The C*-algebra of a vector bundle

Marius Dadarlat

Purdue University

Copenhagen, November 2011

The Cuntz algebra O_n

$$n=1 \Rightarrow O_n = C(\mathbb{T}).$$

 $n \ge 2 \Rightarrow O_n$ is simple, nuclear, purely infinite

$$n \geq 2 \Rightarrow K_0(O_n) = \mathbb{Z}/(n-1), \quad K_1(O_n) = 0$$

Pimsner: given a Hilbert bimodule over a C*-algebra A, $E =_A E_A$ one can associate to it a C*-algebra O_E .

If $E =_{\mathbb{C}} \mathbb{C}^n_{\mathbb{C}}$ then $O_E = O_n$.

Cuntz-Pimsner algebra O_E

E fin. gen. projective **right** Hilbert module over C*-algebra *A*. Scalar product $\langle \cdot, \cdot \rangle$: $E \times E \rightarrow A$ is given.

Left module structure given by $A \rightarrow L(E_A)$ injective *-homomorphism.

 $E =_A E_A \Rightarrow$ Cuntz-Pimsner algebra O_E .

$$\mathcal{E} = \oplus_{n \ge 0} E^{\otimes n} = A \oplus E \oplus (E \otimes_A E) \oplus (E \otimes_A E \otimes_A E) \oplus \dots$$

The Toeplitz (or tensor) C*-algebra generated by the multiplication operators $T_{\xi} : \mathcal{E} \to \mathcal{E}$, $T_{\xi}(\eta) = \xi \otimes \eta$, where $\xi \in E$, $\eta \in \mathcal{E}$, $(T_{\xi}(a) = \xi a)$.

$$T_E = C^* \{ T_{\xi} : \xi \in E \} \subset L(\mathcal{E})$$

 O_E is the quotient of T_E by the ideal of "compact operators" $K(\mathcal{E})$.

$$0 \to K(\mathcal{E}) \to T_E \to O_E \to 0.$$

Examples

(1). $\alpha \in Aut(A) \Rightarrow E := A$ is A-bimodule: $a_1 \cdot \mathbf{a} \cdot a_2 = \alpha(a_1) \mathbf{a} a_2$ $O_E \cong A \rtimes_{\alpha} \mathbb{Z}$.

(2). $E =_{\mathbb{C}} \mathbb{C}_{\mathbb{C}}$ is \mathbb{C} -bimodule \Rightarrow classical Toeplitz extension $0 \rightarrow \mathcal{K} \rightarrow \mathcal{T} \rightarrow C(\mathbb{T}) \rightarrow 0, \quad O_E = C(\mathbb{T}).$

Recall:
$$T_{\xi_1}^* T_{\xi_2} = <\xi_1, \xi_2 > \otimes I, \quad T_{\xi_1} T_{\xi_2}^* = \xi_1 < \xi_2, \cdot > \otimes I$$

(3). $E =_{\mathbb{C}} \mathbb{C}_{\mathbb{C}}^{n}$ is \mathbb{C} -bimodule: $\Rightarrow O_{E} \cong O_{n}$ the Cuntz algebra. Indeed if $\xi_{1}, ..., \xi_{n}$ is orthonormal basis of \mathbb{C}^{n} , then $\langle \xi_{i}, \xi_{j} \rangle = \delta_{ij} \Rightarrow T_{\xi_{i}}^{*} T_{\xi_{j}} = \delta_{ij} 1$ $\xi_{1} \langle \xi_{1}, \cdot \rangle + \cdots + \xi_{n} \langle \xi_{n}, \cdot \rangle = 1 \Rightarrow T_{\xi_{1}} T_{\xi_{1}}^{*} + \cdots + T_{\xi_{n}} T_{\xi_{n}}^{*} = P_{\mathcal{E} \ominus \mathbb{C}}.$

If $E =_{C(X)} C(X)^n_{C(X)} \Rightarrow O_E \cong C(X) \otimes O_n$.

The C*-algebra of a vector bundle

 $E \in Vect_n(X)$ complex vector bundle of rank *n* over compact space X

Hermitian metric on $E \Rightarrow \langle \cdot, \cdot \rangle$: $E \times E \rightarrow C(X)$ scalar product. $E \equiv \{\text{cont. sections in } E\}$ is a fin. gen. projective Hilbert C(X)-module.

 $O_E :=$ Cuntz-Pimsner algebra associated to the C(X)-bimodule E.

