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1: Introduction.

The purpose of this paper is to extend and unify some results given separately in the
literature.

To be more specific we shall be concerned with orthogeodesic exponential compos-
ite transformation models and the similarity between the distribution F (χ, ψ) (χ
denoting the group parameter and ψ the index parameter) of a variable x and the
conditional distribution of the maximum likelihood estimator χ̂ of χ given the maxi-
mum likelihood estimator ψ̂ of ψ under repeated sampling.

It is known that in some cases χ̂|ψ̂ follows a F (χ, φ) distribution with φ being some
function of ψ, ψ̂ and n (sampling size), i.e. the distribution of χ̂|ψ̂ is of the same
type as x.

This is for example the case if xi, i = 1, ..., n is a sample from the von Mises-Fisher
distribution Cd(µ, κ). Then we have that the conditional distribution of the maxi-
mum likelihood estimate µ̂ (= x./‖x.‖) of the direction parameter µ given the re-
sultant length ‖x.‖ also is distributed according to a von Mises-Fisher distribution:
µ̂ | ‖x.‖ ∼ Cd(µ, ‖x.‖κ). However the maximum likelihood estimate κ̂ of κ is in unique
correspondence with the resultant length ‖x.‖, and hence the distribution of µ̂|κ̂ is
given by Cd(µ, ‖x.‖κ). A similar result holds if x is distributed according to a hy-
perboloid distribution (Jensen (1981)). Moreover a number of τ -parallel exponential
composite transformation models (see Barndorff-Nielsen and Blæsild (1983a)) exhibit
this property. Here (χ, ψ) equals (θ1, τ2) for some similar partitions (θ1, θ2) of the
canonical parameter θ and (τ1, τ2) of the mean value parameter τ . In these cases
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χ̂ and ψ̂ are stochastical independent and we then have that χ̂ follows a F (χ, φ)-
distribution if x follows a F (χ, ψ)-distribution.

As proved in Barndorff-Nielsen and Blæsild (1983a) the result on τ -parallel models is
not limited to composite transformation models. The conditions given in this paper
to ensure stochastical independence of χ̂ and ψ̂ are (slightly) different from those
given in Barndorff-Nielsen and Blæsild (1983a).

We will give two different but similar sets of conditions that ensure a similarity of the
distributions of χ̂|ψ̂ and x. The first set of conditions is the one that resembles the
conditions in Barndorff-Nielsen and Blæsild (1983a), and the other set is easily seen
to be fulfilled for both the von Mises-Fisher model and the hyperboloid model. The
proofs of the distribution similarity under the two sets of conditions are quite similar
to each other.

In Barndorff-Nielsen (1988) it is shown that the conditional distribution of χ̂ given
ψ̂, under repeated sampling and under some conditions similar to those given in the
present paper is of the same type (in some sense) for all n (sampling size). This
should be compared to the result given here, however we are mainly interested (in
contrast to Barndorff-Nielsen (1988)) in the connection between the distribution of
x and the distribution of χ̂|ψ̂, not just the distribution of χ̂|ψ̂. Moreover ’the same
type’ will have a more strict meaning in the present paper, than in Barndorff-Nielsen
(1988). This will be commented on in the example in the end of the paper.

Finally we will derive expressions for the distribution of the m.l.e. ψ̂ of ψ under the
two sets of conditions.

2: Preliminaries and Basic Assumptions.

This section contains an introduction to the models of interest in this paper: ortho-
geodesic exponential composite transformation models (OECT-Models).

Group theoretical concepts will be assumed known (see e.g. Barndorff-Nielsen et al.
(1989)), and similarly we will not go into a discussion of the concept of an ortho-
geodesic model - all we need is the ’structure theorem’ for orthogeodesic exponential
models (see Barndorff-Nielsen and Blæsild (1993) or Wiuf (1994a)).

If µ is a measure on a measure space (X,A) and f is a measurable function from X

into another measure space (Y,B), we let fµ denote the image measure of f under
µ, i.e. fµ(B) = µ(f−1(B)), B ∈ B.
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Let M = (X,P,A) be a statistical model. Assume that G is a group acting on X and
moreover assume that GP = { gP |P ∈ P, g ∈ G} ⊆ P. Hence an action of G on P
is induced, given by g : P → P and P 7→ gP . If P is parameterized by ω ∈ Ω, i.e.
P = {Pω |ω ∈ Ω }, this action can of course be expressed as a function of ω, with gω
given by

Pgω = gPω. (1)

Following Barndorff-Nielsen et al. (1989) we define:

Definition 2.1: M with the above mentioned properties is called a composite trans-
formation model. If G acts transitively on P, then M is called a transformation
model. 2

We let M = (X,P,A,G) denote a composite transformation model.

Let P be parameterized by ω ∈ Ω. In the following we will assume that P is of
constant orbit type, i.e. that there exists a set of orbit representatives Ψ ⊂ Ω and a
subgroup K of G, such that the isotropic group of ψ is K for all ψ ∈ Ψ, i.e. Gψ =
{g ∈ G | gψ = ψ} = K. Let G/K denote the set of left cosets gK = {gk | k ∈ K}.

Lemma 2.1: ω and (ψ, gK) is in one-to-one correspondence.

Proof: If ω ∈ Ω there exists a unique ψ, such that ω ∈ Gψ = {gψ | g ∈ G}. If there
exists gK and g̃K, such that ω = gKψ = g̃Kψ it follows that g−1g̃ ∈ K. Hence
gK = gg−1g̃K = g̃K and ω determines a unique ψ and gK. Oppositely ψ and gK of
course determine a unique ω. 2

The last assumptions to be made concern the geometric structure of P: assume that
P is a differentiable product manifold X×Ψ of dimension d covered by a single chart
Ω ⊆ Rd, such that X (of dimension dχ) is diffeomorphic to G/K and Ψ (of dimension
dψ) is diffeomorphic to the set of orbit representatives.

