The C^{*}-algebra of a vector bundle

Marius Dadarlat
Purdue University

Copenhagen, November 2011

The Cuntz algebra O_{n}

$n=1 \Rightarrow O_{n}=C(\mathbb{T})$.
$n \geq 2 \Rightarrow O_{n}$ is simple, nuclear, purely infinite
$n \geq 2 \Rightarrow K_{0}\left(O_{n}\right)=\mathbb{Z} /(n-1), \quad K_{1}\left(O_{n}\right)=0$
Pimsner: given a Hilbert bimodule over a C^{*}-algebra A, $E={ }_{A} E_{A}$
one can associate to it a C^{*}-algebra O_{E}.
If $E=\mathbb{C} \mathbb{C}_{\mathbb{C}}^{n}$ then $O_{E}=O_{n}$.

Cuntz-Pimsner algebra O_{E}

E fin. gen. projective right Hilbert module over C^{*}-algebra A. Scalar product $<\cdot, \cdot>: E \times E \rightarrow A$ is given.
Left module structure given by $A \rightarrow L\left(E_{A}\right)$ injective $*$-homomorphism.

$$
E={ }_{A} E_{A} \Rightarrow \text { Cuntz-Pimsner algebra } O_{E}
$$

$$
\mathcal{E}=\oplus_{n \geq 0} E^{\otimes n}=A \oplus E \oplus\left(E \otimes_{A} E\right) \oplus\left(E \otimes_{A} E \otimes_{A} E\right) \oplus \ldots
$$

The Toeplitz (or tensor) C^{*}-algebra generated by the multiplication operators $T_{\xi}: \mathcal{E} \rightarrow \mathcal{E}, T_{\xi}(\eta)=\xi \otimes \eta$, where $\xi \in E, \eta \in \mathcal{E},\left(T_{\xi}(a)=\xi a\right)$.

$$
T_{E}=C^{*}\left\{T_{\xi}: \xi \in E\right\} \subset L(\mathcal{E})
$$

O_{E} is the quotient of T_{E} by the ideal of "compact operators" $K(\mathcal{E})$.

$$
0 \rightarrow K(\mathcal{E}) \rightarrow T_{E} \rightarrow O_{E} \rightarrow 0
$$

Examples

(1). $\alpha \in \operatorname{Aut}(A) \Rightarrow E:=A$ is A-bimodule: $a_{1} \cdot \mathbf{a} \cdot a_{2}=\alpha\left(a_{1}\right) \mathbf{a} a_{2}$ $O_{E} \cong A \rtimes_{\alpha} \mathbb{Z}$.
(2). $\quad E=\mathbb{C} \mathbb{C}_{\mathbb{C}}$ is \mathbb{C}-bimodule \Rightarrow classical Toeplitz extension

$$
0 \rightarrow \mathcal{K} \rightarrow \mathcal{T} \rightarrow C(\mathbb{T}) \rightarrow 0, \quad O_{E}=C(\mathbb{T})
$$

Recall: $\quad T_{\xi_{1}}^{*} T_{\xi_{2}}=<\xi_{1}, \xi_{2}>\otimes I, \quad T_{\xi_{1}} T_{\xi_{2}}^{*}=\xi_{1}<\xi_{2}, \cdot>\otimes I$
(3). $\quad E=\mathbb{C}_{\mathbb{C}}^{n}$ is \mathbb{C}-bimodule: $\Rightarrow O_{E} \cong O_{n}$ the Cuntz algebra.

Indeed if ξ_{1}, \ldots, ξ_{n} is orthonormal basis of \mathbb{C}^{n}, then
$<\xi_{i}, \xi_{j}>=\delta_{i j} \Rightarrow T_{\xi_{i}}^{*} T_{\xi_{j}}=\delta_{i j} 1$
$\xi_{1}<\xi_{1}, \cdot>+\cdots \xi_{n}<\xi_{n}, \cdot>=1 \Rightarrow T_{\xi_{1}} T_{\xi_{1}}^{*}+\cdots T_{\xi_{n}} T_{\xi_{n}}^{*}=P_{\mathcal{E} \ominus \mathbb{C}}$.
If $E=c(X) C(X)_{C(X)}^{n} \Rightarrow O_{E} \cong C(X) \otimes O_{n}$.