The isomorphism class of E and hence of O_E is independent of the metric. O_E locally trivial C*-bundle with fibers O_n .

A question of Cuntz: What are the invariants of E captured by the C*-bundle O_E ?

How are *E* and *F* related if $O_E \cong O_F$ as C*-bundles?

Which C*-bundles with fiber O_n can be realized as Cuntz-Pimsner algebras of vector bundles of rank n?

Invariants of O_E

Theorem (Pimsner)

$$\begin{array}{cccc}
\mathcal{K}_{0}(A) \longrightarrow \mathcal{K}_{0}(A) \longrightarrow \mathcal{K}_{0}(O_{E}) \\
\uparrow & & \downarrow \\
\mathcal{K}_{1}(O_{E}) \longleftarrow \mathcal{K}_{1}(A) \longleftarrow \mathcal{K}_{1}(A)
\end{array}$$

If $E \in Vect_n(X)$, $E =_{C(X)} E_{C(X)}$

 ι is induced by $C(X) \hookrightarrow O_E$.

Let
$$E, F \in \operatorname{Vect}(X)$$
. $E =_{C(X)} E_{C(X)}$, $F =_{C(X)} F_{C(X)}$.

Proposition $O_E \cong O_F \Rightarrow (1 - [E]) \mathcal{K}^0(X) = (1 - [F]) \mathcal{K}^0(X).$

Proof: Suppose that $\exists \Phi : O_E \cong O_F C(X)$ -linear isomorphism.

 Φ_* bijective \Rightarrow ker $\iota_E =$ ker $\iota_F \Rightarrow$

$$(1-[E])K^0(X) = (1-[F])K^0(X).$$

Have seen that the ideal $(1 - [E])K^0(X)$ is invariant of O_E . $K^0(X) \cong \mathbb{Z} \oplus \widetilde{K}^0(X)$. $E \in \operatorname{Vect}_{m+1}(X) \Rightarrow [E] = (m+1) + [\widetilde{E}]$. Define equiv. relation on $\widetilde{K}^0(X)$:

 $a \sim b \Leftrightarrow a = b + mh + bh \Leftrightarrow m + a = (m + b)(1 + h)$ for some $h \in \widetilde{K}^0(X)$

Let $E, F \in \operatorname{Vect}_{m+1}(X)$

Remark

$$(1-[E])\mathcal{K}^0(X)=(1-[F])\mathcal{K}^0(X)$$
 if and only if $[\widetilde{E}]\sim [\widetilde{F}].$

Conclude that the equiv. class of $[\widetilde{E}]$ in $\widetilde{K}^0(X)/\sim$ is an invariant of O_E :

$$O_E \cong O_F \Rightarrow [\widetilde{E}] \sim [\widetilde{F}].$$

How many equivalence classes are there in general?

Proposition

Let X be a finite connected CW-complex. If $\operatorname{Tor}(H^*(X,\mathbb{Z}),\mathbb{Z}/m) = 0$, then $|\widetilde{K}^0(X)/\sim| = |\widetilde{K}^0(X)\otimes\mathbb{Z}/m| = |\widetilde{H}^{even}(X,\mathbb{Z}/m)|$.

Proof is involved. One uses the Atiyah-Hirzebruch spectral sequence to deduce that $\widetilde{K}^0(X)\otimes \mathbb{Z}/m\cong \widetilde{H}^{even}(X,\mathbb{Z})\otimes \mathbb{Z}/m$ and

 $\operatorname{Tor}(K_{2q}^{0}(X)/K_{2q+2}^{0}(X),\mathbb{Z}/m)=0,$

where $K_q^0(X) = \ker (K^0(X) \to K^0(X_{q-1}))$ is the skeleton filtration of $K^0(X)$. This reduces the statement to algebra problem in filtered rings.

 $\mathcal{O}_{m+1}(X) :=$ isom. classes of loc. triv. C*-bundles with fiber \mathcal{O}_{m+1} .

Corollary

$$|\mathcal{O}_{m+1}(X)| \geq |\widetilde{K}^0(X)\otimes \mathbb{Z}/m| \quad \textit{if } m+1 \geq \lceil d/2 \rceil \; . \qquad d = \dim(X)$$

Proof: $m \text{ large} \Rightarrow \text{the map Vect}_{m+1}(X) \rightarrow \widetilde{K}^0(X) \rightarrow \widetilde{K}^0(X) / \sim \text{ is onto.}$

Next we'll give an upper estimate for $|\mathcal{O}_{m+1}(X)|$.

