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Preliminaries: A function f : R −→ R is
additive if it satisfies the Cauchy equation

(CE) f(x+y) = f(x)+f(y) for all x, y ∈ R.
Cauchy asked under what conditions an addi-
tive function must be linear.

The following lemma is obvious.

Lemma. If f is additive, then f(qx) = qf(x)
for all q ∈ Q. Thus, if, in addition, f is con-
tinuous, then f(x) = f(1)x.

If one is willing to use the axiom of choice,
then one can construct a non-linear additive
function as follows. By Zorn’s Lemma, there
exists a maximal B ⊆ R of numbers which are
linearly independent over Q. Thus, for each x,
there exists a unique {ab(x) : b ∈ B} ⊆ Q such
that ab(x) = 0 for all but a finite number of
b ∈ B and x =

∑
b∈B ab(x)b. Clearly, for each

b ∈ B, x  ab(x) is additive. On the other
hand, because ab(x) ∈ Q for all x, it is obvious
that ab is not linear.
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Theorem. If f is a Lebesgue measurable, ad-
ditive function, then f is linear.

Proof. Choose R > 0 so that {x : |f(x)| ≤ R}
has positive Lebesgue measure. Then, Vitalli
guarantees that there is a δ > 0 such that
[−δ, δ] ⊆ {y − x : |f(x)| ∨ |f(y)| ≤ R}. Hence,
|f(x)| ≤ 2R if |x| ≤ δ. Given any x 6= 0, choose

q ∈ Q so that |x|δ ≤ q ≤ 2|x|
δ . Then x′ ≡ x

q ∈
[−δ, δ] and so |f(x)| = q|f(x′)| ≤ 4R|x|

δ . More

generally, |f(y)− f(x)| = |f(y− x)| ≤ 4R|y−x|
δ ,

and so f is continuous. �
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Another Approach

Lemma. If f is a Lebesgue measurable, ad-
ditive function that is locally integrable, then
f(x) = xf(1).

Proof. It suffices to show that f is continu-
ous. To this end, let ρ : R −→ R be a smooth
function with compact support and integral 1.
Then

ρ ∗ f(x) =

∫
f(t)ρ(x− t) dt = f(x) + ρ ∗ f(0),

and so f = ρ ∗ f − ρ ∗ (0) is smooth. �

Given a Borel probability measure µ on R,
define µα for α ∈ R to be the distribution of
x ∈ R 7−→ αx under µ. That is,

∫
f dµα =∫

f(αx)µ(dx).
Say that (α, β) ∈ (0, 1) is a Pythagorean

pair if α2 + β2 = 1, and let γ be the standard
Gauss measure on R. That is,

γ(dx) = (2π)−
1
2 e−

x2

2 dx and γ̂(ξ) = e−
ξ2

2 .
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Lemma. If (α, β) is a Pythagorean pair, then
µ = µα ∗ µβ if and only if µ = γσ for some
σ ≥ 0, in which case

∫
x2 µ(dx) = σ2.

Proof. Since γ̂σ(ξ) = e−
σ2ξ2

2 , the “if” assertion
is trivial. Thus, assume that µ = µα ∗ µβ .

I begin by proving the last statement un-
der the assumption that µ is symmetric. By
assumption, µ̂(ξ) = µ̂(αξ)µ̂(βξ). Thus, by in-
duction on n ≥ 1,

µ̂(ξ) =
n∏

m=0

µ̂
(
αmβn−mξ

)(nm)
.

Because µ is symmetric, µ̂(ξ) =
∫

cos(ξx)µ(dx),
and therefore

− log
(
µ̂(1)

)
= −

n∑
m=0

(
n

m

)
log

(∫
cos(αnβn−mx)µ(dx)

)
.
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Since − log t ≥ 1 − t for t ∈ [0, 1], this means
that

− log
(
µ̂(1)

)
≥
∫ ( n∑

m=0

(
n

m

)(
1− cos(αmβn−mx)

))
µ(dx),

and, because

n∑
m=0

(
n

m

)(
1− cos(αmβn−mx)

)
−→ x2

2
,

Fatou’s Lemma guarantees that∫
x2 µ(dx) ≤ −2 log

(
µ̂(1)

)
.

