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a b s t r a c t

Phosphorelays are a class of signaling mechanisms used by cells to respond to changes in their
environment. Phosphorelays (of which two-component systems constitute a special case) are
particularly abundant in prokaryotes and have been shown to be involved in many fundamental
processes such as stress response, osmotic regulation, virulence, and chemotaxis. We develop a general
model of phosphorelays extending existing models of phosphorelays and two-component systems. We
analyze the model analytically under the assumption of mass-action kinetics and prove that a
phosphorelay has a unique stable steady-state. Furthermore, we derive explicit functions relating
stimulus to the response in any layer of a phosphorelay and show that a limited degree of
ultrasensitivity in the bottom layer of a phosphorelay is an intrinsic feature which does not depend
on any reaction rates or substrate amounts. On the other hand, we show how adjusting reaction rates
and substrate amounts may lead to higher degrees of ultrasensitivity in intermediate layers. The
explicit formulas also enable us to prove how the response changes with alterations in stimulus, kinetic
parameters, and substrate amounts. Aside from providing biological insight, the formulas may also be
used to replace the time-consuming simulations in numerical analyses.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Throughout the course of evolution, living organisms have
developed a variety of different cellular mechanisms capable of
responding to external stimulus, and post-translational modifica-
tion of proteins is common to many of these mechanisms. In
particular, modification by phosphorylation is widespread, and it
is estimated that about 30% of all proteins undergo modification
by phosphorylation (Cohen, 2000).

One particular type of phosphorylation mechanism is the
so-called phosphorelay in which a phosphate group is transferred
via a series of proteins through binding (Appleby and Parkinson,
1996; Perraud et al., 1999; Stock et al., 2000; West and Stock,
2001). Phosphorelays are particularly abundant in prokaryotes,
although some of these systems have also been identified in
eukaryotes. Common to all phosphorelays are two proteins, a
histidine kinase (HK) and a response regulator (RR). Upon sensing
external stimulus, a histidine residue on the HK autophosphor-
ylates using ATP, and the phosphate group is transferred to an
aspartate residue on the RR, either directly or through a series of

intermediate steps. When phosphorylated, an output domain of
the RR is capable of adjusting the cellular response.

Four examples of phosphorelays are shown in Fig. 1. The EnvZ/
OmpR system in Escherichia coli is involved in osmoregulation of
porin genes (Stock et al., 2000; Russo and Silhavy, 1991). Since it
comprises only two components, the HK and the RR, it is also
referred to as a two-component system (TCS). A slightly more
complicated TCS example is the BvgS/BvgA system in Bordetella
pertussis, used by the bacterium to activate virulence genes (Stock
et al., 2000; Uhl and Miller, 1996; Cotter and Jones, 2003), where
the HK contains three phosphorylation sites. Some systems have
one or more intermediate phosphotransfer modules, as is e.g. the
case for the osmoregulation pathway Sln1p/Ypd1p/Ssk1p in
Saccharomyces cerevisiae (Stock et al., 2000; Maeda et al., 1994;
Posas et al., 1996) and the sporulation initiating pathway Spo0A/
Spo0F/Spo0B/Spo0A in Bacillus subtilis (Stock et al., 2000;
Burbulys et al., 1991; Perego and Hoch, 1996; Hoch, 1993).

The phosphorelays mentioned above are among the most well-
described examples in the literature, but they only constitute a
small fraction of the several hundreds of phosphorelays known
(Stock et al., 2000; Chang and Stewart, 1998), and studies of
completed bacterial genomes have revealed the presence of many
genes coding for HKs and RRs likely to be involved hitherto
unknown phosphorelays (West and Stock, 2001; Zhang and Shi,
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2005). For example, 62 such genes have been identified in E. coli,
which amounts to more than 1% of the entire genome (West and
Stock, 2001). Furthermore, the genes have been shown to be
involved in a multitude of processes like stress response, osmotic
regulation, virulence, and chemotaxis (Mizuno, 1997), which
illustrates the importance and ubiquity of phosphorelays.

Given the widespread occurrence of phosphorelays, it is only
natural to ask what the benefits of such an elaborate signaling
mechanism are. Among the phosphorelays known today, none
have more than four phosphorylation sites in total (Appleby and
Parkinson, 1996; Stock et al., 2000). However, as illustrated in
Fig. 1, the architectures may differ in the number of phosphoryla-
tion sites on each protein. One may thus speculate that whether
the phosphorylation sites are located on one or more proteins
influences the function of the phosphorelay, and that the benefits
of a phosphorelay quickly saturate (or are balanced by draw-
backs) with an increasing number of phosphorylation sites.