 $\mathcal{O}_{m+1}(X) :=$ isom. classes of loc. triv. C*-bundles with fiber \mathcal{O}_{m+1} .

$$\mathcal{O}_{m+1}(X) \cong [X, B\operatorname{Aut}(O_{m+1})]$$

Theorem

$$\pi_n(\operatorname{Aut}(O_{m+1})): 0 \mathbb{Z}/m 0 \mathbb{Z}/m 0 \mathbb{Z}/m 0 \cdots$$

(This answers a question of Cuntz from Neptune Conference). Thus the classifying space $B \operatorname{Aut}(O_{m+1})$ has homotopy groups:

$$0 \quad 0 \quad \mathbb{Z}/m \quad 0 \quad \mathbb{Z}/m \quad 0 \quad \mathbb{Z}/m \quad 0 \cdots$$

Proposition

Let X be a finite connected CW complex and let $m \ge 1$ be an integer. Then $|\mathcal{O}_{m+1}(X)| \le |\widetilde{H}^{even}(X, \mathbb{Z}/m)|$.

Proof:

Eilenberg-Mc Lane spaces

 $[X, K(\mathbb{Z}/m, 2k)] \cong H^{2k}(X; \mathbb{Z}/m)$

Use Postnikov decomposition. Thus $B \operatorname{Aut}(O_{m+1})$ is a twisted product

$${\sf B}\operatorname{Aut}({\it O}_{m+1})={\it K}({\mathbb Z}/m,2)
times{\it K}({\mathbb Z}/m,4)
times{\it K}({\mathbb Z}/m,8)
times...$$

Since

$$\mathcal{O}_{m+1}(X) \cong [X, B\operatorname{Aut}(\mathcal{O}_{m+1})]$$

$$|[X, B\operatorname{Aut}(O_{m+1})]| \leq \prod_{k\geq 2} |H^{2k}(X, \mathbb{Z}/m)| = |\widetilde{H}^{even}(X, \mathbb{Z}/m)|.$$

Theorem

If $m \geq \lceil \frac{d}{2} \rceil - 1$ and $\operatorname{Tor}(H^*(X, \mathbb{Z}), \mathbb{Z}/m) = 0$, then

(1) each element of $\mathcal{O}_{m+1}(X)$ is isomorphic to \mathcal{O}_E for some $E \in Vect_{m+1}(X)$.

(2)
$$O_E \cong O_F \Leftrightarrow (1 - [E])K^0(X) = (1 - [F])K^0(X)$$

(3)
$$|\mathcal{O}_{m+1}(X)| = |\widetilde{H}^{even}(X, \mathbb{Z}/m)|.$$

Proof: lower estimate = upper estimate (good to be lucky) $|\widetilde{H}^{even}(X, \mathbb{Z}/m)| = |\widetilde{K}^0(X)/\sim| \le |\mathcal{O}_{m+1}(X)| \le |\widetilde{H}^{even}(X, \mathbb{Z}/m)|.$

Computable invariants of O_E

Definition

ļ

$$p_n(x) = \ell(n) m^n \log(1 + \frac{x}{m})_{[n]} \in \mathbb{Z}[x],$$

$$p_n(x) = \ell(n)m^n(\frac{x}{m} - \frac{x^2}{2m^2} + \frac{x^3}{3m^3} + \dots + (-1)^{n-1}\frac{x^n}{nm^n})$$

$$\ell(n) = \lim\{1, 2, \dots, n\}.$$
 The first five polynomials in the sequence are:

$$p_1(x) = x,$$

$$p_2(x) = 2mx - x^2,$$

$$p_3(x) = 6m^2x - 3mx^2 + 2x^3,$$

$$p_4(x) = 12m^3x - 6m^2x^2 + 4mx^3 - 3x^4,$$

$$p_5(x) = 60m^4x - 30m^3x^2 + 20m^2x^3 - 15mx^4 + 12x^5.$$

Theorem

Let X be a finite connected CW complex of dimension d and let $E, F \in Vect_{m+1}(X)$. Set $n = \lfloor d/2 \rfloor$.

$$O_E \cong O_F \Rightarrow p_n([\widetilde{E}]) - p_n([\widetilde{F}])$$
 is divisible by m^n in $\widetilde{K}^0(X)$.

