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Why do statistics?
Brief summary of Day 1 and 2

1 Is there an effect?
▶ Answered by p-values.
▶ Power vs. Risk of False Positives (Sterne & Smith, 2001).
▶ Discussed on Day 1 and 2.

2 Where is the effect?
▶ Answered by p-values from post hoc analyses.
▶ Will first be discussed later in the course.

3 What is the effect?
▶ Answered by estimates with confidence intervals, and by prediction

intervals.
▶ Power vs. Risk of Type S error + Size of Type M error

(Gelman & Carlin, 2014).
▶ Discussed on Day 1 and 2.

4 Can the conclusions be trusted?
▶ Answered by model validation.
▶ Briefly discussed on Day 1 and 2.
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Summary: Chi-squared vs. McNemar test

Exercise 2.4: The 2× 2 table in the exercise contains row and column
marginals. Thus, the actual cross-tabulation of the 85 sibling pairs is this:

Control:
Tonsillectomy No tonsillectomy Total

Hodgkin: Tonsillectomy 26 15 41
No tonsillectomy 7 37 44

Total 33 52 85

Chi-squared: p = 0.00002. Strong evidence of correlation between
siblings, which might be due to genetic heritability.

McNemar: p = 0.1326. Still no evidence of association between
Hodgkin’s disease and risk of tonsillectomy.

Thus, both tests make sense. But please note the different interpretations
of the (possibly significant) results.
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Solution to Exercise 2.7

Categorization of the continuous height measurements results in the
following table:

Count Sons
(row pct) Small Tall Total

Parents: small 247 (62%) 152 (38%) 399 (100%)
tall 189 (34%) 364 (66%) 553 (100%)

Total 436 516 952

Chi-square test for association: χ2 = 70.6704, df=1, p < 2.2 · 10−16:

chisq.test(matrix(c(247,189,152,364),2,2))

Thus, the association is highly significant. Inspection of the row
percentages shows that tall parents tend to get tall sons.

In this situation McNemar’s test is non-significant (p=0.05123). But
what does this mean?
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Properties of good statistical models

Valid
▶ “All models are wrong”, but a statistical model must be valid. This

means that the probabilistic properties implied by the model are meet
by the data within statistical uncertainty.

Interpretable
▶ Often different valid models can be formulated for a given dataset. The

interpretation of these models and their parameters may, however, be
different. It is preferable to have an interpretation that matches the
scientific question under investigation.

Powerful
▶ Some models and tests are better at detecting deviations from the null

hypothesis than others. Loosely said, the more assumptions you put
into a model the more powerful it becomes (and the more often it may
be invalid).
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What is regression analysis?
Here the “popular” answer

Simple linear regression

Relates a response variable to an explanatory variable via a straight line.

Multiple linear regression

Relates a response variable to several explanatory variables via a “web” of
straight lines.
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Categorical response variable: Examples of the main types

Binary (∼ Bernoulli distribution, i.e. binomial with n=1):
▶ No, Yes.

Binomial (∼ binomial distribution):
▶ Number of weeks with weight loss out of 8 weeks on some diet.

Nominal (∼ multinomial distribution):
▶ Red, Green, Blue, Yellow, Purple.

Ordinal (∼ multinomial distribution):
▶ No symptoms, Mild symptoms, Severe symptoms, Dead by disease.

Counts (∼ Poisson distribution):
▶ 0, 1, 2, 3, . . .
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Overview: Categorical regression analysis

Models and theory:

Response Model See slides

Binomial Probit analysis 9–20
Binomial Logistic regression 25–27, 32–36
Nominal Multinomial logistic regression 39
Ordinal Proportional odds model 38–41
Counts Poisson regression 42–46

R analysis:
▶ Binary, binomial, counts responses: glm()
▶ Nominal, ordinal responses: I recommend ordinal::clm()
▶ Model validation: gof::cumres(). Unfortunately, the gof package is

only available on github. May be installed via these steps:
⋆ @Window users: Must first install Rtools bundle (not an R package!)
⋆ @All: install_packages("devtools")
⋆ @All: devtools::install_github("kkholst/gof")

The main example in this lecture is binomial regression.
▶ Please pay attention to the interpretation of the different models.