Let the measures in P be dominated by a measure µ on (X,A) with the µ densities
being strictly positive. Since Pgω has density w.r.t. µ and gµ, and the densities are
strictly positive, then the measures µ and gµ are equivalent. We then have from (1)
that

dPgω
dµ

(x) =
dgPω
dgµ

(x)
dgµ

dµ
(x) =

dPω
dµ

(g−1x)
dgµ

dµ
(x). (2)
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Assume now that M is an exponential model of dimension d with open canonical
parameter space, i.e. that the densities have the following form

dPθ
dµ

(x) = exp{θρtρ(x) − κ(θ) − ϕ(x)} (3)

for θ in an open subset Θ of Rd and x ∈ X. Here we have adopted the Einstein sum-
mation convention with ρ, σ etc. denoting indices of θ, τ and t. Moreover assume
that M is orthogeodesic relative to the parameterization ω = (χ, ψ) in the following
sense (see Barndorff-Nielsen and Blæsild (1993) or Wiuf (1994a)):

There exists scalars α(ψ) and γ(χ), vectors Bρ(χ) and Dρ(χ), matrices Ai
ρ(χ) and

Cρ
i (χ), such that the following conditions are satisfied:

(a) θρ(χ, ψ) = ψiCρ
i (χ) +Dρ(χ)

(b) τρ(χ, ψ) = α/j(ψ)Ajρ(χ) +Bρ(χ)
(c) κ(χ, ψ) = α(ψ) + γ(χ) + ψiCρ

i (χ)Bρ(χ)

(d) Ajρ(χ)Cρ
i (χ) = δji

(e) Ajρ(χ)Cρ
i/a(χ) = 0

(f) Ajρ(χ)Dρ
/a(χ) = 0

(g) Bρ/a(χ)Cρ
i (χ) = 0

(h) γ/a(χ) = Bρ(χ)Dρ
/a(χ).

Indices i, j etc. denote generic components of ψ and indices a, b denote generic
components of χ. Moreover /ρ respectively /a and /j denote differentiation w.r.t.
θρ respectively χa and ψj, e.g. α/j(ψ) = ∂α/∂ψj(ψ). The vectors Bρ(χ) and Dρ(χ),
matrices Ai

ρ(χ) and Cρ
i (χ) and scalars α(ψ) and γ(χ) are called an orthogeodesic

representation of M.

In Barndorff-Nielsen and Blæsild (1993) one moreover requires variation indepen-
dence of χ and ψ, but this is automatically fulfilled for χ and ψ in the group set-up
mentioned above. According to the structure theorem for exponential (composite)
transformation models (see e.g. Barndorff-Nielsen et al. (1989) or Wiuf (1994b)) the
matrices are uniquely determined.

The class of models fulfilling the assumptions (a)-(h) is quite large, e.g. the family of
von Mises-Fisher distributions, the family of hyperboloid distributions and the family
of normal distributions are all examples of this kind. In Wiuf (1994b) some further
2-dimensional examples are given.
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3: The Conditional Distribution of χ̂ given ψ̂

and the Distribution of ψ̂.

In this section we will let g denote both the action of G on the sample space X and
the action of G on the parameter space of M as well as the induced action of G on
X, i.e. gχ = χ̃ if g(χ, ψ) = (χ̃, ψ).

We need a result concerning the maximum likelihood estimate of ω, which is not
bounded to OECT-Models. The proposition can be found more or less in existing
textbooks, e.g. Barndorff-Nielsen (1988).

Proposition 3.1: Assume that M is a composite transformation model (not neces-
sarily exponential) parameterized by ω ∈ Ω, and assume moreover that the maximum
likelihood estimate (m.l.e.) ω̂ of ω exists and is unique with probability 1, then

(a) ω̂ is G-equivariant, i.e. ω̂(x) = ω̂(y) ⇒ ω̂(gx) = ω̂(gy).
(b) The action of G on Ω induced by ω̂, i.e. g(ω̂) = ω̂(gx) if ω̂ = ω̂(x) and

g ∈ G, equals the natural action of G on ω defined by (1), i.e. g(ω̂) = gω̂.

(c) In the parameterization ω = (χ, ψ) (if it exists) ψ̂ is G-invariant, i.e. the

distribution of ψ̂ depends on ψ only.

Proof: (a) Put p(x;ω) = dPω
dµ

(x) and r(x; g) = dgµ
dµ

(x), then (2) can be rewritten as

p(gx; gω) = p(x;ω)r(gx; g). (4)

Furthermore, letting ω̂ = ω̂(x) we have that

p(x; ω̂) = p(gx; gω̂)
1

r(gx; g)
≤ p(gx; ω̂(gx))

1

r(gx; g)
= p(x; g−1ω̂(gx)) ≤ p(x; ω̂),

where the two inequality signs are a consequence of the definition of the m.l.e. and
the two equalities follow from (4). Since we assumed that m.l.e. ω̂ is unique, we
have from the above that ω̂ = g−1ω̂(gx) or gω̂ = ω̂(gx). Hence if ω̂(x) = ω̂(y) then
ω̂(gx) = gω̂(x) = gω̂(y) = ω̂(gy), which proves (a).

(b) Shown in the proof of (a).