The C*-algebra of a vector bundle

$E \in \operatorname{Vect}_{n}(X)$ complex vector bundle of rank n over compact space X
Hermitian metric on $E \Rightarrow\langle\cdot, \cdot\rangle: E \times E \rightarrow C(X)$ scalar product.
$E \equiv\{$ cont. sections in $E\}$ is a fin. gen. projective Hilbert $C(X)$-module.
$O_{E}:=$ Cuntz-Pimsner algebra associated to the $C(X)$-bimodule E.
The isomorphism class of E and hence of O_{E} is independent of the metric. O_{E} locally trivial C*-bundle with fibers O_{n}.

A question of Cuntz:
What are the invariants of E captured by the C^{*}-bundle O_{E} ?
How are E and F related if $O_{E} \cong O_{F}$ as C^{*}-bundles?
Which C*-bundles with fiber O_{n} can be realized as Cuntz-Pimsner algebras of vector bundles of rank n ?

Invariants of O_{E}

Theorem (Pimsner)

$$
\begin{gathered}
K_{0}(A) \longrightarrow K_{0}(A) \longrightarrow K_{0}\left(O_{E}\right) \\
\uparrow \\
K_{1}\left(O_{E}\right) \longleftarrow K_{1}(A) \longleftarrow K_{1}(A)
\end{gathered}
$$

If $E \in \operatorname{Vect}_{n}(X), E=c(X) E_{C(X)}$

$$
\begin{gathered}
K^{0}(X) \xrightarrow{1-[E]} K^{0}(X) \xrightarrow{\iota} K_{0}\left(O_{E}\right) \\
\uparrow \\
K_{1}\left(O_{E}\right) \stackrel{\iota}{\iota} K^{1}(X) \underset{1-[E]}{\downarrow} K^{1}(X)
\end{gathered}
$$

ι is induced by $C(X) \hookrightarrow O_{E}$.

Let $E, F \in \operatorname{Vect}(X) . E=c(X) E_{C(X)}, \quad F=c(X) F_{C(X)}$.

Proposition

$O_{E} \cong O_{F} \Rightarrow(1-[E]) K^{0}(X)=(1-[F]) K^{0}(X)$.
Proof: Suppose that $\exists \Phi: O_{E} \cong O_{F} C(X)$-linear isomorphism.

$$
\begin{gathered}
K^{0}(X) \xrightarrow{1-[E]} K^{0}(X) \xrightarrow{\iota_{E}} K_{0}\left(O_{E}\right) \longrightarrow K^{1}(X) \\
K^{0}(X) \xrightarrow{{ }^{1-[F]}} K^{\circ}(X) \xrightarrow{\Phi_{*}} K_{0}\left(O_{F}\right) \longrightarrow K^{1}(X)
\end{gathered}
$$

Φ_{*} bijective $\Rightarrow \operatorname{ker} \iota_{E}=\operatorname{ker} \iota_{F} \Rightarrow$

$$
(1-[E]) K^{0}(X)=(1-[F]) K^{0}(X)
$$

Have seen that the ideal $(1-[E]) K^{0}(X)$ is invariant of O_{E}. $K^{0}(X) \cong \mathbb{Z} \oplus \widetilde{K}^{0}(X) . E \in \operatorname{Vect}_{m+1}(X) \Rightarrow[E]=(m+1)+[\widetilde{E}]$.
Define equiv. relation on $\widetilde{K}^{0}(X)$:
$a \sim b \Leftrightarrow a=b+m h+b h \Leftrightarrow m+a=(m+b)(1+h)$ for some $h \in \widetilde{K}^{0}(X)$
Let $E, F \in \operatorname{Vect}_{m+1}(X)$
Remark
$(1-[E]) K^{0}(X)=(1-[F]) K^{0}(X)$ if and only if $[\widetilde{E}] \sim[\widetilde{F}]$.
Conclude that the equiv. class of $[\widetilde{E}]$ in $\widetilde{K}^{0}(X) / \sim$ is an invariant of O_{E} :

$$
O_{E} \cong O_{F} \Rightarrow[\tilde{E}] \sim[\tilde{F}]
$$

How many equivalence classes are there in general?