DSL (MATH) AS / SmB-I Day 3 8 / 48

https://cran.r-project.org/bin/windows/Rtools/


Data example 1: Mortality of beetles
Dosis-response experiment

481 beetles were exposed to 8 different doses of carbon-disulfide (CS2) for
5 hours. Mortality in each dose group was registered:

CS2 mg/l alive dead total p̂dead
49.06 53 6 59 0.10
52.99 47 13 60 0.21
56.91 44 18 62 0.29
60.84 28 28 56 0.50
64.76 11 52 63 0.82
68.69 6 53 59 0.89
72.61 1 61 62 0.98
76.54 0 60 60 1.00
total 190 291 481 0.60

Variables used in the R analysis:
n = total, y = dead, x = log10(dosis)
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Probit analysis and it’s interpretation
Let Φ(x) = P(Z ≤ x) be the cumulative distribution function of N (0, 1)

Suppose the i ’th beetle has a tolerance value Ti for log(CS2), i.e. the
beetle dies if log-dosis is above the tolerance and survives otherwise.

Suppose the distribution of tolerance values in the population of
beetles is normal with mean µ and standard deviation σ.

Suppose the i ’th beetle is exposed to log-dosis of CS2 of size xi .

Then the probability that the i ’th beetle dies equals

pi = P(Ti < xi ) = Φ
(xi − µ

σ

)
This implies a straight line with intercept α = −µ

σ and slope β = 1
σ :

Φ−1(pi ) = −µ

σ
+

1

σ
· xi = α+ β · xi
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Overview of R code for beetle example

Slide 13 Fitting the model to the data.

Slide 15 Cumulative residuals and associated Goodness-of-Fit tests
(Can the conclusions be trusted?)

Slide 12, 16 Lack-of-Fit test, which only is available in some situations
(Can the conclusions be trusted?)

Slide 17 Hypothesis tests (Is there an effect?)

Slide 18 Estimates and confidence intervals (What is the effect?)

Slide 19, 20 Backtransformation in order to get estimates for the
parameters in the tolerance distribution (What is the effect?)
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Mortality of beetles
Table-of-Variables & Overview of design

Variable Type Range Usage
n=total Integer [56; 63] parameter
y=dead Binomial count 0, 1, . . . , 53 response
x = log10(dosis) Numerical [1.691; 1.884] fixed effect

dosis will be used on log-scale as this
gives a better fit to the data.

Since the numerical variable dosis only
takes 8 different values we may perform a
Lack-of-Fit test. This is illustrated in the
Design Diagram shown to the right.
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Mortality of beetles
Fitting the probit model in R

# Use dataset from dobson package

library(dobson)

data(beetle)

# Make probit regression

m1 <- glm(cbind(y,n-y)~x,data=beetle,

family=binomial(link="probit"))

The response consists of number of successes (dead beetles) and
failures (alive beetles). These are combined column-wise, that is as
variables, using cbind().

Note that we are using x = log10(dosis) as the explanatory variable.
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Does the probit model fit the beetle data?
Note that qnorm(p) is the R code for Φ−1(p)

Here we define the residuals as the deviation of the raw estimates
(the points) from the model prediction (the line).

A valid model should have random residuals, ie. without structure.
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Idea: Instead investigate the cumulated residuals
And use associated Goodness-of-Fit tests (two given by the gof-package)
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One plot for the model + One plot for each for the continuous
explanatory variables (here x = log10(dosis) to the right). R code:

library(gof)

plot(cumres(m1))

Goodness-of-Fit tests are based on simulations.
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More model validation: Lack-of-Fit test
May be done since only a “few” different dosis were used

# Make a model where dosis is used as a categorical factor

m0 <- glm(cbind(y,n-y)~factor(x),data=beetle,

family=binomial(link="probit"))

# Lack-of-Fit test: Test m1 as a hypothesis against m0

anova(m1,m0,test="Chisq")

Analysis of Deviance Table

Model 1: cbind(y, n - y) ~ x

Model 2: cbind(y, n - y) ~ factor(x)

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 6 10.12

2 0 0.00 6 10.12 0.1197

What is the conclusion?
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Hypothesis tests: Is there an effect?
Despite model is invalid by GoF-tests (see slide 15), we continue the analysis.
Your comments on this?

Hypothesis tests may be done using the anova() function as
demonstrated in the R guide.

However, I recommend the drop1() function. The R code is easy:

drop1(m1,test="Chisq")

Single term deletions

Model:

cbind(y, n - y) ~ x

Df Deviance AIC LRT Pr(>Chi)

<none> 10.12 40.318

x 1 284.20 312.400 274.08 < 2.2e-16 ***
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Parameter estimates and confidence intervals

The parameter estimates can be extracted in many ways, e.g.
m1, summary(m1), coef(m1).