"Proof": Then $\widetilde{K}^0(X)^{n+1} = 0$. Set $a = [\widetilde{E}]$ and $b = [\widetilde{F}]$. We have seen that $O_E \cong O_F \Rightarrow (m+a) = (m+b)(1+h)$ for some $h \in \widetilde{K}^0(X)$.

$$(m + a) = (m + b)(1 + h) \Rightarrow (1 + \frac{a}{m}) = (1 + \frac{b}{m})(1 + h)$$

$$\log(1+\frac{a}{m}) = \log(1+\frac{b}{m}) + \log(1+h)$$

If $x^{n+1} = 0$, $\log(1 + x/m) = x/m - x^2/2m^2 + \dots + (-1)^{n-1}x^n/nm^n$. Multiply by $\ell(n) = lcm\{1, 2, ..., n\}$ and m^n to get integral classes:

 $m^n \ell(n) \log(1 + \frac{a}{m}) = m^n \ell(n) \log(1 + \frac{b}{m}) + m^n(\ell(n) \log(1 + h))$

Is p_n a complete invariant?

Theorem

Suppose
$$\operatorname{Tor}(H^*(X,\mathbb{Z}),\mathbb{Z}/m) = 0$$
 and $\operatorname{gcd}(m,n!) = 1$. Then:
 $O_E \cong O_F \Leftrightarrow p_n([\widetilde{E}]) - p_n([\widetilde{F}])$ is divisible by m^n in $\widetilde{K}^0(X)$.

Both conditions are necessary.

Example

If $dim(X) \leq 9$ and m is not divisible by 2 or 3, then the image of

$$p_4(x) = 12m^3[\tilde{E}] - 6m^2[\tilde{E}]^2 + 4m[\tilde{E}]^3 - 3[\tilde{E}]^4$$

in $\widetilde{K}^0(X)\otimes \mathbb{Z}/m^4$ is a complete invariant of O_E .

Which characteristic classes of E are invariants of O_E ?

For each $n \ge 1$ consider the polynomial $q_n \in \mathbb{Z}[x_1, ..., x_n]$:

$$\sum_{k_1+2k_2+\ldots+nk_n=n} (-1)^{k_1+\cdots+k_n-1} m^{n-(k_1+\cdots+k_n)} \frac{n! (k_1+\cdots+k_n-1)!}{1!^{k_1}\cdots n!^{k_n} k_1!\cdots k_n!} x_1^{k_1}\cdots x_n^{k_n}$$

$$\begin{aligned} q_1(x_1) &= x_1 \\ q_2(x_1, x_2) &= mx_2 - x_1^2 \\ q_3(x_1, x_2, x_3) &= m^2 x_3 - 3mx_1 x_2 + 2x_1^3, \end{aligned}$$

Theorem

Let $E \in Vect_{m+1}(X)$. Then the classes $q_n(c\dot{h}_1(E), ..., c\dot{h}_n(E)) \in H^{2n}(X, \mathbb{Z}/m^n)$ are invariants of O_E .

Here ch_n are the components of the Chern character: $ch = \sum_n ch_n/n!$

By expressing ch_n in terms of Chern classes we obtain a sequence of characteristic classes of E which are invariants of O_E . For illustration, the first three classes in the sequence are:

(1)
$$\dot{c}_1(E) \in H^2(X; \mathbb{Z}/m)$$

(2) $(m-1)\dot{c}_1(E)^2 - 2m\dot{c}_2(E) \in H^4(X; \mathbb{Z}/m^2)$
(3) $(m^2 - 3m + 2)\dot{c}_1(E)^3 - (3m^2 - 6m)\dot{c}_1(E)\dot{c}_2(E) + 3m^2\dot{c}_3(E) \in H^6(X; \mathbb{Z}/m^3)$

Corollary

Let L and L' be two line bundles over X. If $O_{m+L} \cong O_{m+L'}$, then $q_n(1,...,1)(c_1(L)^n - c_1(L')^n)$ is divisible by m^n in $H^{2n}(X,\mathbb{Z})$ for all $n \ge 1$.

Thus
$$c_1(L) - c_1(L')$$
 divisible by m
 $(m-1)(c_1(L)^2 - c_1(L')^2)$ divisible by m^2
 $(m^2 - 3m + 2)(c_1(L)^3 - c_1(L')^3)$ divisible by m^3 etc

17 / 22

We have seen that $O_E \cong O_F \Leftrightarrow (1 - [E])K^0(X) = (1 - [F])K^0(X)$ in the absence of *m*-torsion. The proof by algebraic topology methods gives no geometric insight. Why should $(1 - [E])K^0(X) = (1 - [F])K^0(X)$ imply the isomorphism $O_E \cong O_F$?