(c) Since ψ is invariant under the natural action of G on Ω, we have from (b) that

ψ̂(x) = ψ̂ = gψ̂ = ψ̂(gx),
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i.e. ψ̂ is G-invariant, and hence the distribution of ψ̂ depends on ψ only. 2

Assume the model M fulfills the assumptions (a)-(h) made in section 2, i.e. that M
is an OECT-Model relative to the parameterization ω = (χ, ψ).

Besides the above proposition we need a lemma concerning the relation between
the matrix D and the function ϕ in the exponential representation (3) of P. Put
dgµ
dµ

(x) = exp{−η(x; g)}. Then we have

Lemma 3.1: Assume that M is an OECT-Model relative to the parameterization
ω = (χ, ψ) as defined above. Then the following statements are equivalent:

(a) ϕ(x) = ϕ(g−1x) + η(x; g) ∀x ∈ X, g ∈ G
(b) D(χ) = 0 ∀χ ∈ X

In particular if µ is G-invariant then condition (a) means that ϕ depends on the
G-orbits of X only, and if G acts transitively on X, then (a) states that ϕ is constant.

Proof: See Wiuf (1994b). 2

The assumption D = 0 is fulfilled quite often, e.g. all three examples mentioned in
the previous section fulfill this assumption. If D = 0 and dψ = 1 then M is a proper
exponential dispersion model as defined in Barndorff-Nielsen and Jørgensen (1991).

We are now ready to prove a conditional distribution result under repeated sampling
that is a unification of two well known results given earlier in the literature: the facts
that if x follows a von Mises-Fisher distribution then also the conditional distribu-
tion χ̂|ψ̂ of χ̂ given ψ̂ follows a von Mises-Fisher distribution with the same location
parameter, and if x follows a hyperboloid distribution then χ̂|ψ̂ too follows a hy-
perboloid distribution with the same location parameter (Jensen (1981)). Moreover
we derive an other but similar result for OECT-Models fulfilling slightly different
assumptions - a result that contains a well known distributional result for the normal
family.

This second result is a consequence of condition (a) in the below theorem 3.1. This
condition and the consequence of it resemble a result given in Barndorff-Nielsen and
Blæsild (1983) on τ -parallel models, which include the normal family as a special
case.

Let Mn = (Xn,Pn,A\) be the model consisting of n-fold product measures of iden-
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tical measures from P, i.e the measure P n
θ in P\ has density w.r.t. µn given by

dP n
θ

dµn
(x̄) = exp{nθρt̄ρ(x̄) − nκ(θ) − ϕ̄(x̄)}, (5)

where x̄ = (x1, ...xn), t̄(x̄) = 1
n

∑

j t(xj) and ϕ̄(x̄) = 1
n

∑

j ϕ(xj).

If a statistic z follows a distribution in the model M we let F (χ, ψ) denote the
distribution of z.

Let (∗) be the statement:

(∗) If Q1 and Q2 are two G-invariant measures on (X,A), then there exists a
constant c > 0, such that Q1 = cQ2.

Finally let (†) be the statement:

(†) µ is G-invariant, and the marginal measure (χ̂, ψ̂)µn of (χ̂, ψ̂) under µn is a
product measure νn = νnX ⊗ νnΨ of a measure νnX on (X,B(X )) and a mea-
sure νnΨ on (Ψ,B(Ψ)), which both are sum-finite.

Both statements are under weak regularity conditions fulfilled (see e.g. Barndorff-
Nielsen et al. (1989)), and it causes no restrictions in practice. The regularity
conditions to ensure (∗) to hold concern the action of G on X and are of topological
nature. The condition (†) is similarly fulfilled if the action induced on X × Ψ by
(χ̂, ψ̂) satisfy some topological conditions and if K (the isotropic group of ψ, ψ ∈ Ψ)
is a regular subgroup of G. If M is a standard transformation model (see Barndorff-
Nielsen et al. (1989)) then (†) is satisfied per assumption.

Theorem 3.1: Assume that M is an OECT-Model relative to the parameterization
ω = (χ, ψ) as defined above, (X,A) = (X ,B(X )), D = 0 and that t̄(Xn) = τ(Θ).
Moreover assume that either ’0 ∈ Θ and (∗)’ is fulfilled (remember ’0 ∈ Θ’ can always
be fulfilled, but not necessarily with D = 0), or that ’(∗) and (†)’ is fulfilled.

If

(a) (1) tρ(x) = Bρ(x)
(2) Ajρ(x) = Ajρ constant,

then χ̂ and ψ̂ are stochastically independent and χ̂ ∼ F (χ, nψ).

And if
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(b) (1) tρ(x) = cjA
j
ρ(x)

(2) A(x) =



















A[1](x) 0 ... 0
0 A[2](x) ... 0
...

...
...

0 0 ... A[dψ](x)



















(3) C(x) =



















C[1](x) 0 ... 0
0 C[2](x) ... 0
...

...
...

0 0 ... C[dψ](x)



















(4) Bρ(x) = 0,

where c = (cj)j is a constant vector, A[j](x) is a column vector and C[i](x) is a row

vector, such that A[j](x)T , C[j](x) ∈ Rdj for j = 1, ..., dψ and
∑dψ

1 dj = d, then

χ̂|ψ̂ ∼ F (χ, nφ) with φi = ψi
α/i(ψ̂)

ci
.

Note 1: The condition (X,A) = (X ,B(X )) is quite often fulfilled even though it
involves both the sample space X and a part of the parameter space.

Note 2: The assumption D = 0 is essential since if this is not fulfilled then the
conditional distribution of χ̂ given ψ̂ will not resemble the distribution of x (D will
be replaced by nD).

