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How I first met Eberhard.

(1988-9?) Asked by Hirzebruch (?) to comment on Eberhard’s
manuscripts

(May 29, 1989) Sent a letter of thanks to Eberhard from Institut
Mittag-Leffler for copies of his manuscripts.
“The results are outstanding and are certainly the best C*-algebraic
structure theorems to appear in the last few years.”

(June 1989) Visited Eberhard in Heidelberg, and was awed by the
stacks of his unpublished notes.

Edward Effros (UCLA) QFA 12 November 2011 3 / 18



Function systems

Concrete: 1 ∈ V ⊆ CR(X ) (or L∞R (X ))

Abstract: (V ,≤, 1), V real, Kadison’s “order unit space axioms”

Function norm: ‖v‖ ≤ 1⇔ −1 ≤ v ≤ 1

compact convex sets K ←→ function systems V

K −→ V = Aff(K ) ⊆ C (K )

V −→ K = S(V ) ⊆ V ∗

morphisms: positive unital mappings, e.g., S(V ) = Morph(V , R)

Def: Z is injective if

W

∪|
∃Φ
↘ ϕ, Φ morphisms

V
ϕ→ Z
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Function systems

Extend one dimension at a time
V + Rw0

∪|
∃Φ
↘ ϕ, Φ morphisms

V
ϕ→ Z

Let Φ(αw0 + v) = αz0 + ϕ(v) and find inequalities z0 must satisfy.

Need: Riesz interpolation property (RIP), i.e., if one has

c1

c2
...

 ≤


b1

b2
...

then there exists an element z0 with ci ≤ z0 ≤ bj . Equivalently (RDP)
a1 + a2 = b3 + b4, ai , bj ≥ 0⇒ ∃cij ≥ 0 : ai =

∑
j cij , bj =

∑
i cij .

Theorem

If Z is a dual space, Z injective ⇔ Z is a lattice ⇔ Z = L∞(X ).
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Function systems

Namioka, Phelps
tensor products of function systems  products of convex sets

dual cones

V ,V ′ normed spaces in duality 〈, 〉 : V × V ′ → R

cone C ⊆ V , dual cone C o = {v ′ : 〈v , v ′〉 ≥ 0} ⊆ V ′,

cone Γ ⊆ V ′ dual cone Γo ⊆ V

C = C oo suitable closure

ordered vector space: (V ,V+) vector space with distinguished cone V+.

V+ ⊗W+ cone generated by v ⊗ w : v ∈ V+,w ∈W+
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Function systems

V function system ⇒ V ∗ base norm space (not a function space)

Minimal tensor product:
(V ⊗min W )+ = [V ∗

+ ⊗W ∗
+]o

Maximal tensor product:
(V ⊗max W )+ = [V+ ⊗W+]oo

V ⊆ C (X ),W ⊆ C (Y )⇒
V ⊗min W ⊆ C (X × Y ) (spatial tensor product)

V ,W function systems ⇒
(V ⊗max W )∗+ = Pos(V ,W ∗)
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Function systems

The classical square:

V� = Aff (�) = {a ∈ R4 : a1 + a2 = a3 + a4}

(consider the affine Dirichlet problem on the extreme points of 1
3�

4
2).

Theorem (Namioka, Phelps1969)

Suppose that Z is a function system and K = S(Z ). Then the following
are equivalent:

1 K is a Choquet simplex

2 Z satisfies the Riesz decomposition property

3 Z is nuclear, i.e., Z ⊗min V = Z ⊗maxV for all function systems V

4 Z ⊗min V� = Z ⊗max V�,

5 Z ∗∗ is injective.
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are equivalent:

1 K is a Choquet simplex

2 Z satisfies the Riesz decomposition property

3 Z is nuclear, i.e., Z ⊗min V = Z ⊗maxV for all function systems V

4 Z ⊗min V� = Z ⊗max V�,

5 Z ∗∗ is injective.
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Operator systems

Concrete Definition: I ∈ V = V∗ ⊆ B(H),

Mn(V) ⊆ Mn(B(H)) = B(Hn)

Matrix order: Mn(V)+ = Mn(V)
⋂
B(Hn)+

Warning: the order on Mn(V) is not determined by the order on V.

Given linear ϕ : V → W, define

ϕn : Mn(V)→ Mn(W) : [vij ] 7→ [ϕ(vi ,j)]

Definition: ϕ : V → W is completely positive if ϕn ≥ 0 for all n. Example:

transpose map ϕ on M2 satisfies ϕ ≥ 0 but ϕ2 6≥ 0

Morphisms completely positive unital mappings V → W.

Abstract Definition (Choi,E) (V, ∗,Mn(V)+, I ), Mn(V)sa is a function
space, etc. ⇒ the cones Mn(V)+ form a matrix convex family.
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Arveson-Wittstock-Hahn-Banach Theorem

Def: An operator system Z is injective if

W

∪|
∃Φ
↘ ϕ, Φ morphisms

V ϕ→ Z

Theorem (Connes, et al)

A von Neumann algebra Z is injective ⇔ Z is a hyperfinite von Neumann
algebra.