Confidence intervals may be found by confint(m1).

If preferred the output may be combined like this:

cbind(estimate=coef(m1),confint(m1))

Waiting for profiling to be done...

estimate 2.5 % 97.5 %

(Intercept) -34.93527 -40.28936 -29.92940

x 19.72794 16.91488 22.73983
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Interpretation via tolerance distribution
Probit analysis: p = Φ

(
α+ β · x

)
The relation between the parameters in the linear model and the
parameters in the tolerance distribution is as follows:

Parameter Interpretation

µ = −α/β Lethal Dosis 50% = mean in tolerance distribution
σ = 1/β Scale = standard deviation in tolerance distribution

Confidence interval for σ may be found by 1/z-transforming the ditto
for β̂ = 19.72794. Interpretation of β < 0 via, cf. slide 10,

P(Ti ≥ xi ) = 1− P(Ti < xi ) = 1− Φ
(
α+ β · xi

)
= Φ

(
− α− β · xi

)
To find confidence interval for µ is more tricky since this is given as a
non-linear combination of the parameters in the probit regression.

▶ However, the emmeans_ED() function from the LabApplStat-package
can be used to find confidence intervals using the so-called
Delta-method.

▶ Alternatively the deltaMethod from the car-package might be used.
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Backtransformation and confidence intervals

# Scale parameter in the tolerance distribution

1/cbind(estimate=coef(m1),confint(m1))[2,c(1,3,2)]

# Mean parameter in the tolerance distribution

emmeans_ED(m1,p=0.5,tran="log10")

Waiting for profiling to be done...

estimate 97.5 % 2.5 %

0.05068954 0.04397570 0.05911953

grid estimate SE df asymp.LCL asymp.UCL

overall 1.771 0.003803 Inf 1.763 1.778

Results are given on the log10 (not the response) scale.

Confidence level used: 0.95
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Summary of beetle example

A probit analysis of the death probability against
x = log10(CS2 dosis) was performed.

Model validity was investigated by cumulative residuals and
associated Goodness-of-Fit tests, as well as a Lack-of-Fit test.

▶ In practice I for this example probably wouldn’t do the Lack-of-Fit test.
▶ In this example the model was actually invalidated by the cumulative

residuals (L2 gof-test gave p=0.02). So in principle, we shouldn’t
proceed with the analysis done on slides 17 – 20.

Effect of CS2 was highly significant.

Estimates and confidence intervals were found for the parameters in
the tolerance distribution, which provides the canonical interpretation
of a probit analysis.
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Graphical display of fitted model
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Questions?

And then a break.

After the break we discuss logistic regression as an alternative to
probit analysis.
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Data example 2: Risk of company default
Danske Bank Business Analytics Challenge (2017)

Prediction of Default within next year using public available data. In this
lecture we look at equity of start up’s (=companies less than 1 year old):

Default within Equity group (numeric)
next year 1 2 3 4 5 6 Total

Yes 3 4 5 11 5 1 29
No 4 14 86 506 231 92 933

Total 7 18 91 517 236 93 962

Results from a probit analysis (What is the effect? + Model validation):

Tolerance distribution Estimate (95% CI)
for Default
mean µ −0.79 (−2.98 ; 1.40)

standard deviation σ 2.55 (1.75 ; 4.55)

Quiz: What is your opinion about this
analysis?
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Odds and Odds-ratio
Towards logistic regression

The interpretation via tolerance distribution is somewhat awkward for
the “Default within next year” example.

The answer to the following question (which is ill-defined in the probit
model) might have a more natural interpretation:

How more likely are start up’s to default within the next year compared to
start up’s in 1 higher Equity group (e.g. 2 vs. 3)?