Mathematical modeling has been applied to study various
types of biological networks e.g. enzymatic reaction networks
(Gunawardena, 2007, 2005; Manrai and Gunawardena, 2008;
Salazar and Höfer, 2007; Salazar, 2009; Thomson and
Gunawardena, 2009a; Kapuy et al., 2009; Wang and Sontag,
2007) and signaling cascades (Goldbeter and Koshland, 1981,
1984; Huang and Ferrell, 1996; Feliu et al., 2012a; Blüthgen et al.,
2006; Markevich et al., 2004; Ventura et al., 2008; Conradi et al.,
2008), and has provided insight into steady-states, response to
external stimulus, and robustness to changes in protein levels and
kinetic parameters (Gunawardena, 2010; Shinar and Feinberg,
2010; Shinar et al., 2007; Li et al., 2004; Batchelor and Goulian,
2003; Barkai and Leibler, 1997). Precise measurements of con-
centrations and reaction rates are often difficult to obtain, and
modeling can assist by determining whether e.g. the number of
steady states and the qualitative stimulus–response behavior is
intrinsic to the network architecture and not dependent on the
actual concentrations and reaction rates.

Here we develop a general model of phosphorelays of any size
and architecture based on mass-action kinetics. The model
extends existing models of phosphorelays (Kim and Cho, 2006;
Csikász-Nagy et al., 2011), and using an algebraic approach
developed in Feliu et al. (2012a) we analytically analyze the
model without resorting to numerical simulations. We prove the
existence of a unique stable steady-state and show how it varies

with changing model parameters. Furthermore, we obtain explicit
expressions for stimulus–response curves. This allows us to
derive an upper bound on the response coefficient in the bottom
layer of any phosphorelay irrespectively of size and architecture,
which is in agreement with what has been observed in both
experiments and numerical models (Csikász-Nagy et al., 2011;
Fujita and Losick, 2005). Furthermore, we show that even for
small phosphorelays (comprising only three phosphorylation
sites), qualitatively very different response patterns are possible,
and we derive explicit conditions on reaction rates and substrate
concentrations describing each pattern. This contrasts what have
previously been reported using simulation studies where satura-
tion of phosphorylated sites at the bottom of the phosphorelay
was suggested to cause a rise in response to sequentially propa-
gate up through the phosphorelay (Csikász-Nagy et al., 2011).

Convergence and stability of the steady-state is proved using
the theory of monotone dynamical systems (Angeli et al., 2010,
2007), which also provides the existence and uniqueness of the
steady-state. However, our more direct algebraic approach to
solving the steady-state equations is rewarded in that the
calculations naturally extend to analytical results on the stimu-
lus–response behavior. Combined with recent systematic
approaches for reducing the complexity of the equations to be
solved (Feliu and Wiuf, 2011; Thomson and Gunawardena,
2009b), we hope that similar direct, analytical calculations will
become tractable for other chemical reaction networks too.

2. The model

We consider a general phosphorelay system consisting of
MZ2 substrates S1,S2, . . . ,SM , where the mth substrate Sm has
NmZ1 phosphorylation sites (see Fig. 2). We assume that sub-
strates are never phosphorylated at more than one site at a time
and denote by Sm

n the mth substrate phosphorylated at its nth site
with n¼0 corresponding to the unphosphorylated state. We refer
to the set of all phosphoforms Sm

n with 0rnrNm as the mth layer
of the phosphorelay and to Nm as the length of the mth layer.

We assume mass-action kinetics and that phosphate transfer
within a substrate happens sequentially:

Sm
1 $

am,1

bm,2

Sm
2 $

am,2

bm,3

# # # $
am,Nm$1

bm,Nm

Sm
Nm

for 1rmrM, ð1Þ
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Fig. 1. Examples of phosphorelays with different architectures. The EnvZ/OmpR and BvgS/BvgA are both examples of TCSs, but they vary in the number of phosphorylation
sites on the HK. The systems in Saccharomyces cerevisiae and Bacillus subtilis both have a total of four phosphorylation sites, but they are distributed on three and four
proteins, respectively.
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with positive reaction constants am,n and bm,n, and we refer to
these as intralayer reaction rates. The transfer of phosphate
groups between substrates in two different layers is modeled
via the formation of intermediate complexes:

Sm
Nm
þSmþ1

0 $
um

vm

Xm-
wm Sm

0 þSmþ1
1 for 1rmoM, ð2Þ

with positive reaction constants um, vm, and wm. That is, only
when Sm is phosphorylated at its last site can it transmit
phosphate to the next layer.

Finally, we assume constant rates of phosphorylation (resp.
dephosphorylation) of S1

0 and SM
NM

, respectively, represented by
two reactions:

S1
0-

c
S1

1 and SM
NM

-
d

SM
0 : ð3Þ

The system is essentially linear with each new layer introdu-
cing a new substrate. However, the mechanism of phosphoryla-
tion in the top layer is different from the phosphotransfer
mechanism between the subsequent layers. Similarly, depho-
sphorylation of the bottom layer is different from the depho-
sphorylation mechanism in the other layers, which is also
phosphotransfer.

The stimulus activating the relay is implicitly captured in the
reaction constant c. Increasing c corresponds to increasing the
stimulus. When c is very low, most of the substrate S1 will remain
unphosphorylated, whereas higher values of c will push the
substrate towards the phosphorylated phosphoforms. The final
response SM

NM
transmits its phosphate group to a receptor mole-

cule, and this is modeled as a loss of the phosphate group without
details about other molecules potentially involved in the process.