To remove the symmetry assumption, set
ν = µ ∗ µ−1. Then ν is symmetric and ν =
να ∗ νβ . Thus,

∫
x2 ν(dx) < ∞. Now choose a

median a of µ. That is,

µ
(
[a,∞)

)
∧ µ
(
(−∞, a]

)
≥ 1

2 .
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Then

µ
(
{x : |x− a| ≥ t}

)
≤ 2ν

(
{x : |x| ≥ t}

)
,

and so∫
x2 µ(dx) ≤ 2a2 + 2

∫
|x− a|2 µ(dx)

≤ 2a2 + 4

∫
x2 ν(dx) <∞.

Given that µ has a finite second moment
σ2, note that∫

xµ(x) = (α+ β)

∫
xµ(dx),

and therefore, since α + β > 1,
∫
xµ(dx) = 0.

Thus,

µ̂(η) = 1− σ2η2

2

(
1 + o(1)

)
as η → 0,
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and so, since

µ̂(ξ) =

n∏
m=0

µ̂(αmβn−mξ)(
n
m),

one has that

log
(
µ̂(ξ)

)
= −σ

2ξ2

2
. �

Now suppose that f is a Lebesgue measur-
able, additive function, and let µ be the distri-
bution of f under γ:∫

ϕ ◦ f dγ =

∫
ϕdµ.

Take α = 3
5 and β = 4

5 . Then

µ̂(αξ)µ̂(βξ)

=

∫∫
exp
(
iξ
(
f(αx) + f(βy)

))
γ(dx)γ(dy)

=

∫∫
eiξf(αx+βy) γ(dx)γ(dy) = µ̂(ξ).
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Hence ∫
f(x)2γ(dx) =

∫
x2µ(dx) <∞,

and so f is locally integrable and therefore lin-
ear.

This approach has several advantages. For
example, with hardly any change in the argu-
ment, one can use it to show that if f is a
Lebesgue measurable function with the prop-
erty that

f(x+ y) = f(x) + f(y) for a.e. (x, y) ∈ R2,

then there is an a ∈ R such that f(x) = ax
for a.e. x ∈ R. Indeed, using Fubini’s theo-
rem and the translation invariance of Lebesgue
measure, one can show first that f(αx+ βy) =
αf(x) + βf(y) for a.e. (x, y) ∈ R2 when α and
β are rational. One then proceeds as before to
show that f is locally integrable and is there-
fore equal to f̃ ≡ ρ ∗ f − c a.e. for some c ∈ R.
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Finally, because f̃ is a continuous and equal a.e.
to f , it must be a continuous, additive function
and therefore satisfy f̃(x) = xf̃(1).

Infinite Demensions

Suppose that E and F are a pair of Banach
spaces over R and that Φ : E −→ F is an
additive, Borel measurable function. Then, for
each x ∈ E and y∗ ∈ F ∗, t 〈Φ(tx), y∗〉 is an
R-valued, Borel measurable, additive function
on R and is therefore linear. Hence, Φ is a Borel
measurable, linear function on E, and one can
ask whether it is continuous. As we will now
show, the answer is yes.

When E and F are separable, one can use
Laurent Schwartz’s Borel graph theorem to prove
this. Namely, his theorem says that if E and F
are separable Banach spaces and Φ : E −→ F is
a linear map whose graph is Borel measurable,
then Φ is continuous. His proof is a tour de
force based on deep properties of Polish spaces,
and using those properties it is easy to show
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that Φ is Borel measurable if and only if its
graph is. Indeed, a Borel measurable, one-to-
one map from one Polish space to another takes
Borel sets to Borel sets. Applying this fact to
the map x ∈ E 7−→

(
x,Φ(x)

)
∈ E×F , one sees

that the graph G(Φ) of Γ is Borel measurable
if Φ is. Conversely, if G(Φ) is Borel measur-
able and πE and πF are the natural projection
maps of E × F onto E and F , then πE � G(Φ)
is a one-to-one, Borel measurable map and, as
such, its inverse is Borel measurable. Since

Φ = πF ◦
(
πE � G(Φ)

)−1
, this shows that Φ

is Borel measurable.
To prove this result by the technique used

earlier, we need to introduce a Gaussian mea-

sure on E. For this purpose, take P = γZ
+

on

Ω ≡ RZ+

. Given a sequence {xn : n ≥ 1} ⊆ E
set

Sn(ω) =

n∑
m=1

ωmxm for n ∈ Z+ and ω ∈ Ω,
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A ≡
{
ω : lim

n→∞
Sn(ω) exists in E

}
and

S(ω) =

{
limn→∞ Sn(ω) if ω ∈ A
0 if ω /∈ A.