Proposition

Let X be a finite connected CW-complex. If $\operatorname{Tor}\left(H^{*}(X, \mathbb{Z}), \mathbb{Z} / m\right)=0$, then $\left|\widetilde{K}^{0}(X) / \sim\right|=\left|\widetilde{K}^{0}(X) \otimes \mathbb{Z} / m\right|=\left|\widetilde{H}^{\text {even }}(X, \mathbb{Z} / m)\right|$.

Proof is involved. One uses the Atiyah-Hirzebruch spectral sequence to deduce that $\widetilde{K}^{0}(X) \otimes \mathbb{Z} / m \cong \widetilde{H}^{\text {even }}(X, \mathbb{Z}) \otimes \mathbb{Z} / m$ and

$$
\operatorname{Tor}\left(K_{2 q}^{0}(X) / K_{2 q+2}^{0}(X), \mathbb{Z} / m\right)=0
$$

where $K_{q}^{0}(X)=\operatorname{ker}\left(K^{0}(X) \rightarrow K^{0}\left(X_{q-1}\right)\right)$ is the skeleton filtration of $K^{0}(X)$. This reduces the statement to algebra problem in filtered rings.
$\mathcal{O}_{m+1}(X):=$ isom. classes of loc. triv. C^{*}-bundles with fiber O_{m+1}.

Corollary

$$
\left|\mathcal{O}_{m+1}(X)\right| \geq\left|\widetilde{K}^{0}(X) \otimes \mathbb{Z} / m\right| \quad \text { if } m+1 \geq\lceil d / 2\rceil . \quad d=\operatorname{dim}(X)
$$

Proof: m large \Rightarrow the map $\operatorname{Vect}_{m+1}(X) \rightarrow \widetilde{K}^{0}(X) \rightarrow \widetilde{K}^{0}(X) / \sim$ is onto.

Next we'll give an upper estimate for $\left|\mathcal{O}_{m+1}(X)\right|$.
$\mathcal{O}_{m+1}(X):=$ isom. classes of loc. triv. C^{*}-bundles with fiber O_{m+1}.

$$
\mathcal{O}_{m+1}(X) \cong\left[X, B \operatorname{Aut}\left(O_{m+1}\right)\right]
$$

Theorem

$$
\pi_{n}\left(\operatorname{Aut}\left(O_{m+1}\right)\right): \quad 0 \quad \mathbb{Z} / m \quad 0 \quad \mathbb{Z} / m \quad 0 \quad \mathbb{Z} / m \quad 0 \cdots
$$

(This answers a question of Cuntz from Neptune Conference). Thus the classifying space $B \operatorname{Aut}\left(O_{m+1}\right)$ has homotopy groups:

$$
\begin{array}{llllllll}
0 & 0 & \mathbb{Z} / m & 0 & \mathbb{Z} / m & 0 & \mathbb{Z} / m & 0 \cdots
\end{array}
$$

Proposition

Let X be a finite connected CW complex and let $m \geq 1$ be an integer. Then $\left|\mathcal{O}_{m+1}(X)\right| \leq\left|\widetilde{H}^{\text {even }}(X, \mathbb{Z} / m)\right|$.

Proof:
Eilenberg-Mc Lane spaces

$$
[X, K(\mathbb{Z} / m, 2 k)] \cong H^{2 k}(X ; \mathbb{Z} / m)
$$

Use Postnikov decomposition. Thus $B \operatorname{Aut}\left(O_{m+1}\right)$ is a twisted product

$$
B \operatorname{Aut}\left(O_{m+1}\right)=K(\mathbb{Z} / m, 2) \rtimes K(\mathbb{Z} / m, 4) \rtimes K(\mathbb{Z} / m, 8) \rtimes \ldots
$$

Since

$$
\begin{gathered}
\mathcal{O}_{m+1}(X) \cong\left[X, B \operatorname{Aut}\left(O_{m+1}\right)\right] \\
\left|\left[X, B \operatorname{Aut}\left(O_{m+1}\right)\right]\right| \leq \prod_{k \geq 2}\left|H^{2 k}(X, \mathbb{Z} / m)\right|=\left|\widetilde{H}^{\text {even }}(X, \mathbb{Z} / m)\right| .
\end{gathered}
$$

Theorem

If $m \geq\left\lceil\frac{d}{2}\right\rceil-1$ and $\operatorname{Tor}\left(H^{*}(X, \mathbb{Z}), \mathbb{Z} / m\right)=0$, then
(1) each element of $\mathcal{O}_{m+1}(X)$ is isomorphic to O_{E} for some $E \in \operatorname{Vect}_{m+1}(X)$.
(2) $O_{E} \cong O_{F} \Leftrightarrow(1-[E]) K^{0}(X)=(1-[F]) K^{0}(X)$
(3) $\left|\mathcal{O}_{m+1}(X)\right|=\left|\tilde{H}^{\text {even }}(X, \mathbb{Z} / m)\right|$.

