## Algebraic actions, entropy, and operator algebras

David Kerr

Texas A&M University

November 13, 2011

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

### Shannon entropy

The Shannon entropy of a partition  $\mathcal{P}$ 



of a probability space  $(X, \mu)$  is defined as

$$H(\mathcal{P}) = -\sum_{i=1}^{n} \mu(P_i) \log \mu(P_i),$$

which can be viewed as the integral of the information function

$$I(x) = -\log \mu(P_i)$$

where *i* is such that  $x \in P_i$ .

## Kolmogorov-Sinai entropy

For a single measure-preserving transformation  $T: X \rightarrow X$  we set

$$h_{\mu}(T, \mathfrak{P}) = \lim_{n \to \infty} \frac{1}{n} H(\mathfrak{P} \vee T^{-1} \mathfrak{P} \vee \cdots \vee T^{-n+1} \mathfrak{P})$$
  
 $h_{\mu}(T) = \sup_{\mathfrak{P}} h_{\mu}(T, \mathfrak{P}).$ 

#### Kolmogorov-Sinai theorem

If  $\mathfrak{P}$  is a finite generating partition then  $h_{\mu}(\mathcal{T}) = h_{\mu}(\mathcal{T}, \mathfrak{P})$ .

As a consequence, the entropy of the Bernoulli shift on  $(X_0, \mu_0)^{\mathbb{Z}}$  is equal to the Shannon entropy of the base.

Theorem (Ornstein)

Bernoulli shifts are classified by their entropy.

This theory applies most generally to amenable acting groups.

## Bowen's measure entropy

#### Basic idea

Replace internal averaging (information theory) by the counting of discrete models (statistical mechanics).

Let  $\mathcal{P}$  be a partition of X whose atoms have measures  $c_1, \ldots, c_n$ . In how many ways can we approximately model this ordered distribution of measures by a partition of  $\{1, \ldots, m\}$  for a given  $m \in \mathbb{N}$ ? By Stirling's formula, the number of models is roughly

$$c_1^{-c_1m}\cdots c_n^{-c_nm}$$

for large m, so that

$$rac{1}{m}\log(\# ext{models}) pprox - \sum_{i=1}^n c_i \log c_i = H(\mathcal{P}).$$

### Bowen's measure entropy

Let  $G \curvearrowright (X, \mu)$  be a measure-preserving action, and let  $\Sigma$  be a sequence of maps  $\sigma_i : G \to \text{Sym}(m_i)$  into finite permutation groups which are asymptotically multiplicative and free (the existence of such a sequence defines a **sofic** group).

Let  $\mathcal{P}$  be a finite ordered partition of X. For a finite set  $F \subseteq G$  and  $\varepsilon > 0$  we write  $AP(\mathcal{P}, F, \varepsilon, \sigma_i)$  for the number of ordered partitions  $\Omega$  of  $\{1, \ldots, m_i\}$  such that the measures of the atoms of  $\bigvee_{s \in F} s^{-1}\mathcal{P}$  and  $\bigvee_{s \in F} s^{-1}\Omega$  which correspond to each other under the dynamics are summably  $\varepsilon$ -close. Set

$$h_{\Sigma,\mu}(\mathcal{P}) = \inf_{F} \inf_{\varepsilon > 0} \limsup_{i \to \infty} \frac{1}{m_i} \log \# \mathsf{AP}(\mathcal{P}, F, \varepsilon, \sigma_i)$$

Theorem (Bowen)

 $h_{\Sigma,\mu}(\mathcal{P})$  has a common value for generating partitions  $\mathcal{P}$ .

## A generator-free definition of sofic entropy

We seek a general generator-free definition of sofic entropy in the spirit of what Sinai furnished for single transformations in response to Kolmogorov's generator-based definition.

#### Basic idea

Measure the exponential growth of the number of sofic models as before but for **each** partition at some **fixed observational scale**, and then take a supremum of these growth rates as the scale becomes finer and finer.

The observational scale is determined by a second partition, and so the variables in the definition now include two partitions playing different roles.