Since

EP

[ ∞∑
m=1

|ωm|‖xm‖E

]
=

√
2

π

∞∑
m=1

‖xm‖E ,

P(A) = 1 if
∑∞
m=1 ‖xm‖E <∞.

Lemma. If f : E −→ R is a Borel measur-
able, linear map, then

f(xm)2 ≤ EP[(f ◦ S)2
]
<∞ for all m ≥ 1.

Proof. Since, for every ω ∈ Ω, S(ω) is an ele-
ment of the closed linear span of {xn : n ≥ 1},
I will, without loss in generality, assume that E
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is separable and therefore that BE2 = BE×BE .
In particular, this means that the map (x, y) ∈
E2 7−→ x+y√

2
∈ E is BE × BE-measurable.

Next note that

f ◦ S(ω1) + f ◦ S(ω2)√
2

= f

(
S(ω1) + S(ω2)√

2

)
for (ω1, ω2) ∈ A2, and therefore the distribu-
tion µ of f ◦ S under P is γσ for some σ ≥ 0.
Hence, EP[(f ◦ S)2

]
= σ2 <∞.

To complete the proof, let m ∈ Z+ be given,
and define ω  S(m)(ω) relative to the se-
quence {(1− δm,n)xn : n ≥ 1}. Then S(m)(ω)
is P-independent of ωm, and

S(ω) = ωmxm + S(m)(ω) for ω ∈ A.

Hence

EP[(f◦S)2
]

= f(xm)2+EP[(f◦S(m))2
]
≥ f(xm)2. �
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Theorem. If f : E −→ R is a Borel measur-
able, additive map, then there exists an x∗ ∈ E∗
such that f(x) = 〈x, x∗〉.

Proof. We know that f is linear. Suppose it
were not continuous. We could then find {xn :
n ≥ 1} such that ‖xn‖E ≤ 1

n2 and |f(xn)| ≥ n.
Now define ω  S(ω) accordingly, and thereby
get the contradiction that

m2 ≤ |f(xm)|2 ≤ EP[(f◦S)2
]
<∞ for all m ≥ 1. �

Corollary. Suppose that Φ : E −→ F is a ad-
ditive map with the property that x 〈Φ(x), y∗〉
is Borel measurable for each y∗ ∈ F ∗. Then Φ
is continuous.

Proof. By the closed graph theorem, it suffices
to show that G(Φ) is closed.

By the preceding, we know that x 〈Φ(x), y∗〉
is continuous for each y∗ ∈ F ∗. Now suppose
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that {xn : n ≥ 1} ⊆ E and that
(
xn,Φ(xn)

)
−→

(x, y) ∈ E × F . Then, for each y∗ ∈ F ∗,

〈y, y∗〉 = lim
n→∞

〈Φ(xn), y∗〉 = 〈Φ(x), y∗〉,

and so y = Φ(x).

A Concluding Comment:
It may be of some interest that, without us-

ing the closed graph theorem, one can use the
same technique to prove that Borel measurable,
linear maps between Banach spaces are contin-
uous. However, in order to do so, one needs
a beautiful theorem of X. Fernique which says
that if µ is a Borel probability measure on a
separable Banach space E and the distribution
of

(x1, x2) 

(
x1 + x2√

2
,
x1 − x2√

2

)
under µ2 is µ2, then

Eµ
[
eα‖x‖

2
E
]
<∞
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for some α > 0. In particular, Eµ
[
‖x‖2E

]
<

∞. Fernique’s proof is a remarkably elemen-
tary but diabolically clever application of noth-
ing more than the triangle inequality. Given his
result, the proof that a Borel measurable, linear
map from one Banach space to another must be
continuous differs in no substantive way from
the one given above when the image space is
R. In the case when the image Banach space
is separable, this provides another proof of the
Schwartz’s Borel graph theorem and therefore
the closed graph theorem.