Note 3: ’t̄(Xn) = τ(Θ)’ implies that M\ is steep (in the sense of Barndorff-Nielsen
(1978)), and that the m.l.e. (χ̂, ψ̂) of (χ, ψ) exists and is unique with probability 1
and is the solution to

t̄ = Eθ(χ̂,ψ̂)t = α/j(ψ̂)Ajρ(χ̂) +Bρ(χ̂)

(according to the orthogeodesic condition (b)).

Note 4: Condition (a) implies that the model is τ -parallel (Barndorff-Nielsen and
Blæsild (1983a)).

Note 5: The conditions (b)(2) and (b)(3) are trivially fulfilled if dψ = 1. The condi-
tions are also satisfied if M is of the form (X1 × X2,P∞ ⊗ P∈,A∞ ⊗ A∈,G∞ × G∈)
with P∞ ⊗ P∈ = {P∞ ⊗ P∈|P〉 ∈ P〉, 〉 = ∞,∈} and if M〉 = (Xi,P〉,A〉,G〉), i = 1, 2
fulfill the conditions.
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Note 6: The densities have the form (3), and if we put dµ̃ = exp{−ϕ}dµ then

dPθ
dµ̃

(x) = exp{θρtρ(x) − κ(θ)}.

Hence using lemma 3.1 we see that D = 0 implies that η = 0 and µ̃ is G-invariant.

Proof: The proofs under the two different assumptions ’0 ∈ Θ and (∗)’ and ’(∗) and
(†)’ are almost identical.

Assume (a) and ’0 ∈ Θ (D = 0) and (∗)’: Let Qn
χ,ψ denote the marginal measures of

(χ̂, ψ̂) corresponding to the parameter value (χ, ψ). Assuming that κ(0) = 0 (which
can be done without loss of generality) and using the orthogeodesic conditions (a),
(c) and (d), and that t̄ = α/j(ψ̂)Ajρ(χ̂) +Bρ(χ̂) (note 3) we see by inserting (a) in (5)
that Qn

χ,ψ has density w.r.t. Qn
0 given by

dQn
χ,ψ

dQn
0

(χ̂, ψ̂) = exp{nψiCρ
i (χ)tρ(χ̂) − nα(ψ) + nψiα/i(ψ̂) − nψiCρ

i (χ)Bρ(χ)}.

From proposition 3.1 we have that the marginal distribution of ψ̂ depends on ψ only,
and hence we see that the conditional distribution Qn

χ,ψ(·|ψ̂) of χ̂ given ψ̂ has density

w.r.t. the conditional distribution Qn
0 (·|ψ̂) of χ̂ given ψ̂ under Qn

0 given by

dQn
χ,ψ(·|ψ̂)

dQn
0 (·|ψ̂)

(χ̂) = (6)

1

qn(ψ̂;ψ)
exp{nψiCρ

i (χ)tρ(χ̂) − nα(ψ) + nψiα/i(ψ̂) − nψiCρ
i (χ)Bρ(χ)},

where we have used (d) Cρ
i (χ)Ajρ = δji , and where qn(ψ̂;ψ) denotes the density of ψ̂

w.r.t the marginal density of ψ̂ under Qn
0 . Note that x has density w.r.t. P0 given by

dPχ,ψ
dP0

(x) = exp{ψCρ
i (χ)tρ(x) − α(ψ) − ψCρ

i (χ)Bρ(χ)}. (7)

Since the representation of x is minimal, it follows from lemma 3.1 (D = 0), (6) and
(7) that P0 and Qn

0 (·|ψ̂) are both G-invariant measures, since the ϕ function in (6)
and (7) both are constant. Hence according to (∗) there exists a constant c dependent
on ψ̂ and n such that Qn

0 (·|ψ̂) = c(ψ̂;n)P0. This constant is however 1, since both
Qn

0 (·|ψ̂) and P0 are probability measures. Inserting P0 in (6) we obtain

dQn
χ,ψ(·|ψ̂)

dP0

(χ̂) = (8)

1

qn(ψ̂;ψ)
exp{nψiCρ

i (χ)tρ(χ̂) − nα(ψ) + nψiα/i(ψ̂) − nψiCρ
i (χ)Bρ(χ)}.
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Integrating (8) over X w.r.t. P0 we get (using (7))

1 =

∫

X

dQn
χ,ψ(·|ψ̂)

dP0
(χ̂) dP0 =

1

qn(ψ̂;ψ)
exp{nψiα/i(ψ̂)}

∫

X

exp{nψiCρ
i (χ)[tρ(χ̂) − Bρ(χ)] − nα(ψ)}dP0 =

1

qn(ψ̂;ψ)
exp{nψiα/i(ψ̂) − nα(ψ) + α(nψ)}. (9)

Using (9) we can write (8) as

dQχ,ψ(·|ψ̂)

dP0
(χ̂) = exp{nψiCρ

i (χ)tρ(χ̂) − α(nψ) − nψiCρ
i (χ)Bρ(χ)}.

The right side does not depend on ψ̂ and hence χ̂ and ψ̂ are stochastically indepen-
dent, and comparing with (7) we see that χ̂ ∼ F (χ, nψ). This proves the first part
of the theorem under the condition ’0 ∈ Θ (D = 0) and (∗)’.
Assume (b) and ’0 ∈ Θ (D = 0) and (∗)’: Start by noting that cj 6= 0 for all j.
Oppositely assume there exists j such that cj = 0, say j = 1. Then (b)(1) and (b)(2)
imply that t(x) = (0, t2(x)) with 0 denoting a d1-dimensional zero vector and t2(x)
being of dimension (d− d1). Hence t(X) ⊆ Rd−d1 in contradiction to the assumption
that the representation of M is minimal. This means cj 6= 0 for all j. Then note that

ψiCρ
i (χ)Ajρ(x)α/j(ψ̂)=

(

ψ1C[1](χ), ..., ψdψC[dψ](χ)
)







α/1(ψ̂)A[1](x)
...