## A generator-free definition of sofic entropy

Define  $\text{Hom}_{\mu}(\mathcal{P}, F, \delta, \sigma_i)$  to be the set of all homomorphisms from the algebra generated by  $\mathcal{P}$  to the algebra of subsets of  $\{1, \ldots, m_i\}$  which, to within  $\delta$ ,

- are approximately *F*-equivariant, and
- approximately pull back the uniform probability measure on  $\{1, \ldots, m_i\}$  to  $\mu$ .

For a partition  $\Omega \leq \mathcal{P}$ , write  $|\text{Hom}_{\mu}(\mathcal{P}, F, \delta, \sigma_i)|_{\Omega}$  for the cardinality of the set of restrictions of elements of  $\text{Hom}_{\mu}(\mathcal{P}, F, \delta, \sigma_i)$  to  $\Omega$ .

#### Definition

$$h_{\Sigma,\mu}(X,G) = \sup_{\Omega} \inf_{\mathcal{P} \geq \Omega} \inf_{F,\delta} \limsup_{i \to \infty} \frac{1}{m_i} \log |\operatorname{Hom}_{\mu}(\mathcal{P},F,\delta,\sigma_i)|_{\Omega}$$

## A generator-free definition of sofic entropy

We then have the following Kolmogorov-Sinai theorem, which enables us to compute the entropy as we have defined it.

#### Theorem

In the definition of  $h_{\Sigma,\mu}(X, G)$ , one can equivalently restrict the partitions  $\mathcal{P}$  and  $\mathcal{Q}$  to range within a given generating  $\sigma$ -algebra. In particular, if there is a finite generating partition then  $\mathcal{P}$  and  $\mathcal{Q}$  need not range over any partitions except this one.

As a consequence, the entropy of a Bernoulli action  $G \curvearrowright (X_0, \mu_0)^G$  is equal to the Shannon entropy of the base.

The above theorem also permits us to show that our definition is equivalent to Bowen's in the presence of a generating partition.

## Application to Bernoulli actions

In the case that G is amenable the following theorem is a well-known consequence of classical entropy theory. In the case that G contains the free group  $F_2$  it was proved by Lewis Bowen. Note that there exist countable sofic groups that lie outside of these two classes. Indeed Ershov showed the existence of a countable nonamenable residually finite torsion group.

### Theorem (K.-Li)

Let G be a countable sofic group. Let  $(X, \mu)$  be a standard probability space with  $H(\mu) = +\infty$ . Then the Bernoulli action  $G \curvearrowright (X^G, \mu^G)$  has no generating partition with finite Shannon entropy.

## Embedded sofic approximation viewpoint

In the case that X is a compact metrizable space and G acts by measure-preserving homeomorphisms, we can formulate an equivalent definition of sofic measure entropy by measuring the exponential growth, relative to the sofic approximation sequence  $\Sigma = \{\sigma_i : G \rightarrow \text{Sym}(m_i)\}$ , of the number of maps

$$\{1,\ldots,m_i\}\to X$$

which

- are approximately equivariant, and
- approximately push forward the uniform probability measure to  $\mu.$

The images of such a map can be viewed as a system of interlocking partial orbits.

## Topological entropy

For a finite set  $F \subseteq G$  and a  $\delta > 0$  define  $Map(d, F, \delta, \sigma_i)$  to be the set of all maps  $\{1, \ldots, m_i\} \to X$  which are approximately *F*-equivariant to within  $\delta$ . Set

$$h_{\Sigma}(d) = \sup_{\varepsilon > 0} \inf_{F} \inf_{\delta > 0} \limsup_{i \to \infty} \frac{1}{m_i} \log N_{\varepsilon}(\operatorname{Map}(d, F, \delta, \sigma_i))$$

where  $N_{\varepsilon}(\cdot)$  denotes the maximal cardinality of an  $\varepsilon$ -separated set w.r.t. the pseudometric  $\rho(\varphi, \psi) = \max_{a=1,...,m_i} d(\varphi(a), \psi(a))$ .

#### Proposition

 $h_{\Sigma}(d)$  has a common value over all compatible metrics d on X.