A possible answer could be formulated via the odds = P(event)
P(no event) :

Oddsgroup=2 =
P(Default|Group=2)

P(no-Default|group=2)

Oddsgroup=3 =
P(Default|group=3)

P(no-Default|group=3)

And the odds ratio: OR2:3 =
Oddsgroup=2

Oddsgroup=3
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Data example 2: Start up’s defaults revisited

Default within Equity group (numeric)
next year 1 2 3 4 5 6 Total

Yes 3 4 5 11 5 1 29
No 4 14 86 506 231 92 933
Total 7 18 91 517 236 93 962

Odds 3/4 4/14 5/86 11/506 5/231 1/92 29/933

Odds-ratio 3/4
4/14

4/14
5/86

5/86
11/506

11/506
5/231

5/231
1/92 — —

2.625 4.914 2.674 1.004 1.991 — —

Logistic regression models the log(odds) by a line:

log(odds) = α+ β · group

This implies constant odds ratios:

log(ORg :g+1) = log(Oddsg )−log(Oddsg+1) = α+β·g−α−β·(g+1) = −β
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Three advantages of the linear model

Quiz: What are the advantages of a logistic regression (today) over
the analysis via a table of counts (last week)?
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Lack-of-Fit test

The examples given so far may be represented in a table of counts (ie. the
topic of Day 2). The saturated model assigns an event probability to each
group. Typically, the regression models have fewer parameters:

Example Parameters in full model Parameters in regression model
Beetle 8 (= levels of CS2) 2 (intercept, x)
Default 6 (= number of Equity groups) 2 (intercept, group)

The null hypothesis of the Lack-of-Fit test is validity of the regression
model. This is tested against the saturated model.

The Lack-of-Fit test is a Goodness-of-Fit test.
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Questions?

If needed, then let’s have a break.

Thereafter we discuss model selection and methods of answering the
question What is the effect?
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Data example 3: Hypertension (yes/no) for 433 men
Explanatory categorical variables: smoking, obese, snoring

Smoking Obese Snoring Hypertension No hypertension

no no no 5 55
yes no no 2 15
no yes no 1 7
yes yes no 0 2
no no yes 35 152
yes no yes 13 72
no yes yes 15 36
yes yes yes 8 15

All interactions between 3 factors on 2 levels: 23 = 8 parameters, i.e.
the saturated model. In particular, Lack-of-Fit test is meaningless.
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Model selection (digression from today’s main topic)
How to find the “best” model, e.g. select variables

There are disagreements about how to approach this. The following 3
possibilities go from “wrong + practicable” to “correct + impracticable”:

Backward model selection: Start from a valid model, and remove
non-significant effects one-by-one, preferably the least significant first,
until all remaining effects are significant.

Best subset selection: Try all possible submodels, and select the
best model according to some criterion. In practice the Akaike
Information Criterion (AIC) or the Bayesian Information Criterion
(BIC) often are used.

▶ R: preferably done automatically using step(), or possibly
MASS::stepAIC() or MuMIn::dredge().

▶ Actually, MuMIn::dredge() as default uses a biased-corrected version
of AIC known as AICc . This is always preferable over AIC.

Don’t: Instead choose model based on other knowledge.
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Automated model selection

# Load libraries. And read data from text file

library(gof); hypertension <- read.delim("hypertension.txt")

# Make saturated logistic regresion

m1 <- glm(cbind(yes,no)~snoring*obese*smoking,

data=hypertension,family=binomial)

# Automated model selection using AIC

step(m1,direction="both")

# Investigation of selected model

m2 <- glm(cbind(yes,no)~snoring+obese,

data=hypertension,family=binomial)

drop1(m2,test="Chisq")

plot(cumres(m2))

exp(cbind(OR=coef(m2),confint(m2)))
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Results of analysis

Final model contains main effects of snoring and obese.

Effects preferably reported as odds ratios found by taking the
exponential of the parameter estimates:

Comparison Odds Ratio Lower 95% CL Upper 95% CL

Snoring vs. non-snoring 2.3761 1.1514 5.5609
Obese vs. non-obese 2.0045 1.1336 3.4792

Odds ratios are multiplicative, i.e. the OR for hypertension of a
snoring, obese man against a non-snoring, non-obese man is:

OR = 2.3761 ∗ 2.0045 = 4.7629
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How to report estimates of model parameters?
Exemplified by logistic regression for hypertension data: Final model has 3 parameters.

> cbind(log_odds=coef(m2),confint(m2))

Waiting for profiling to be done...

log_odds 2.5 % 97.5 %

(Intercept) -2.3920763 -3.2101098 -1.718094

snoringyes 0.8654583 0.1410076 1.715763

obeseyes 0.6954188 0.1254244 1.246789

This model is so simple that parameters “easily” can be combined
and backtransformed to interpretable statements.

In general, however, dealing with model parametrizations is highly
technical.

When parameters have a specific interpretation by themselves, you
may of course use this. Otherwise, I recommend that you use the
emmeans-package.