Proof: lower estimate $=$ upper estimate (good to be lucky)
$\left|\widetilde{H}^{\text {even }}(X, \mathbb{Z} / m)\right|=\left|\widetilde{K}^{0}(X) / \sim\right| \leq\left|\mathcal{O}_{m+1}(X)\right| \leq\left|\widetilde{H}^{\text {even }}(X, \mathbb{Z} / m)\right|$.

Computable invariants of O_{E}

Definition

$$
p_{n}(x)=\ell(n) m^{n} \log \left(1+\frac{x}{m}\right)_{[n]} \in \mathbb{Z}[x],
$$

$$
p_{n}(x)=\ell(n) m^{n}\left(\frac{x}{m}-\frac{x^{2}}{2 m^{2}}+\frac{x^{3}}{3 m^{3}}+\cdots+(-1)^{n-1} \frac{x^{n}}{n m^{n}}\right)
$$

$\ell(n)=\operatorname{lcm}\{1,2, \ldots, n\}$. The first five polynomials in the sequence are:

$$
\begin{aligned}
& p_{1}(x)=x, \\
& p_{2}(x)=2 m x-x^{2}, \\
& p_{3}(x)=6 m^{2} x-3 m x^{2}+2 x^{3}, \\
& p_{4}(x)=12 m^{3} x-6 m^{2} x^{2}+4 m x^{3}-3 x^{4}, \\
& p_{5}(x)=60 m^{4} x-30 m^{3} x^{2}+20 m^{2} x^{3}-15 m x^{4}+12 x^{5} .
\end{aligned}
$$

Theorem

Let X be a finite connected CW complex of dimension d and let $E, F \in \operatorname{Vect}_{m+1}(X)$. Set $n=[d / 2]$.

$$
O_{E} \cong O_{F} \Rightarrow p_{n}([\widetilde{E}])-p_{n}([\widetilde{F}]) \text { is divisible by } m^{n} \text { in } \widetilde{K}^{0}(X)
$$

"Proof': Then $\widetilde{K}^{0}(X)^{n+1}=0$. Set $a=[\widetilde{E}]$ and $b=[\widetilde{F}]$. We have seen that $O_{E} \cong O_{F} \Rightarrow(m+a)=(m+b)(1+h)$ for some $h \in \widetilde{K}^{0}(X)$.

$$
(m+a)=(m+b)(1+h) \Rightarrow\left(1+\frac{a}{m}\right)=\left(1+\frac{b}{m}\right)(1+h)
$$

$\log \left(1+\frac{a}{m}\right)=\log \left(1+\frac{b}{m}\right)+\log (1+h)$
If $x^{n+1}=0, \log (1+x / m)=x / m-x^{2} / 2 m^{2}+\cdots+(-1)^{n-1} x^{n} / n m^{n}$. Multiply by $\ell(n)=\operatorname{lcm}\{1,2, \ldots, n\}$ and m^{n} to get integral classes:

$$
m^{n} \ell(n) \log \left(1+\frac{a}{m}\right)=m^{n} \ell(n) \log \left(1+\frac{b}{m}\right)+m^{n}(\ell(n) \log (1+h))
$$

Is p_{n} a complete invariant?

Theorem

Suppose $\operatorname{Tor}\left(H^{*}(\underset{X}{X}, \mathbb{Z}), \mathbb{Z} / m\right)=0$ and $\operatorname{gcd}(m, n!)=\underset{\widetilde{K}}{1}$. Then:
$O_{E} \cong O_{F} \Leftrightarrow p_{n}([\widetilde{E}])-p_{n}([\widetilde{F}])$ is divisible by m^{n} in $\widetilde{K}^{0}(X)$.
Both conditions are necessary.