#### Definition

Define  $h_{\Sigma}(X, G)$  to be this common value.

## Application to surjunctivity

Gottschalk's surjunctivity problem asks which countable groups G are *surjunctive*, which means that, for each  $k \in \mathbb{N}$ , every injective G-equivariant map  $\{1, \ldots, k\}^G \to \{1, \ldots, k\}^G$  is surjective.

### Theorem (Gromov)

Every countable sofic group is surjunctive.

One can give an entropy proof of Gromov's theorem by showing the following.

### Theorem (K.-Li)

Let G be a countable sofic group and  $k \in \mathbb{N}$ . Then with respect to every sofic approximation sequence the shift  $G \curvearrowright \{1, \ldots, k\}^G$  has entropy log k and all proper subshifts have entropy less than log k.

### Amenable case

The entropy of a homeomorphism  $T: X \to X$  is given by

$$h_{ ext{top}}(T) = \sup_{arepsilon>0} \limsup_{n o\infty} rac{1}{n} \log \operatorname{sep}(n,arepsilon)$$

where  $sep(n, \varepsilon)$  is the maximal cardinality of an  $\varepsilon$ -separated set of partial orbits from 0 to n - 1. By averaging over Følner sets one can define this more generally for amenable acting groups.

When G is amenable, every sofic approximation approximately decomposes into Følner sets. Thus an approximately equivariant map  $\{1, \ldots, m_i\} \rightarrow X$  approximately decomposes into partial orbits over Følner sets. Consequently:

#### Theorem (K.-Li)

Suppose that G is amenable. Then  $h_{\Sigma,\mu}(X,G) = h_{\mu}(X,G)$  in the measure case and  $h_{\Sigma}(X,G) = h(X,G)$  in the topological case.

## Variational principle

The classical variational principle asserts that, for a homeomorphism  $T: X \rightarrow X$  of a compact Hausdorff space,

$$h_{ ext{top}}(T) = \sup_{\mu} h_{\mu}(T)$$

where  $\mu$  ranges over all invariant Borel probability measures on X. This is moreover true for actions of any countable amenable group.

### Theorem (K.-Li)

Let  $G \curvearrowright X$  be a continuous action of a countable sofic group on a compact metrizable space. Then

$$h_{\Sigma}(X,G) = \sup_{\mu} h_{\Sigma,\mu}(X,G)$$

where  $\mu$  ranges over all invariant Borel probability measures on X.

By an *algebraic action* we mean an action of a group G on a compact Abelian group by automorphisms.

#### Example: toral automorphisms

A matrix  $A \in GL(n,\mathbb{Z})$  defines an automorphism  $T_A$  of  $\mathbb{T}^n$ , and

$$h_{ ext{top}}(T_{\mathcal{A}}) = h_{\mu}(T_{\mathcal{A}}) = \sum_{|\lambda_i| > 1} \log |\lambda_i|$$

where  $\mu$  is the Haar measure and  $\lambda_1, \ldots, \lambda_n$  are the eigenvalues of A with multiplicity.

However, for d > 1 a  $\mathbb{Z}^d$ -action generated by d commuting matrices in  $GL(n,\mathbb{Z})$  always has **zero entropy**.

Is entropy relevant for algebraic actions of groups other than  $\mathbb{Z}?$ 

By Jensen's formula, the entropy of a toral automorphism  $T_A$  can be expressed as the logarithm of the Mahler measure

$$M(f) := \exp \int_0^1 \log |f(e^{2\pi i t})| dt$$

of the characteristic polynomial f of A. This hints that we should shift our perspective from matrices to polynomials in order to expand the theory to more general acting groups.

Let f be an element in the group ring  $\mathbb{Z}G$ . Then G acts on  $\mathbb{Z}G/\mathbb{Z}Gf$  by left translation, and this gives rise to an action  $\alpha_f$  of G by automorphisms on the compact Abelian dual group  $\mathbb{Z}\widehat{G/\mathbb{Z}Gf}$ . This yields a rich class of actions which has been extensively studied in the case  $G = \mathbb{Z}^d$ .