Name refers to estimated marginal means. Corresponds to least
squares means for normally distributed responses, but the
methodology is generally applicable.
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Interpretation of parameters in logistic regressions
Using the emmeans-package

Predictions in the linear models are of logit = log odds. Thus,
backtransformation by “expit” function leads to probabilities.

Here’s how to do this in R:

> emmeans(m2,~snoring*obese,type="response")

snoring obese prob SE df asymp.LCL asymp.UCL

no no 0.08377892 0.02884212 Inf 0.04194600 0.1603493

yes no 0.17848906 0.02293162 Inf 0.13786495 0.2279191

no yes 0.15490233 0.05750643 Inf 0.07191419 0.3024487

yes yes 0.30339158 0.05174310 Inf 0.21231081 0.4130561

Confidence level used: 0.95

Intervals are back-transformed from the logit scale

Option type="response" requests backtransformation.

Output df=Inf suggests that confidence interval are made using a
normal approximation (a technicality you may ignore).
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Interpretation of parameters in logistic regressions
Using the emmeans-package

Contrasts between parameters = differences of log odds = log odds ratios.
Thus, backtransformation by “exp” function lead to odds ratios.

> confint(pairs(emmeans(m2,~snoring*obese,type="response"),reverse=TRUE))

contrast odds.ratio SE df asymp.LCL asymp.UCL

yes,no / no,no 2.3760948 0.9425066 Inf 0.8576329 6.583034

no,yes / no,no 2.0045485 0.5714244 Inf 0.9637539 4.169337

no,yes / yes,no 0.8436315 0.4259395 Inf 0.2305902 3.086488

yes,yes / no,no 4.7629972 2.2456531 Inf 1.4185464 15.992528

yes,yes / yes,no 2.0045485 0.5714244 Inf 0.9637539 4.169337

yes,yes / no,yes 2.3760948 0.9425066 Inf 0.8576329 6.583034

Confidence level used: 0.95

Conf-level adjustment: tukey method for comparing a family of 4 estimates

Intervals are back-transformed from the log odds ratio scale

Option reverse=TRUE switches reference level from "yes" to "no".

Adjustment of confidence intervals allows simultaneous interpretation.
If you don’t want this, then use option adjust="none".
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Questions?

And then a break.

After the break we discuss ordinal regression (using the proportional
odds model) and Poisson regression.
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Data example 4: Taste of Cheeses
Proportional odds model for ordinal regression

Cheese Taste score (1=worst, 9=best)
additive 1 2 3 4 5 6 7 8 9 Total

A 0 0 1 7 8 8 19 8 1 52
B 6 9 12 11 7 6 1 0 0 52
C 1 1 6 8 23 7 5 1 0 52
D 0 0 0 1 3 7 14 16 11 52

Depending of the taste requirements we might say that a cheese is
tasty if its score is at least j (for some j=1,. . . ,9).

The proportional odds model assumes that the odds ratios for being
tasty between the cheeses do not depend on the cut-off point j .

Table of variables for the data in cheese.txt:

Variable Type Range Usage
cheese Nominal A, B, C, D Fixed effect
taste Ordinal 1 < 2 < · · · < 9 Response
count Count [0 ; 23] Frequency variable
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Cheese example: R analysis (I)
Numerical problems in the multinomial regression solved using non-default optimizer

# Load library we will be using

library(ordinal)

# Read data from text file

cheese <- read.delim("cheese.txt")

# Recode ’taste’ as a factor. Otherwise clm() doesn’t work

cheese$taste <- factor(cheese$taste)

# Fit multinomial and proportional odds model

m0 <- clm(taste~1,nominal=~cheese,data=cheese,

weights=count,control=list(method="nlminb"))

m1 <- clm(taste~cheese,data=cheese,weights=count)
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Cheese example: R analysis (II)

# Lack-of-Fit test for proportional odds assumption

anova(m1,m0)

# Significance test for effect of ’cheese’

drop1(m1,test="Chisq")

# Estimates for confidence intervals for OR’s

# for being tasty between cheeses

exp(cbind("OR vs cheese A"=coef(m1)[9:11],confint(m1)))

# emmeans-package can be used for clm-objects, but

# automatic backtransformation is not available!?

library(emmeans)

confint(pairs(emmeans(m1,~cheese),reverse=TRUE))
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Results from analysis
Proportional odds assumption & Is there an effect?: Likelihood ratio tests

Proportional odds assumption: χ2 = 20.308, df=21, p=0.5018

Effect of cheese: χ2 = 148.45, df=3, p < 2.2 ∗ 10−16

Estimated odds ratios for being more tasty:

OR vs cheese A 2.5 % 97.5 %

cheeseB 0.0350 0.0148 0.0796

cheeseC 0.1809 0.0862 0.3708

cheeseD 5.0168 2.4095 10.7474

Thus, cheese D is the most tasty. It is 5 times as tasty as cheese A
(∼ the second most tasty additive).