α/dψ(ψ̂)A[dψ](x)






=

(

ψ1C[1](χ), ..., ψdψC[dψ](χ)
)











α/1(ψ̂)

c1
c1A[1](x)
...

α/dψ (ψ̂)

cdψ
cdψA[dψ](x)











= φiCρ
i (χ)tρ(x),

where φi = ψi
α/i(ψ̂)

ci
for i = 1, ..., dψ. Using this equality together with condition

(b)(4) we find, by an argument as above, that

dQn
χ,ψ(·|ψ̂)

dQn
0 (·|ψ̂)

(χ̂) =
1

qn(ψ̂;ψ)
exp{nφiCρ

i (χ)tρ(χ̂) − nα(ψ)}. (10)
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Moreover analogous to (7) we have that x has density w.r.t. P0 given by

dPχ,ψ
dP0

(x) = exp{ψiCρ
i (χ)tρ(x) − α(ψ)},

and that P0 and Qn
0 (·|ψ̂) are identical G-invariant measures on X (according to (∗)).

Hence we can write

dQn
χ,ψ(·|ψ̂)

dP0
(χ̂) =

1

qn(ψ̂;ψ)
exp{nφiCρ

i (χ)tρ(χ̂) − nα(ψ)}.

Applying the same integration argument as above we derive that

1 =
1

qn(ψ̂;ψ)
exp{−nα(ψ) + α(nφ)}, (11)

and
dQn

χ,ψ(·|ψ̂)

dP0
(χ̂) = exp{nφiCρ

i (χ)tρ(χ̂) − α(nφ)}.

Hence χ̂|ψ̂ ∼ F (χ, nφ), and the proof of the second part of the theorem under the
condition ’0 ∈ Θ (D = 0) and (∗)’ is completed.

Assume now (a) or (b) and ’(∗) and (†)’: From proposition 3.1 we know that the m.l.e.
(χ̂, ψ̂) is G-equivariant, and hence we conclude that the image measure νn = (χ̂, ψ̂)µn

of (χ̂, ψ̂) under µn is G-invariant, since µ and hence too µn are G-invariant. Choose
B ∈ B(Ψ) such that 0 < νnΨ(B) <∞ (this can be done due to sum-finiteness of νnΨ).
We then have

gνnX(A)νnΨ(B) = νnX(g−1A)νnΨ(B) = νn(g−1A×B) = νn(A× B) = νnX(A)νnΨ(B),

since g−1(A× B) = g−1A× B (proposition 3.1). Dividing by νnΨ(B) we see that

gνnX(A) = νnX(A),

i.e. νn isG-invariant on (X,B(X )) (= (X,A)). But µ is tooG-invariant on (X,B(X )),
and hence from (∗) we conclude that νnX = cnµ for some constant cn. Again since µ
is G-invariant and since D = 0 we have from lemma 3.1 that ϕ = 0, and hence that
the marginal distribution Qn

χ,ψ of (χ̂, ψ̂) under P n
χ,ψ has density w.r.t. νn which takes

the form

dQn
χ,ψ

dνn
(χ̂, ψ̂) = exp{nψiCρ

i (χ)t̄ρ(χ̂, ψ̂) − nα(ψ) − nψiCρ
i (χ)Bρ(χ)}.
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Note that the marginal distribution ψ̂Qn
χ,ψ of ψ̂ under Qn

χ,ψ has density w.r.t. νnΨ
since

ψ̂Qn
χ,ψ(B) =

∫

X×B

dQn
χ,ψ

dνn
dνnX ⊗ νnΨ =

∫

B

qn(ψ̂;ψ)dνnΨ

for some function qn(ψ̂;ψ) dependent of ψ̂ and ψ (qn(ψ̂;ψ) does not depend on χ
since according to proposition 3.1 the distribution of ψ̂ does only depend on ψ).

From Hoffmann-Jørgensen (1994) 6.11 we conclude that the conditional distribution
Qχ,ψ(·|ψ̂) of χ̂ given ψ̂ has density w.r.t. the G-invariant measure νnX on (X,B(X ))
(here we use sum-finiteness of both νnX and νnΨ). But as noted earlier νnX = cnµ for
some constant cn and hence the conditional density can be given w.r.t. µ. Moreover
since ϕ = 0 then the distribution of x is given by

dPχ,ψ
dµ

(x) = exp{ψiCρ
i (χ)tρ(x) − α(ψ) − ψiCρ

i (χ)Bρ(χ)}.

Performing exactly the same calculations as in the two proofs above we conclude that
under the assumption ’(∗) and (†)’ the two statements under condition (a) and (b)
are valid as well. This completes the proof of theorem 3.1. 2

Let us remark that the above arguments concerning G-invariant measures and con-
ditional densities more or less might be found in e.g. Barndorff-Nielsen et al. (1989).

We moreover remark that from the proof of theorem 3.1 we have (see (9) and (11))
that

1 =
cn

qn(ψ̂;ψ)
exp{nψiα/i(ψ̂) − nα(ψ) + α(nψ)}, (12)

and

1 =
cn

qn(ψ̂;ψ)
exp{−nα(ψ) + α(nφ)} (13)

for some constant cn, which under the assumption ’0 ∈ Θ and (∗)’ is 1, and might
be different from 1 under ’(∗) and (†)’, and where qn(ψ̂;ψ) is the density of ψ̂ w.r.t
ψ̂Qn

0 under ’D = 0 and (∗)’ and w.r.t. νnΨ under ’(∗) and (†)’.