To avoid cumbersome notation, we denote by S both the
species S and its concentration. It should always be clear from
the context what is meant. Under the assumption of mass-action
kinetics, the reactions (1)–(3) give rise to a set of differential
equations:

_S
1
0 ¼$cS1

0þw1X1,

_S
m
0 ¼$um$1Sm$1

Nm$1
Sm

0 þvm$1Xm$1þwmXm 1omoM,

_S
M
0 ¼$uM$1SM$1

NM$1
SM

0 þvM$1XM$1þdSM
NM

,

_S
1
1 ¼ cS1

0$a1;1S1
1þb1;2S1

2,

_S
m
1 ¼wm$1Xm$1$am,1Sm

1 þbm,2Sm
2 1omrM,

_S
m
n ¼ am,n$1Sm

n$1þbm,nþ1Sm
nþ1$ðbm,nþam,nÞSm

n ,

1rmrM, 1onoNm,

_S
m
Nm
¼$umSm

Nm
Smþ1

0 þvmXmþam,Nm$1Sm
Nm$1$bm,Nm Sm

Nm
1rmoM,

_S
M
NM
¼ aM,NM$1SM

NM$1$ðbM,NM
þdÞSM

NM
,

_X
m
¼ umSm

Nm
Smþ1

0 $ðvmþwmÞXm 1rmoM,

By direct inspection it follows that

_S
m
0 þ _S

m
1 þ # # # þ _S

m
Nm
þ _X

m$1
þ _X

m
¼ 0, ð4Þ

for all 1rmrM, where we have defined X0 ¼ XM ¼ 0 in order to
simplify notation, and hence the sum:

Sm
tot ¼ Sm

0 þSm
1 þ # # # þSm

Nm
þXm$1þXm, ð5Þ

is conserved for all 1rmrM. This reflects the fact that Sm either
exists in one of its Nmþ1 phosphoforms or is bound in one of the
intermediate complexes Xm$1 or Xm. We will refer to Sm

tot as the
total amount of the substrate Sm and to (5) as the conservation law
for Sm.

In the following section we prove that for fixed reaction
constants and total amounts of substrate, the phosphorelay has
a unique steady-state, and we use the insight obtained in the
proof to investigate the stimulus–response behavior of the
system.

3. Results

3.1. Steady-state equations

The steady-state equations are the differential equations
equated to zero along with the conservation laws for positive
total amounts Sm

tot , and the steady-states are found by solving
these for the variables (substrate phosphoforms and intermediate
complexes). Hence there is a steady-state equation corresponding
to each species as well as M additional conservation laws. Since
there are M$1 intermediate complexes, and each substrate Sm

exists in Nmþ1 different phosphoforms, it follows that the system
consists of 3M$1þ

PM
m ¼ 1 Nm equations in 2M$1þ

PM
m ¼ 1 Nm

variables.
To obtain a simpler system of equations that more clearly

elucidates the constraints imposed by the phosphorelay structure,
we manipulate the steady-state equations to obtain a simpler, but
equivalent, set of equations.

First note that according to (4), the equations _S
m
1 ¼ 0 for

1rmrM hold if _S
m
n ¼ 0 and _X

m
¼ 0 hold for all m and na1, and

we may therefore leave them out. For all 1rmoM, the steady-

state equation _X
m
¼ 0 is equivalent to the equation _X

m
þ _S

mþ1
0 ¼ 0,

which in turn is equivalent to

Xm ¼
d

wm
SM

NM
for 1rmoM: ð6Þ

Furthermore, by replacing all _S
m
Nm
¼ 0 by the equivalent

_S
m
Nm
$ _S

mþ1
0 ¼ 0, it follows after inserting (6) that this is equivalent to

Sm
Nm$1 ¼

bm,Nm Sm
Nm
þdSM

NM

am,Nm$1
for 1rmrM: ð7Þ

S2

Fig. 2. Schematic illustration of a general phosphorelay comprising M layers. The
number of phosphorylation sites in the mth layer is Nm, and the transfer of
phosphate from one layer to the next is mediated via an intermediate complex.
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For 1rnoNm$1, the steady-state equation _S
m
nþ1 ¼ 0 is equivalent

to

Sm
n ¼
ðam,nþ1þbm,nþ1ÞS

m
nþ1$bm,nþ2Sm

nþ2

am,n
for 1rmrM, ð8Þ

and using induction, we may combine (7) and (8) in one equivalent
statement,

Sm
n ¼

Bm,nSm
Nm
þdCm,nSM

NM

Am,n
for

1rmrM

1rnrNm,
ð9Þ

where the constants are defined by

Am,n ¼
YNm$1

i ¼ n

am,i, Bm,n ¼
YNm

i ¼ nþ1

bm,i,

Cm,n ¼
XNm

i ¼ nþ1

Am,i

Yi$1

j ¼ nþ1

bm,j

0

@

1

A ð10Þ

for 1rmrM and 0rnrNm. In particular, these definitions imply
that Am,Nm ¼ Bm,Nm ¼ 1, Cm,Nm ¼ 0, and Cm,Nm$1 ¼ 1. Apart from
Cm,Nm , the constants are all positive and depend only on the
intralayer reaction constants am,n and bm,n in the mth layer.