DSL (MATH) AS / SmB-I Day 3 41 / 48



Data example 5: Number of greenflies on lettuce leaves
System (conventional/ecological), Week (1 or 2 before harvest), Leave (inner/outer)

Number of 2 weeks before 1 week before
greenflies outer inner outer inner

conventional 5 2 29 39
ecological 32 22 38 46

What is the relation between number of greenflies and the factors
system, week and leave?

The response variable number contains counts, and may take the
values 0,1,2,. . .
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Poisson regression
The standard probability model for counts is the Poisson distribution,
which may be parametrized by the intensity λ > 0:

P(count = y) =
λy

y !
e−λ, mean count = λ

Poisson regression models the log-intensity as a linear function f of
the explanatory variables, i.e. for the greenflies example:

number ∼ Poiss(λ), log(λ) = f (system,week, leave)

Significant effects are often reported in relative risks:

RR1:2 =
λ1

λ2
, log(RR1:2) = log(λ1)− log(λ2)︸ ︷︷ ︸

=f (λ1)−f (λ2)
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Number of greenflies: Poisson regression

# Load libraries. And read data from text file

library(gof); greenflies <- read.delim("greenflies.txt")

# Make saturated Poisson regresion

m1 <- glm(number~system*week*leave,

data=greenflies,family=poisson())

# Automated model selection using AIC

step(m1,direction="both")

# Investigation of selected model

m2 <- glm(number~system+week+leave+system:week+week:leave,

data=greenflies,family=poisson())

drop1(m2,test="Chisq")

plot(cumres(m2))

exp(cbind(RR=coef(m2),confint(m2)))
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Greenflies on lettuce leaves: Presentation of results

A stepwise model selection using the Akaike Information Criterion was
made starting from the saturated model given by the main effects and
interactions (up-to third order) of the factors system, week and
leave.

The final model is given by the 3 main effects, and the 2-way
interactions system:week and week:leave.

Some estimated relative-risks in the final model are:

Ecological vs. Conventional Estimate Lower-CL Upper-CL

at 1 week before harvest 1.2353 0.8937 1.7074
at 2 weeks before harvest 7.7143 3.4767 17.1169

But how are these estimates derived?
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Ecological vs. Conventional, at 2 week before harvest
log(relative risk) = f(condition 1) - f(condition 2)

The parameters in the final model and the weights needed to construct the
above contrast are:

logRR weight

(Intercept) 3.6382784 1-1=0

systemecological 0.2113091 1

week2 before -2.6251883 1-1=0

leaveouter -0.2379586 0

systemecological:week2 before 1.8317648 1

week2 before:leaveouter 0.6708227 0

But it’s more easy to let emmeans() do this:

> library(emmeans)

> confint(pairs(emmeans(m2,~system|week),reverse=TRUE),

type="response")
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Summary (I)

For regression of binary (yes/no) responses special attention was
given to the model interpretation:

▶ Probit analysis is adequate for dosis-response experiments.
▶ Logistic regression is adequate to quantify risk factors.

Model validation was done using two methods:
▶ Cumulative residuals and associated Goodness-of-Fit tests. This should

be a standard tool. Unfortunately the method is not (yet!) available
for the proportional odds model.

▶ Lack-of-Fit tests against a saturated model. In particular, this is useful
to test the proportional odds assumption.
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Summary (II)

Backtransformation of model parameters was discussed:
▶ In the categorical regressions the parameters are often given on a

logarithmic scale. E.g. we backtransform parameter contrasts by the
exponential function to go from log(odds) to odds.

▶ For the probit analysis a non-linear combination of the model
parameters was needed to get the LD50. Confidence intervals were
found using the so-called Delta method.

▶ The emmeans-package in many cases can do much of this work.

In this lecture we didn’t discuss the important concept of
overdispersion. This will be discussed on Day 5.
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