Approach this question using parametrized *KK*-theory: *KK*_X(*A*, *B*). By work of Kirchberg it is known that two separable unital C*-bundles with simple nuclear purely infinite fibers are isomorphic iff there is $\alpha \in KK_X(A, B)^{-1}$ which maps $[1_A]$ to $[1_B]$.

Perhaps the condition $(1 - [E])K^0(X) = (1 - [F])K^0(X)$ does assure the existence of such KK_X -equivalence α .

Theorem

Let X be a compact metrizable space and let $E, F \in Vect_{m+1}(X)$ be complex vector bundles $m \ge 1$. Then $O_E \cong O_F$ as C(X)-algebras if and only if $(1 - [E])K^0(X) = (1 - [F])K^0(X)$.

"Proof" KK_X is a triangulated category (Meyer-Nest). Pimsner's methods can be used to deduce existence of a sequence of C(X)-algebras and KK_X -maps

$$SC(X) \hookrightarrow SO_E \to C(X) \stackrel{1-[E]}{\longrightarrow} C(X)$$

which is an exact triangle in KK_X . The condition (1 - [E]) = (1 - [F])Hwith H of virtual rank one leads to an element $\Phi_H \in KK_X(SO_E, SO_F)^{-1}$ such that the following diagram is commutative.

$$KK_X(C(X), C(X)) \cong KK(\mathbb{C}, C(X)) \cong K^0(X)$$

is an isomorphism of rings.

Unsuspend the commutative diagram

to obtain the existence of a KK_X -equivalence from O_E to O_F which preserves the class of [1]. One concludes that $O_E \cong O_F$ by Kirchberg's isomorphism theorem for C*-bundles. The same argument yields:

Theorem

Let X be a compact metrizable space and let $E, F \in Vect(X)$ be complex vector bundles of rank ≥ 2 . Then O_E embeds as a unital C(X)-subalgebra of O_F if and only if $(1 - [E])K^0(X) \subset (1 - [F])K^0(X)$.

If X = point,

 O_{m+1} embeds unitally in $O_{n+1} \Leftrightarrow m\mathbb{Z} \subset n\mathbb{Z} \Leftrightarrow n$ divides m.

This happens precisely when there is a morphism of pointed groups $(\mathcal{K}_0(\mathcal{O}_{m+1}), [1]) \rightarrow (\mathcal{K}_0(\mathcal{O}_{n+1}), [1]), \quad (\mathbb{Z}/m, \overline{1}) \rightarrow (\mathbb{Z}/n, \overline{1}).$ Remark: Hard to decide when two elements in $\mathcal{K}^0(\mathbb{CP}^n) = \mathbb{Z}[x]/(x^{n+1})$ generate same ideal. $\mathcal{O}_{m+1}(X)$ and the image of the map $\operatorname{Vect}_{m+1}(X) \to \mathcal{O}_{m+1}(X)$ are well understood for suspensions X = SY. Use the universal coefficient

$$0 \to K^0(X) \otimes \mathbb{Z}/m \stackrel{\bar{\rho}}{\to} K^0(X, \mathbb{Z}/m) \stackrel{\beta}{\to} \mathsf{Tor}(K^1(X), \mathbb{Z}/m) \to 0,$$

 β is the Bockstein operation and $\bar{\rho}$ is the coefficient map.

Theorem

Suppose X = SY. Then: (i) There is a bijection $\gamma : \mathcal{O}_{m+1}(X) \to K^0(X, \mathbb{Z}/m)$. (ii) If $E, F \in Vect_{m+1}(X)$, then $O_E \cong O_F$ iff $[E] - [F] \in mK^0(X)$. (iii) $A \in \mathcal{O}_{m+1}(X)$ is isomorphic to O_E for some $E \in Vect_{m+1}(X)$ iff $\beta(\gamma(A)) = 0$.

(iii) assumes that $m \ge \lceil d/2 \rceil - 1$ so that $Vect_{m+1}(X) \to \widetilde{K}^0(X)$ is surjective. This simple description is possible since $\widetilde{K}^0(SY)^2 = 0$.