Using (6) and (9), we see that the conservation law (5) is
fulfilled if and only if

Sm
0 ¼ Sm

tot$lmSM
NM
$mmSm

Nm
for 1rmrM, ð11Þ

with constants given by

lm ¼ d
1

wm$1
þ

1
wm
þ
XNm

n ¼ 1

Cm,n

Am,n

 !

and mm ¼
XNm

n ¼ 1

Bm,n

Am,n
ð12Þ

(terms involving the undefined rates w0 and wM are removed).
The constants are all positive and depend only on reaction rates in
the mth and ðm$1Þ th layer. Finally, using (6) it follows that
_S

m
0 ¼ 0 is equivalent to

cS1
0 ¼ dSM

NM
and d

vm$1

wm$1
þ1

! "
SM

NM
¼ um$1Sm$1

Nm$1
Sm

0 for 1omrM:

Summing up, the set of steady-state equations are replaced by an
equivalent set of equations:

ðSS1Þ cS1
0 ¼ dSM

NM
,

ðSS2Þ Xm ¼
d

wm
SM

NM
1rmoM,

ðSS3Þ Sm
n ¼

Bm,nSm
Nm
þdCm,nSM

NM

Am,n
1rmrM, 1rnrNm,

ðSS4Þ Sm
0 ¼ Sm

tot$lmSM
NM
$mmSm

Nm
1rmrM,

ðSS5Þ d
vm$1

wm$1
þ1

! "
SM

NM
¼ um$1Sm$1

Nm$1
Sm

0 1omrM,

with constants defined in (10) and (12). Note that the reaction
rate c only appears in (SS1).

Throughout this paper we assume that all reaction constants
and total amounts are fixed and positive unless otherwise clearly
stated. Any solution to the steady-state equations is a steady-
state, and the system could therefore possess multiple steady-
states, some of which with negative concentrations. These are not
biologically obtainable, so the focus is on steady-states in which
all concentrations are non-negative (zero or positive). We call
these biologically meaningful steady-states (BMSSs).

3.2. Existence of a unique stable BMSS

In this section we prove the existence of a unique stable BMSS
for a general phosphorelay. We do so by writing all steady-state
concentrations as rational functions of the final response SM

NM

(recall that a rational function in x is a quotient f ðxÞ=gðxÞ of two
polynomial functions in x) and then show that precisely one value
of SM

NM
gives rise to a BMSS.

Starting with the Mth layer, we work our way to the top layer
by layer. The link between layers is obtained by relating the

steady-state value of Sm
Nm

with that of SM
NM

through a rational

function Sm
Nm
¼cmðS

M
NM
Þ. The singularities of cm for 1rmrM

provide a necessary condition SM
NM

oxm for non-negative concen-

trations in the layers m,mþ1, . . . ,M, and we prove that

x1ox2o # # #oxM$1, from which it follows that SM
NM

ox1 is neces-

sary for all concentrations to be positive. We then write

c¼c0ðS
M
NM
Þ as an increasing rational function of SM

NM
and demon-

strate how this leads to a stronger necessary condition SM
NM

ox0.

Finally, we show that for any given value of c, the equation

c¼c0ðS
M
NM
Þ has a unique solution SM

NM
in ½0,x0Þ, which establishes

the existence and uniqueness of a BMSS. In fact, it turns out that
all steady-state concentrations are strictly positive.

Note that (SS2)–(SS4) express Xm and Sm
n for 0rnrNm as

rational functions of SM
NM

and Sm
Nm

with coefficients depending on
the intralayer reaction constants in the mth layer and the reaction
constants d, wm, and wm$1 only. We now show how (SS5) yields
the link to express all Sm

Nm
as rational functions of SM

NM
.

We first show that at steady-state Sm
0 a0 for all 1rmrM. If

this is not the case, there is a largest m for which Sm
0 ¼ 0, and (SS5)

then implies that SM
NM
¼ 0. For m¼M, (SS4) implies that SM

tot ¼ 0,
which contradicts the assumption of positive total amounts. For
moM we argue as follows: Since m is the largest with the
property Sm

0 ¼ 0, we have Smþ1
0 a0, and combined with SM

NM
¼ 0,

it follows from (SS5) that Sm
Nm
¼ 0. Now using (SS4) yields Sm

tot ¼ 0,
which again contradicts the assumption of positive total amounts.

Since Sm
0 is non-zero at steady-state, we may isolate Sm$1

Nm$1
in

(SS5) and use (SS4) to get

Sm$1
Nm$1
¼

d
vm$1

wm$1
þ1

! "
SM

NM

um$1ðS
m
tot$lmSM

NM
$mmSm

Nm
Þ

for 1omrM, ð13Þ

which shows that if we define cm recursively by cM ¼ id, and

cm$1ðyÞ ¼
d

vm$1

wm$1
þ1

! "
y

um$1ðS
m
tot$lmy$mmcmðyÞÞ

for 1omrM, ð14Þ

then cmðS
M
NM
Þ ¼ Sm

Nm
at steady-state. The recursive definition

implies that cm is a rational function. Furthermore, by isolating
c in (SS1) and inserting S1

0 from (SS4), it follows using
S1

N1
¼c1ðS

M
NM
Þ that c¼c0ðS

M
NM
Þ, where

c0ðyÞ ¼
dy

S1
tot$l1y$m1c1ðyÞ

ð15Þ

is also a rational function.
Writing cMðyÞ ¼ pMðyÞ=qMðyÞ with pMðyÞ ¼ y and qMðyÞ ¼ 1, we

may use (14) and (15) to recursively write all cmðyÞ as quotients
pmðyÞ=qmðyÞwith pmð0Þ ¼ 0, where both pm and qm are polynomials
of degree M$m for all 0rmoM.