Theorem 3.2: Assume that the conditions in theorem 3.1 are fulfilled. Let π be the
measure ψ̂Qn

0 if ’D = 0 and (∗)’ is satisfied and the measure νnΨ if ’(∗) and (†)’ is

satisfied. Moreover put πψ = ψ̂Qn
χ,ψ (independent of χ according to proposition 3.1).

12



If (a) is satisfied then the family Mψ̂ = (Ψ,Pψ̂,B(Ψ)), Pψ̂ = {πψ|ψ ∈ Ψ}, is an
exponential model with minimal representation given by

dπψ
dπ

(ψ̂) = cn exp{nψiα/i(ψ̂) − nα(ψ) + α(nψ)},

and moreover nΨ ⊆ Ψ.

If (b) is satisfied then the family Mψ̂ = (Ψ,Pψ̂,B(Ψ)), Pψ̂ = {πψ|ψ ∈ Ψ}, has
densities w.r.t. π given by

dπψ
dπ

(ψ̂) = cn exp{α(nφ) − nα(ψ)}

with φi = ψi
α/i(ψ̂)

ci
, and moreover Φ = {φ|φi = ψi

α/i(ψ̂)

ci
, ψ, ψ̂ ∈ Ψ} ⊆ Ψ.

Proof: Follows directly from (12) and (13). 2

The similarity in distribution between the variable x and the conditional variable
χ̂ given ψ̂ under repeated sampling is closely related to the concept (strong) repro-
ductivity as defined and discussed in Barndorff-Nielsen and Blæsild (1983b) (see too
Barndorff-Nielsen and Blæsild (1983a)). These models are all τ -parallel models, and
as seen from Barndorff-Nielsen and Blæsild (1983b) the models fulfilling condition (a)
in theorem 3.1 are all strongly reproductive. However the group theoretical set-up
is not present in Barndorff-Nielsen and Blæsild (1983b), and they derive a result (as
mentioned earlier) which seems to be more general than theorem 3.1 (a). It could be
interesting to see if a similar (generalization) holds for theorem 3.1 (b) in a non-group
theoretical set-up. As seen in the proof of theorem 3.1 uniqueness of a G-invariant
measure plays an important role.

Example 3.1: Let us introduce a family of distributions, which includes the family
GIGc = { GIGc(φ, ζ) | φ > 0, ζ > 0 } of generalized inverse Gaussian distributions
with index c ∈ R. We also call this class for the class of generalized inverse Gaussian
distributions, but with index c ∈ R and µ, ν ∈ R+, and denote the class by GIGµ,νc .
The density of the distribution in GIGµ,νc with parameters (φ, ζ) is given w.r.t. the
Lebesgue measure λ on R+ by

aµ,νc (φ, ζ)xc−1 exp{−1

2
(φx−µ + ζxν)}, x ∈ R+. (14)

Hence GIGµ,νc has two parameters φ and ζ, and the domain Dc of variation of (φ, ζ)
is varying with c, but not with µ and ν. However we will here take the domain to be
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the largest set contained in all Dc, c ∈ R. This means

(φ, ζ) ∈ R+ × R+. (15)

GIGµ,νc is an open exponential family of order two with the parameter space given
by (15), and (14) is seen to be a minimal representation of GIGµ,νc . As shown in an
appendix the norming constant aµ,νc (φ, ζ) takes the form

aµ,νc (φ, ζ)−1 =
2

ν

∞
∑

n=0

(
φ

2
)n

1

n!

n
∑

k=0

(−1)k(
n
k

)Kεkn(
√

φζ)

(

φ

ζ

)
1

2
εkn

, (16)

with εkn = c
ν
− n+ k(1 − µ

ν
). Here Kε(·) is the modified Bessel-function of the third

kind with index ε. In the case µ = ν (16) reduces to

aµ,µc (φ, ζ) =
µ(ζ/φ)c/(2µ)

2Kc/µ(
√
φζ)

.

In particular, if µ = ν = 1 (which corresponds to the family of generalized inverse
Gaussian distributions with index c ∈ R) then

a1,1
c (φ, ζ) =

(ζ/φ)c/2

2Kc(
√
φζ)

.

Moreover we have that aµ,νc (φ, ζ) fulfills the following relation (see appendix)

νa
µ/ν,1
c/ν (φ, ζ) = aµ,νc (φ, ζ) = µa

ν/µ,1
−c/µ (ζ, φ),

and hence we are able to calculate the norming constant for all values of (φ, ζ, c, µ, ν),
if we know the value of the constant for all values of (φ, ζ, c) and µ ≤ 1 and ν = 1.

With

θ(χ, ψ) = (
1

2ν
φ,

1

2µ
ζ) = (ψχµ, ψχ−ν), (17)

and

tT (x) = (−νx−µ,−µxν). (18)

the density in (14) takes the following form

aµ,νc (χ, ψ)xc−1 exp{−ψ(χµνx−µ + χ−νµxν)}. (19)

14



We will in the sequel write P c
χ,ψ to denote the density in (19) and ac(χ, ψ) for short

instead of aµ,νc (ψ, χ). The reason for using a notation involving c only, and not µ and
ν, is that the value of c turns out to be important geometrically, in contrast to µ and
ν, and hence it ought not be suppressed in the notation.