Example

If $\operatorname{dim}(X) \leq 9$ and m is not divisible by 2 or 3 , then the image of

$$
p_{4}(x)=12 m^{3}[\widetilde{E}]-6 m^{2}[\tilde{E}]^{2}+4 m[\widetilde{E}]^{3}-3[\tilde{E}]^{4}
$$

in $\widetilde{K}^{0}(X) \otimes \mathbb{Z} / m^{4}$ is a complete invariant of O_{E}.

Which characteristic classes of E are invariants of O_{E} ?

For each $n \geq 1$ consider the polynomial $q_{n} \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$:
$\sum_{k_{1}+2 k_{2}+\ldots+n k_{n}=n}(-1)^{k_{1}+\cdots+k_{n}-1} m^{n-\left(k_{1}+\cdots+k_{n}\right)} \frac{n!\left(k_{1}+\cdots+k_{n}-1\right)!}{1!^{k_{1}} \cdots n!^{k_{n}} k_{1}!\cdots k_{n}!} x_{1}^{k_{1}} \cdots x_{n}^{k_{n}}$

$$
\begin{aligned}
& q_{1}\left(x_{1}\right)=x_{1} \\
& q_{2}\left(x_{1}, x_{2}\right)=m x_{2}-x_{1}^{2} \\
& q_{3}\left(x_{1}, x_{2}, x_{3}\right)=m^{2} x_{3}-3 m x_{1} x_{2}+2 x_{1}^{3}, \quad \text { etc }
\end{aligned}
$$

Theorem

Let $E \in \operatorname{Vect}_{m+1}(X)$. Then the classes $q_{n}\left(c \dot{h}_{1}(E), \ldots, c \dot{h}_{n}(E)\right) \in H^{2 n}\left(X, \mathbb{Z} / m^{n}\right)$ are invariants of O_{E}.

Here $c h_{n}$ are the components of the Chern character: $c h=\sum_{n} c h_{n} / n$!

By expressing $c h_{n}$ in terms of Chern classes we obtain a sequence of characteristic classes of E which are invariants of O_{E}. For illustration, the first three classes in the sequence are:
(1) $\dot{c}_{1}(E) \in H^{2}(X ; \mathbb{Z} / m)$
(2) $(m-1) \dot{c}_{1}(E)^{2}-2 m \dot{c}_{2}(E) \in H^{4}\left(X ; \mathbb{Z} / m^{2}\right)$
(3) $\left(m^{2}-3 m+2\right) \dot{c}_{1}(E)^{3}-\left(3 m^{2}-6 m\right) \dot{c}_{1}(E) \dot{c}_{2}(E)+3 m^{2} \dot{c}_{3}(E) \in$ $H^{6}\left(X ; \mathbb{Z} / m^{3}\right)$

Corollary

Let L and L^{\prime} be two line bundles over X. If $O_{m+L} \cong O_{m+L^{\prime}}$, then $q_{n}(1, \ldots, 1)\left(c_{1}(L)^{n}-c_{1}\left(L^{\prime}\right)^{n}\right)$ is divisible by m^{n} in $H^{2 n}(X, \mathbb{Z})$ for all $n \geq 1$.

Thus
$c_{1}(L)-c_{1}\left(L^{\prime}\right)$ divisible by m
$(m-1)\left(c_{1}(L)^{2}-c_{1}\left(L^{\prime}\right)^{2}\right)$ divisible by m^{2}
$\left(m^{2}-3 m+2\right)\left(c_{1}(L)^{3}-c_{1}\left(L^{\prime}\right)^{3}\right)$ divisible by m^{3}
etc

We have seen that $O_{E} \cong O_{F} \Leftrightarrow(1-[E]) K^{0}(X)=(1-[F]) K^{0}(X)$ in the absence of m-torsion. The proof by algebraic topology methods gives no geometric insight. Why should $(1-[E]) K^{0}(X)=(1-[F]) K^{0}(X)$ imply the isomorphism $O_{E} \cong O_{F}$?

Approach this question using parametrized $K K$-theory: $K K_{X}(A, B)$. By work of Kirchberg it is known that two separable unital C^{*}-bundles with simple nuclear purely infinite fibers are isomorphic iff there is $\alpha \in K K_{X}(A, B)^{-1}$ which maps $\left[1_{A}\right]$ to $\left[1_{B}\right]$.