Proposition 3.1. The steady-state equations ðSS1Þ–ðSS5Þ are satis-
fied, if and only if ðSS2Þ–ðSS4Þ are satisfied along with c0ðS

M
NM
Þ ¼ c,

and cmðS
M
NM
Þ ¼ Sm

Nm
for all 1rmrM.
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Furthermore, for all moM the function cm has a minimal positive

singularity xm satisfying

xM$14xM$24 # # #4x14x040:

Let xM ¼ xMþ1 ¼1. Then cm is continuous, non-negative and strictly

increasing on ½0,xmÞ, negative on ðxm,xmþ1Þ, and it satisfies

cmð0Þ ¼ 0 and cmðyÞ-1 for y-x$m for all 0rmrM.

Proof. The first part of the proposition follows immediately since
the equations c0ðS

M
NM
Þ ¼ c and cmðS

M
NM
Þ ¼ Sm

Nm
are just rearrange-

ments of (SS1) and (SS5), respectively.

For the second part, the case m¼M is trivial since cM ¼ id, and

ðxM ,xMþ1Þ is the empty set. Assume now that the claim is true for

mþ1 and consider the case m. By induction, cmþ1 is increasing on

½0,xmþ1Þ, so the denominator of cm is continuous and decreasing

on ½0,xmþ1Þ, and it diverges towards $1 for y-x$mþ1. Therefore it

has a unique zero xmoxmþ1. Furthermore, the numerator of cm is

continuous and increasing and equals 0 for y¼0, and therefore

the entire fraction cmðyÞ is continuous, positive, and increasing on

½0,xmÞ, negative on ðxm,xmþ1Þ, cmð0Þ ¼ 0, and cmðyÞ-1 for

y-x$m. &

Theorem 3.2. For any set of fixed positive reaction constants and
total amounts, the phosphorelay converges to a unique stable BMSS.
In fact, the steady-state concentrations of all substrates and inter-
mediate complexes are positive.

Proof. It follows from Proposition 3.1 that Sm
Nm

Z0 at steady-state,

if and only if SM
NM

is in ½0,xmÞ, and since x1ox2o # # #oxM$1, it

follows that SM
NM

ox1 is a necessary condition for a BMSS.

According to (SS2), we have XmZ0 for 1rmrM for any

SM
NM

Z0, and by inserting Sm
Nm

Z0 into (SS3), it shows that also

Sm
n Z0 for all 1rmrM and 1rnoNm. Finally, because xm by

definition is the smallest positive root of the right-hand side of

(SS4) after substituting Sm
Nm
¼cmðS

M
NM
Þ, it follows that Sm

0 40 for all

1rmrM. The argument also implies that all steady-state con-

centrations are positive if and only if SM
NM

40, and since

c0ðS
M
NM
Þ ¼ c40, this is always the case.

According to Proposition 3.1, the function c0 is continuous and

increases from 0 to 1 on ½0,x0Þ and is negative on ðx0,x1Þ. It

follows (see also Fig. 3) that precisely one value of SM
NM

in ½0,x0Þ
satisfies the condition c¼c0ðS

M
NM
Þ. This establishes the existence

and uniqueness of a BMSS.

The convergence and stability part can be proved using meth-

ods from the theory of monotone dynamical systems (see

Theorem 2 in Angeli et al., 2010), and a proof is included in

Appendix C. &

The proof of convergence and stability in Appendix C also
implies existence and uniqueness of a BMSS, but the proof is not
constructive and does not yield the additional insight provided by
the functions cm. On the other hand, our approach does not
address the convergence to and the stability of the steady-state,
and the two methods thus complement each other.

Additionally, this system fulfills the graphical conditions for
injectivity of systems with outflow or degrading reactions stated
in Banaji and Craciun (2010). This implies that the system admits
at most one non-degenerate equilibrium for any kinetics belonging
to the broad class of kinetics defined in Banaji and Craciun (2010),
which includes for instance Hill-type kinetics.

4. Stimulus–response

In this section we demonstrate how the functions cm may be
used to explicitly describe stimulus–response behavior.

4.1. Maximal response

Let all total amounts and all reaction constants but the
stimulus c be fixed. According to (15), the stimulus is an increas-
ing continuous function of the response in ½0,x0Þ and hence, vice
versa, the response is an increasing continuous function of the
stimulus. Furthermore, SM

NM
-x0 for c-1, and therefore x0 is the

smallest upper limit on all possible responses. The limit is not
attainable but can be thought of as the response in a fictitious
system with infinite stimulus, and we will refer to it as the
maximal response of the phosphorelay.

As argued in Section 3.2, the rational function c0 is the ratio of
two polynomials of degree M, and calculating the maximal
response is thus equivalent to finding the smallest positive root
in a polynomial of degree M.