One easily sees that GIGµ,νc is a composite transformation model for all values of c, µ
and ν with ψ denoting the index parameter and χ the group parameter. The group
G is given by G = R+ and the actions by

g(χ, ψ) = (gχ, ψ) and gx = gx.

The norming constant is seen to fulfill (due to the transformation model property)

ac(χ, ψ) = χ−cac(1, ψ). (20)

Hence if c = 0 then the norming constant is a function of ψ (and µ, ν) only. Formula
(20) implies that the cumulant transform of the canonical observator t (see (18)) is

κ(χ, ψ) = c logχ− log ac(1, ψ) = c logχ+ αc(ψ), (21)

where we have put αc(ψ) = − log ac(1, ψ). Using (17) and (21) we obtain the fol-
lowing expression of the mean value τ(χ, ψ) of the canonical parameter tT (x) =
(−νx−µ,−µxν) (see (18))

τT (χ, ψ) =
d

dθ
κ(χ(θ), ψ(θ)) =

[

c
d

dχ
logχ,

d

dψ
αc(ψ)

]

d(χ, ψ)T

dθ

=
1

µ+ ν

[(

c

ψ
+ ναc/ψ(ψ)

)

χ−µ,

(

− c

ψ
+ µαc/ψ(ψ)

)

χν
]

. (22)

From the orthogeodesic conditions (a)-(c) we conclude that GIGµ,νc can not be or-
thogeodesic relative to the parameterization (χ, ψ) unless c = 0. In Wiuf (1994b)
it is shown that there do not exist any orthogeodesic parameterization (ξ, ϕ) of
GIG1,1

c = GIGc (i.e. with µ = ν = 1), such that ϕ is an index parameter and ξ
the group parameter. The author conjecture that this also is the case for arbitrary
choice of µ and ν.

In order to apply the theory developed in the present paper we therefore restrict
our considerations to the case c = 0. Using (20) and putting Pχ,ψ = P 0

χ,ψ and
a(ψ) = a0(1, ψ) the densities in GIGµ,ν0 take the form

dPχ,ψ
dλ

(x) = a(ψ)
1

x
exp{−ψ(χµνx−µ + χ−νµxν)}.
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Moreover we see that GIGµ,ν0 is orthogeodesic relative to the parameterization (χ, ψ)
and that an orthogeodesic representation A, B, C, D, α(·) and γ(·) can be chosen to
be

AT (χ) = ( ν
µ+ν

χ−µ, µ
µ+ν

χν) BT (χ) = (0, 0) C(χ) = (χµ, χ−ν) D(χ) = (0, 0)

α(ψ) = − log a(ψ) γ(χ) = 0.

Let us note that the model (GIGµ,ν0 )n consisting of n-fold product measures of iden-
tical measures from GIGµ,ν0 is a regular exponential family (since GIGµ,ν0 is regular),
and hence steep (in the sense of Barndorff-Nielsen (1978)), i.e. τ(Θ) = intC, with
C denoting the closed convex support of t̄(x̄) = 1

n

∑n
1 t(xi). Moreover note that

t̄(Xn) = t̄(Rn
+) = R− × R−, and hence we see that

τ(Θ) = intC = R− × R− = t̄(Xn).

This means that the conditions in theorem 3.1: (X,A) = (X ,B(X )) = (R+,B(R+)),
D = 0 and τ(Θ) = t̄(Xn) all are fulfilled.

Furthermore we have that R+ acts transitively on X = R+ and the map Γ : R+ ×
R+ → R+ × R+, Γ(g, x) = (gx, x) is proper, i.e. Γ is continuous and the inverse
image Γ−1(C) of a compact set C ⊂ R+ × R+ is compact. From Barndorff-Nielsen
et al. (1989) we then conclude that any two R+-invariant measures on (R+,B(R+))
are identical modulo a constant factor, i.e. (∗) is fulfilled.

Moreover dµ(x) = 1
x
dλ(x) is R+-invariant and a few considerations show that the

conditions in theorem 5.4 in Barndorff-Nielsen et al. (1989) are satisfied as well. We
conclude them from theorem 5.4 in Barndorff-Nielsen et al. (1989) that the marginal
measure of the m.l.e. (χ̂, ψ̂) of (χ, ψ) is a product measure of the form in (†), i.e. (†)
is fulfilled. This means that the basic assumptions in theorem 3.1 are satisfied.

Moreover we have that

tT (x) = (−νx−µ,−µxν) = −(µ+ ν)AT (x),

and the model fulfills condition (b) in theorem 3.1.

We find the following expression of the m.l.e. χ̂ of χ:

χ̂ =

( ∑n
1 x

ν
i

∑n
1 x

−µ
i

)1/(µ+ν)

,

and the m.l.e. ψ̂ of ψ fulfills

n
d

dψ
logK0(ψ̂) = n

d

dψ
α(ψ̂) = −(µ+ ν)

(

n
∑

1

xνi

)
µ
µ+ν
(

n
∑

1

x−µi

)
ν

µ+ν

.
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Since ψ̂ is in unique correspondence with π̂=α/ψ(ψ̂)=−µ+ν
n

(
∑n

1 x
ν
i )

µ
µ+ν
(
∑n

1 x
−µ
i

)
ν

µ+ν

we might conditioning on π̂ instead of ψ̂ and we conclude from theorem 3.1 that the

conditional distribution of χ̂ =
(

Pn
1
xνi

Pn
1 x

−µ
i

)1/(µ+ν)

given π̂ has density w.r.t. Lebesgue

measure λ on R+ given by

dPχ,ψ
dλ

(x) = a(ψ)
1

x
exp{−nφ(χµνx−µ + χ−νµxν)} (23)

with φ = − 1
µ+ν

ψπ̂ = ψ
n

(
∑n

1 x
ν
i )

µ
µ+ν
(
∑n

1 x
−µ
i

)
ν

µ+ν . If the function α(·) was known an
expression for the distribution of π̂ could be derived from theorem 3.2.