#### Example

When  $f = n \cdot 1$  we obtain the Bernoulli action  $G \curvearrowright \{1, \ldots, n\}^G$  with uniform weights.

#### Example

When  $G = \mathbb{Z}$  and  $f = 1 + a_1u + a_2u^2 + \cdots + a_{n-1}u^{n-1} + u^n$  we obtain the automorphism  $T_A$  of  $\mathbb{T}^n$  defined by the matrix

$$A = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -1 & -a_1 & -a_2 & \cdots & -a_{n-1} \end{bmatrix}$$

Lind, Schmidt, and Ward proved that, in the case  $G = \mathbb{Z}^d$ , the entropy  $\alpha_f$  with respect to the Haar measure is equal to the logarithm of the Mahler measure  $M(f) := \exp \int_{\mathbb{T}^d} \log |f(t)| dt$  where the integral is with respect to normalized Haar measure.

Later Deninger showed that, for a larger class of amenable groups G, if f is invertible in  $\ell^1(G)$  then the entropy of  $\alpha_f$  is equal to the logarithm of the Fuglede-Kadison determinant

$$\det_{\mathcal{L}G} f := \exp \tau(\log |f|).$$

More generally:

Theorem (Li) Suppose that G is amenable and f is invertible in  $\mathcal{L}G$ . Then

 $h_{\mu}(\alpha_f) = \log \det_{\mathcal{L}G} f.$ 

Suppose now that G is residually finite. Let  $\{G_i\}_{i=1}$  be a sequence of finite-index normal subgroups of G with  $\bigcap_{j=1}^{\infty} \bigcup_{i=j}^{\infty} G_i = \{e\}$ , and let  $\Sigma = \{\sigma_i : G \to \text{Sym}(G/G_i)\}_{i=1}^{\infty}$  be the associated sofic approximation sequence.

# Theorem (Bowen) Suppose that f is invertible in $\ell^1(G)$ . Then

$$h_{\Sigma,\mu}(\alpha_f) = \log \det_{\mathcal{L}G} f.$$

The invertibility of f in  $\ell^1(G)$  is important in Bowen's argument because it implies the existence of a finite generating partition.

Using the variational principle, one can show the following.

Theorem (K.-Li) Suppose that f is invertible in  $C^*(G)$ . Then

 $h_{\Sigma}(\alpha_f) = \log \det_{\mathcal{L}G} f.$ 

The entropy in this case is equal to the exponential growth rate of the number of  $G_i$ -fixed points.

### Local entropy of algebraic actions

Given an action  $G \cap X$  on a compact space, we say that a pair  $(x_0, x_1) \in X \times X$  is an **IE-pair** if for all open sets  $U_0 \ni x_0$  and  $U_1 \ni x_1$  there is a  $\lambda > 0$  such that for every finite set  $F \subseteq G$  there is an  $F' \subseteq F$  with  $|F'| \ge \lambda |F|$  such that  $\bigcap_{s \in F'} sU_{\sigma(s)} \neq \emptyset$  for every  $\sigma : F' \to \{0, 1\}$ .

Suppose that  $G \curvearrowright X$  is an algebraic action. The set of all  $x \in X$  such that  $(x, e_X)$  is an IE-pair forms a group, called the **IE group**. Write  $\Delta(X)$  for the set of all **homoclinic** points, i.e., points  $x \in X$  such that  $\lim_{s\to\infty} sx = e_X$ .

## Local entropy of algebraic actions

### Theorem (Chung-Li)

Let  $G \curvearrowright X$  be an expansive algebraic action of a polycyclic-by-finite group. Then

- 1.  $\Delta(X)$  is dense in the IE group,
- 2.  $\Delta(X)$  is nonempty iff the action has positive entropy,
- 3.  $\Delta(X)$  is dense in X iff the action has completely positive entropy.

### Theorem (Rudolph-Schmidt)

An algebraic  $\mathbb{Z}^d$ -action has completely positive entropy iff it is conjugate to a Bernoulli shift.