More generally, in a phosphorelay with all total amounts and
all reaction rates but c fixed, we denote by rm the smallest upper
limit of all possible steady-state values of Sm

Nm
and call it the

maximal response in the mth layer. We have just argued that
rM ¼ x0, and since according to Proposition 3.1 all cm are
increasing functions on intervals containing ½0,x0Þ, we have

rm ¼cmðrMÞ for all 1rmoM: ð16Þ

Since cm is invertible (it is increasing and continuous), we have
that SM

NM
¼c$1

m ðS
m
Nm
Þ, and by substituting this into (14) we obtain

c¼ ðc0Jc$1
m ÞðS

m
Nm
Þ for all 1rmrM, ð17Þ

which is the stimulus expressed as a function of the response in
the mth layer. Note that since (17) involves the inverse of a
rational function, it is, in general, not itself a rational function.

The explicit stimulus–response relationship may be used to
investigate how changes in one layer m0 are reflected in the
maximal responses in all layers of a phosphorelay. Suppose that
lm0 or mm0

is increased by changing reaction rates or by adding
more phosphorylation sites to the substrate Sm0 in an existing
layer (see (12)). Then the maximal response decreases (resp.
increases) in layers below (resp. above) m0. Increasing the total
amount Sm0

tot has the opposite effect. Then the maximal response
increases (resp. decreases) in layers downstream (resp. upstream)
from layer m0. This is illustrated for M¼5 in Fig. 4A, and proofs of
both claims are given in Proposition A.1. The responses Sm

Nm

themselves exhibit the same behavior, and a proof of this is
included in Proposition A.2. Summing up, these results enable us

0.5 1.0 1.5 2.0 2.5 3.0 3.5

-0.5

0.5

1.0

Fig. 3. The graph of c0 for a three-layer phosphorelay with all reaction constants
equal to one and all total amounts equal to ten.
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to predict how all layers in the phosphorelay respond to changes
in kinetic parameters and total amounts.

By removing the top layer from the system and adding a new
stimulus reaction S2

0-
c

S2
1, we obtain a smaller phosphorelay with

M$1 layers, and its maximal final response is the minimal,
positive zero of S2

tot$l2y$m2c2ðyÞ, which is exactly x1 from
Proposition 3.1. In general, removing m layers from the original
system results in a smaller system with a larger maximal final
response equal to xm, and this is illustrated for M¼6 in Fig. 4B.
With m layers removed, the phosphorylation Smþ1

0 -
c

Smþ1
1 is

direct, whereas in the larger system, some of the Sm
NM

taking part
in the phosphorylation (phosphotransfer) is sequestrated in the
intermediate complex Xm.

4.2. Ultrasensitive response

In this section we use the functions cm to describe how
steady-state concentrations respond to changes in stimulus. For
any 0oeo1, we denote by cm,e the amount of stimulus needed in
order to obtain e times the maximal response in the mth layer.
That is, using the notation introduced in (16), we have

cm,e ¼ ðc0Jc$1
m ÞðermÞ ¼c0ðc

$1
m ðecmðrMÞÞÞ:

The normalized response in the mth layer is the response Sm
Nm

divided by its maximal value rm, and plotted as a function of c we
refer to it as the normalized stimulus–response curve for the mth
layer. The curve consists of the points ðcm,e,eÞ for 0rer1, that is e
is the normalized response.

Proposition 4.1. For all moM and 0oeo1 we have cM,eocm,e.
That is, the normalized stimulus–response curve for the bottom layer

is shifted to the left of the normalized stimulus–response curves for
all other layers.

The proof uses induction on m and it is given in Proposition
A.3. The result in Proposition 4.1 cannot be extended to compare
arbitrary layers, and we now demonstrate how it already fails for
M¼3. In fact, it turns out that, depending on the reaction rates
and total amounts, we can have c1,e4c2,e or c1,eoc2,e for all
0oeo1, and in some cases the normalized stimulus–response
curves for layers one and two intersect as illustrated in Fig. 5.
Since c1 and c$1

0 are increasing functions, comparing c1,e and c2,e
is equivalent to comparing:

ðc1Jc$1
0 Þðc1,eÞ ¼ ec1ðr3Þ and ðc1Jc$1

0 Þðc2,eÞ ¼c1ðc
$1
2 ðec2ðr3ÞÞÞ,

ð18Þ

so it follows that comparing c1,e and c2,e is equivalent to
determining the sign of DðeÞ ¼ ec1ðr3Þ$c1ðc

$1
2 ðec2ðr3ÞÞÞ. The

expressions in (18) are easier to work with than the original
ones, since we may calculate them explicitly. The maximal
response r3 is a root of a quadratic polynomial, and c$1

2 may be
obtained directly, since c2 is the ratio of two first degree
polynomials.