Finally let us comment on the case c 6= 0. As noted before GIGµ,νc is not orthogeodesic
relative to the parameterization (χ, ψ), and hence the theory developed here do not
apply. However a simularity in the distribution of χ̂|ψ̂ under reapeted sampling will
occur as pointed out by Barndorff-Nielsen (1989) p.102, but the index parameter c
will vary with n (see e.g. Jørgensen (1980) in the case µ = ν = 1), and hence the
simularity is not of the same strict type as discussed here. 2

4: Appendix.

In this appendix we will derive an expression for the norming constant aµ,νc (φ, ζ)
appearing in the densities of the distributions in GIGµ,νc (see (14)). These densities
are given w.r.t. Lebesgue measure λ on R+ by

aµ,νc (φ, ζ)xc−1 exp{−1

2
(φx−µ + ζxν)}, x ∈ R+,

where
(φ, ζ, c, µ, ν) ∈ R+ ×R+ ×R ×R+ ×R+.

In the following Kε(·) will denote the modified Besssel function of the third kind with
index ε.

We will show that the norming constant aµ,νc (φ, ζ) is given by

aµ,νc (φ, ζ)−1 =
2

ν

∞
∑

n=0

(
φ

2
)n

1

n!

n
∑

k=0

(−1)k(
n
k

)Kεkn(
√

φζ)

(

φ

ζ

)
1

2
εkn

, (24)
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with εkn = c
ν
− n+ k(1 − µ

ν
). Moreover we will note that, if µ = ν then (24) reduces

to

aµ,µc (φ, ζ) =
µ(ζ/φ)c/(2µ)

2Kc/µ(
√
φζ)

. (25)

If we substitute y for xν we obtain the following expression for aµ,νc (φ, ζ):

aµ,νc (φ, ζ)−1 =

∫

R+

xc−1 exp{−1

2
(φx−µ + ζxν)}dx

=

∫

R+

1

ν
y
c
ν
−1 exp{−1

2
φy−

µ
ν − 1

2
ζy}dy.

Subtracting and adding the term 1
2
φy−1 to the exponent in the exponential part yields

aµ,νc (φ, ζ)−1 =

∫

R+

1

ν
y
c
ν
−1 exp{−1

2
(φy−1 + ζy)} exp{1

2
φ(y−1 − y−

µ
ν )}dy

=
2Kc/ν(

√
φζ)

ν
(
φ

ζ
)
c
2ν

∫

R+

f(y;φ, ζ,
c

ν
) exp{1

2
φ(y−1 − y−

µ
ν )}dy

=
2Kc/ν(

√
φζ)

ν
(
φ

ζ
)
c
2νEφ,ζ, c

ν
exp{1

2
φ(Y −1 − Y −µ

ν )}, (26)

where

f(y;φ, ζ,
c

ν
) =

1

2Kc/ν(
√
φζ)

(
ζ

φ
)
c
2ν y

c
ν
−1 exp{−1

2
(φy−1 + ζy)}

denotes the density function of a generalized inverse Gaussian distributed variable Y
with parameters (φ, ζ) and index c

ν
. If we expand exp{ 1

2
φ(y−1 − y−

µ
ν )} into powers

of y we obtain

exp{1

2
φ(y−1 − y−

µ
ν )} =

∞
∑

n=0

(
φ

2
)n

1

n!
(y−1 − y−

µ
ν )n

=

∞
∑

n=0

(
φ

2
)n

1

n!

n
∑

k=0

(−1)k(
n
k

)yk(1−
µ
ν
)−n. (27)

All moments of a generalized inverse Gaussian distributed variable Y with parameters
(φ, ζ) and index d are known, and we have the following expression for the moments
(see e.g. Jørgensen (1980))

Eφ,ζ,dY
ε =

Kd+ε(
√
φζ)

Kd(
√
φζ)

(
φ

ζ
)
ε
2 .
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Inserting the moments into (26) using (27) and the theorem of Beppo-Levi (see e.g.
Hoffmann-Jørgensen (1994) 3.7) results in

aµ,νc (φ, ζ)−1 =
2

ν

∞
∑

n=0

(
φ

2
)n

1

n!

n
∑

k=0

(−1)k(
n
k

)Kεkn(
√

φζ)

(

φ

ζ

)
1

2
εkn

,

with εkn = c
ν
− n+ k(1− µ

ν
). This proves (24). In particular if µ = ν then we obtain

aµ,µc (φ, ζ) =
µ(ζ/φ)c/(2µ)

2Kc/µ(
√
φζ)

,

which is equal to (25). This follows from the fact that if µ = ν then the Bessel
functions become independent of k, and summation over terms involving k results in

n
∑

k=0

(−1)k(
n
k

) =

{

1 n = 0
0 n > 0.

The expression of the norming constant in the case µ = ν is also known in the
literature (see e.g. Jørgensen (1980)).

Finally let us note that a substitution of x into y = xν , respectively y = x−µ in the
integral expression of aµ,νc (φ, ζ) yields the following relations

νa
µ/ν,1
c/ν (φ, ζ) = aµ,νc (φ, ζ) = µa

ν/µ,1
−c/µ (ζ, φ),

which however do not give us much information on the norming constant.
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