal{A}) + \mathbb{C} \cdot \mathbf{1} \subset \mathcal{M}(\mathcal{K} \otimes \mathcal{A})$$

with $\gamma(x) = U(e_{11} \otimes 1)$.

The desired unital *-morphism $h: \widetilde{\mathcal{K}} \to \mathcal{M}(\mathcal{K} \otimes A)$ is given by $h(c) := U^* k_2(c) U$.