By manipulating DðeÞ (see Appendix B for details), we see that
its sign is determined by the roots of a polynomial of degree three
in e. We find that both 0 and 1 are roots, and the third root is

en ¼ w2u2ðS
2
totðl3þm3Þ$l2S3

totÞðS
3
tot$ðl3þm3Þr3Þ$dðv2þw2Þm2S3

tot

du1ðv2þw2Þm2ðl3þm3Þr3
:

It depends both on the reaction rates and the total amounts and
may be calculated explicitly. We find that if eno0 (resp. en41),
then c1,e4c2,e (resp. c1,eoc2,e) for all 0oeo1, whereas if
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Fig. 4. (A) Maximal responses in all layers of a five-layer phosphorelay as functions of S3
tot . When S3

tot increases, the maximal response increases in layers 1, 2, and 3, but
decreases in layers 4 and 5. (B) Stimulus–response curves for the bottom layer in phosphorelays with 6, 5, 4, 3, and 2 layers, where smaller systems are obtained from
larger by removal of upper layers. All reaction rates are set to one, and all total amounts are set to 10.

Stimulus

N
or

m
al

iz
ed

 R
es

po
ns

e

S 1
tot = 2

0.1 0.5 1.0 5.010.0 50.0

0.2

0.4

0.6

0.8

1.0

Layer 3

Layer 2

Layer 1

0.1 0.5 1.0 5.010.0 50.0

0.2

0.4

0.6

0.8

1.0

0.1 0.5 1.0 5.010.0 50.0

0.2

0.4

0.6

0.8

1.0

StimulusStimulus

Layer 3

Layer 2

Layer 1

Layer 3

Layer 2

Layer 1

Fig. 5. Normalized stimulus–response curves for a three-layer phosphorelay with one phosphorylation site at each layer. Here S2
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tot ¼ 5, and all reaction rates are
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tot we obtain three qualitatively different behaviors of the normalized response curves. The

stimulus is on logarithmic scale.
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0oeno1, the normalized stimulus–response curves intersect for
e¼ en, and c1,e4c2,e (resp. c1,eoc2,e) for eoen (resp. e4en).

We now continue our general investigation of how steady-
state concentrations respond to changes in stimulus. For
0oeodo1, we consider the response coefficient:

wm,e,d ¼
cm,e
cm,d

for 1rmrM, ð19Þ

which relates the amount of stimulus required to obtain e (resp.
d) times the maximal possible response in the mth layer. Since the
response in any layer is an increasing function of the stimulus, it
follows that

0owmo1 for 1rmrM:

Often one puts e¼ 0:1 and d¼ 0:9, and in the literature,
systems with wm,0:1,0:941=81 are commonly referred to as ultra-
sensitive (Goldbeter and Koshland, 1981). This is illustrated in a
five-layer example in Fig. 6, where the intermediate layers (in
particular the third) exhibit ultrasensitive behaviors. On the other
hand, the top layer shows an almost linear increase in response
before reaching a plateau.

Proposition 4.2. For a general M-layer phosphorelay we have
wM,e,doe=d.

Proof. It follows immediately by using (15) that

wM,e,d ¼
cM,e
cM,d
¼

e
d
#

S1
tot$l1drM$m1c1ðdrMÞ

S1
tot$l1erM$m1c1ðerMÞ

,

and since c1ðyÞ according to Proposition 3.1 is an increasing
function, it follows that in the second fraction, the numerator is
smaller than the denominator, and this proves the claim. &

The result in Proposition 4.2 shows that for any set of reaction
rates and total amounts, the degree of ultrasensitivity in the
bottom layer is bounded by the same constant ðwm,0:1,0:9o1=9Þ,
and this is thus an intrinsic feature of the phosphorelay.

We are unaware whether the response coefficients wm,e,d are
bounded for general m. Numerical experiments indicate that also
w1,e,doe=d, but we have not been able to determine this analy-
tically. However, it is possible to calculate the response coeffi-
cients in some limit cases, for example when the total amount S1

tot

in the top layer is increased or decreased, which could e.g. be used
in an experimental setup where S1

tot can be controlled. The proof
of Proposition 4.3 below is given in Appendix A.

Proposition 4.3. Let 1rmrM and 1oeodo1, and let all reac-
tion constants and all total amounts except S1

tot be fixed. Then

wm,e,d-
eð1$dÞ
dð1$eÞ for S1

tot-0

wm,e,d-

1$d
1$e if m¼ 1

c$1
m ðecmðx1ÞÞ

c$1
m ðdcmðx1ÞÞ

if 1omoM

e
d

if m¼M

8
>>>>>>><

>>>>>>>:

for S1
tot-1,

and c$1
m ðecmðx1ÞÞ=c

$1
m ðdcmðx1ÞÞ4e=d.

For e¼ 0:1 and d¼ 0:9, the limit ½eð1$dÞ(=½dð1$eÞ( is 1/81, the
common threshold for ultrasensitivity, and for sufficiently high
S1

tot , the intermediate layers will exhibit higher degrees of ultra-
sensitivity than the bottom layer. Note that the limits are not
necessarily global bounds on the response coefficients as illu-
strated in Fig. 7.