Perhaps the condition $(1-[E]) K^{0}(X)=(1-[F]) K^{0}(X)$ does assure the existence of such $K K_{X}$-equivalence α.

Theorem

Let X be a compact metrizable space and let $E, F \in \operatorname{Vect}_{m+1}(X)$ be complex vector bundles $m \geq 1$. Then $O_{E} \cong O_{F}$ as $C(X)$-algebras if and only if $(1-[E]) K^{0}(X)=(1-[F]) K^{0}(X)$.
"Proof" KK_{X} is a triangulated category (Meyer-Nest). Pimsner's methods can be used to deduce existence of a sequence of $C(X)$-algebras and $K K_{X}$-maps

$$
S C(X) \hookrightarrow S O_{E} \rightarrow C(X) \xrightarrow{1-[E]} C(X)
$$

which is an exact triangle in KK_{X}. The condition $(1-[E])=(1-[F]) H$ with H of virtual rank one leads to an element $\Phi_{H} \in K K_{X}\left(S O_{E}, S O_{F}\right)^{-1}$ such that the following diagram is commutative.

$$
K K_{X}(C(X), C(X)) \cong K K(\mathbb{C}, C(X)) \cong K^{0}(X)
$$

is an isomorphism of rings.
Unsuspend the commutative diagram

to obtain the existence of a $K K_{X}$-equivalence from O_{E} to O_{F} which preserves the class of [1]. One concludes that $O_{E} \cong O_{F}$ by Kirchberg's isomorphism theorem for C^{*}-bundles.

The same argument yields:

Theorem

Let X be a compact metrizable space and let $E, F \in \operatorname{Vect}(X)$ be complex vector bundles of rank ≥ 2. Then O_{E} embeds as a unital $C(X)$-subalgebra of O_{F} if and only if $(1-[E]) K^{0}(X) \subset(1-[F]) K^{0}(X)$.

If $X=$ point,
O_{m+1} embeds unitally in $O_{n+1} \Leftrightarrow m \mathbb{Z} \subset n \mathbb{Z} \Leftrightarrow n$ divides m.
This happens precisely when there is a morphism of pointed groups $\left(K_{0}\left(O_{m+1}\right),[1]\right) \rightarrow\left(K_{0}\left(O_{n+1}\right),[1]\right), \quad(\mathbb{Z} / m, \overline{1}) \rightarrow(\mathbb{Z} / n, \overline{1})$.
Remark: Hard to decide when two elements in $K^{0}\left(\mathbb{C P}^{n}\right)=\mathbb{Z}[x] /\left(x^{n+1}\right)$ generate same ideal.
$\mathcal{O}_{m+1}(X)$ and the image of the map $\operatorname{Vect}_{m+1}(X) \rightarrow \mathcal{O}_{m+1}(X)$ are well understood for suspensions $X=S Y$. Use the universal coefficient

$$
0 \rightarrow K^{0}(X) \otimes \mathbb{Z} / m \xrightarrow{\bar{\rho}} K^{0}(X, \mathbb{Z} / m) \xrightarrow{\beta} \operatorname{Tor}\left(K^{1}(X), \mathbb{Z} / m\right) \rightarrow 0
$$

β is the Bockstein operation and $\bar{\rho}$ is the coefficient map.

Theorem

Suppose $X=$ SY. Then:
(i) There is a bijection $\gamma: \mathcal{O}_{m+1}(X) \rightarrow K^{0}(X, \mathbb{Z} / m)$.
(ii) If $E, F \in \operatorname{Vect}_{m+1}(X)$, then $O_{E} \cong O_{F}$ iff $[E]-[F] \in m K^{0}(X)$.
(iii) $A \in \mathcal{O}_{m+1}(X)$ is isomorphic to O_{E} for some $E \in \operatorname{Vect}_{m+1}(X)$ iff $\beta(\gamma(A))=0$.
(iii) assumes that $m \geq\lceil d / 2\rceil-1$ so that $\operatorname{Vect}_{m+1}(\underset{\widetilde{K}}{X}) \rightarrow \widetilde{K}^{0}(X)$ is surjective. This simple description is possible since $\widetilde{K}^{0}(S Y)^{2}=0$.