Key Question: Why is Z = Mn injective?

Does Z = Mn satisfy a matrix convex analogue of the lattice property, or
of the Riesz interpolation property?
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Some simplifications

It suffices to consider finite dimensional Z,V and W.

The essential phenomena are concerned with the matrix orderings:
one can dispense with the order units.

Def.: A sloppy operator system is a matrix ordered space V satisfying
suitable conditions (in particular, the cones are matrix convex).

Def. A floppy operator system is a finite dimensional sloppy operator
system.

Lemma: V floppy ⇒ V∗ is floppy.

We only need norms, not matrix norms on V ⊗W.
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Tensor products of floppy operator systems

V ⊗W and V∗ ⊗W∗ are in duality.

Given v ∈ Mn(V) and w ∈ Mn(W),

v × w =
∑

vij ⊗ wij ∈ V ⊗W

V+⊗̃W+ = {v × w : v ∈ Mn(V )+,w ∈ Mn(W )+}

Pm(V ⊗W) = (V∗+⊗̃W∗
+)o

PM(V ⊗W) = (V+⊗̃W+)oo

Write V ⊗mW and V ⊗M W for the corresponding ordered spaces.

(V ⊗M W)∗ = V∗ ⊗mW∗ = Lcp(V,W∗)

(V ⊗mW)∗ ' V∗ ⊗M W∗ = Lnuc(V,W∗)
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A non-commutative square

Consider the matrix system

N2n = {v ∈ M2n : v1,1 + . . . + vn,n = vn+1,n+1 + . . . + v2n,2n}

N2 is the non-commutative analogue of

V� = {a ∈ R4 : a1 + a2 = a3 + a4}.

Theorem (Choi-Effros, Effros (1977))

If R is a von Neumann algebra, then the following are equivalent:

R is injective

N2n ⊗M R = N2n ⊗m R for all n

N2n ⊗M R∗ = N2n ⊗m R∗ for all n.

Theorem (Choi-Effros)

Although it is finite-dimensional, N∗
2 is not completely order isomorphic to

a matrix system.
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The categorical problems with function systems and
operator systems that led to their eclipse

Duals are in a different category*

Quotients can be degenerate (the Archimedean property)

There does not seem to be a general theory or literature for function
systems.

By contrast, function spaces (i.e., normed spaces) and operator
spaces (quantized norm spaces) are closed under these operations,
and there is a VAST literature for normed (or Banach) spaces just
waiting for quantization.

Is there a concrete realization for the non-commutative square?

*In fact they may often be regarded as “local function spaces” – used by E
- Lance to characterize semidiscretness
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The quantized square, quantized polytopes and
Kirchberg’s tensor product theorem

Theorem (The quantized square – Farenick-Paulsen (2011))

N∗
2
∼= Cz + C1 + Cz−1 ⊆ C (T).

Let En be the diagonal matrices D ∈Mn such that trace(D) = 0 Let
w1, . . . ,wn−1 be the generators of Fn−1, and let Wn ⊆ C ∗(Fn−1) be the
operator system generated by wiw

∗
j .

Theorem (Hints of quantized pohyhedra – Farenick-Paulsen (2011))

E∗n ∼=Wn ⊆ C ∗(Fn−1).
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Quotients and the Kirchberg tensor product theorem.

Key Observation: Function systems and operator systems have
well-behaved quotients!

See, e.g., Kavruk, Paulsen, Todorov, and Tomforde, Arkiv. Examples:

Wn
∼= Mn/Jn

where Jn = {diagonalD : traceD = 0}
Let Sn−1 = span{1, uj , u

∗
j } ⊆ C ∗(Fn−1), and Tn be the tridiagonal

matrices. Then
Sn−1

∼= Tn/Jn

The fact that duals and quotients of matrix spaces lead to subspaces
of C ∗(Fn−1) provides an elegant proof of the fundamental theorem of
Kirchberg:

C ∗(Fn−1)⊗min B(H) = C ∗(Fn−1)⊗max B(H)
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Operator Systems are here to stay (Other results)

Theorem (Farenick, Kavruk,Paulsen)

If A is a unital C∗-algebra on a Hilbert space H, then it has the WEP if
and only if it has the following “relative” property: If for any p ∈ N and
A,B,C ∈ Mp(B(H)) for which A + B + C = I and A X1 0

X ∗
1 B X2

0 X2 C


is strictly positive in M3p(B(H)), then there also exist Ã, B̃, C̃ ∈ Mp(A)
with the same properties.
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Theorem (Kavruk)

The Smith Ward problem* for matrix numerical ranges has a positive
solution if and only if every three-dimensional operator system is exact.

*Let q : B(H)→ B(H)/K (H). Then does there exist a single K ∈ K (H)
such that T ∈ B(H)⇒ wn(T + K ) = wn(q(T )) for all n??

Operator system equivalents of the Kirchberg conjecture (= Connes
conjecture) C ∗(Fn)⊗min C ∗(Fn) = C ∗(Fn)⊗max C ∗(Fn) ???

AND LOTS MORE!! –SEE ARXIV.
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