5. Discussion

In this paper we have introduced and analytically analyzed a
general model of phosphorelays, which extends existing models
of phosphorelays (Kim and Cho, 2006; Csikász-Nagy et al., 2011),
and we have proved the existence and uniqueness of a steady-
state. Furthermore, we have derived explicit formulas for the
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Fig. 6. Normalized stimulus–response curves for a five-layer phosphorelay with
one phosphorylation site at each layer. Here S1

tot ¼ S2
tot ¼ S3

tot ¼ S4
tot ¼ 10, S5

tot ¼ 5,
and all reaction rates are set to one. The response in the top layer increases almost
linearly before it reaches a plateau. The third layer shows an ultrasensitive
behavior.
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Fig. 7. Response coefficients for a five-layer phosphorelay with one phosphorylation site at each layer. Here S2
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tot ¼ S4
tot ¼ 10, S5

tot ¼ 5, and all reaction rates are set to
one. The second plot emphasizes the behavior for small values of S1

tot and reveals that response coefficients are not necessarily increasing functions of S1
tot .
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responses in all layers as functions of the stimulus and used these
to investigate various aspects of the stimulus–response behavior.

We have showed that the response coefficient in the bottom
layer of any phosphorelay is bounded by constants independent
of size and architecture of the phosphorelay. Furthermore, we
have also demonstrated how qualitatively very different stimu-
lus–response behaviors are possible in layers above the last, and
in the three-layer case we have derived an exact condition which
distinguishes the three possible scenarios in that case. The variety
of behaviors contrasts what has been reported in previous studies
using numerical simulations (Csikász-Nagy et al., 2011).

The finding that the response coefficient in the bottom layer is
bounded is consistent with experimental findings. For example, in
the four-layer phosphorelay involved in sporulation initiation of
B. subtilis (see Fig. 1), it has been observed that the response (the
concentration of Spo0A) P) is only gradually increasing with the
stimulus (Fujita and Losick, 2005). It has been shown that
Spo0A) P directly regulates over 100 genes, and that these are
activated and repressed at very different concentrations of
Spo0A) P (Molle et al., 2003). A possible explanation of the
gradual response observed in Fig. 6 could therefore be that
important gene products, transcribed only at intermediate con-
centrations of Spo0A) P, would otherwise be produced in too low
concentrations to trigger sporulation. This would be the case if
phosphorylation of Spo0A happens too fast and the system
therefore fails to spend the required time in the intermediate
states. However, other factors might contribute, for example
cross-talk between pathways and interplay between competing
kinases. The Spo0A pathway is known to involve at least three
different HKs (KinA, KinB, and KinC) and we do not model either
of these effects.

Ultrasensitivity in intermediate layers has previously been
suggested using a simpler model (Csikász-Nagy et al., 2011), but
to our knowledge no experimental studies have determined
whether or not this happens in vitro. The presence of intermediate
layers allows for additional control of the response, where e.g. an
increase in stimulus my be counteracted upon by removal of
phosphate in an intermediate layer. For example, there are
phosphatases RapA, RapB, and RapE, which are known to depho-
sphorylate Spo0F) P, and Spo0E which is known to dephosphor-
ylate Spo0A) P (Perego and Hoch, 1996; Saito, 2001; Ohlsen
et al., 1994). We speculate that the ultrasensitivity in intermedi-
ate layers is essential for precise control of cross-talk with
external pathways.

We have argued that as the number of layers is increased, the
maximal final response decreases. In the example in Fig. 4, the
effect appears to saturate already for five layers, a feature not
specific to the selected values of reaction constants and total
amounts. In fact, the saturation is often observed even earlier.
This suggest that the saturation is an intrinsic feature of the
phosphorelay structure itself and not the specific reaction rates
and total amounts. This fits with the fact that all known
phosphorelays to this day contain at most four sites (Appleby
and Parkinson, 1996).

Our model is a simplified model that does not take case-
specific features of phosphorelays and TCSs into account. For
example, there are HKs which act as phosphatases on their
cognate RRs. Such bifunctional HKs have almost exclusively been
observed in TCSs, and we do not model them in our general
phosphorelay model. The consequences of having bifunctional
HKs in general phosphorelays has been shown to result in a
flattening of the stimulus–response curves (Csikász-Nagy et al.,
2011).

This paper demonstrates that even relatively complicated
systems such as phosphorelays may be treated analytically.
Important features of chemical reaction networks may be

overlooked if one resorts to numerical simulations alone. Using
our approach, previously developed and applied to signaling
cascades and enzymatic reactions (Feliu et al., 2012a, 2012b;
Feliu and Wiuf, in press), we are able to derive exact and
qualitative results about steady-states and stimulus–response
behavior for any phosphorelay independent of the number and
length of layers, reaction constants, and total amounts of
substrate. Also this approach, by providing simple (recursive)
expressions relating species concentrations at steady-state,
allows for fast and efficient numerical analysis thereby avoiding
computationally demanding and error-prone calculations of e.g.
steady-state values.
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Appendix A. Proofs

Proposition A.1. If lm0 or mm0
is increased, or if the total amount of

substrate Sm0
tot is decreased, then the maximal response decreases in

layers mZm0 and increases in layers mom0.

Proof. We add bars over functions and constants in the modified
system to distinguish them from the original ones. The function
cm only depends on reaction constants and total amounts in
layers mþ1,mþ2, . . . ,M. This implies that cm corresponding to
the modified system is equal to cm for mZm0. However, accord-
ing to (14) either one of the two modifications will decrease the
denominator of cm0$1ðyÞ and hence increase cm0$1ðyÞ. Therefore
cm0$1ðyÞ4cm0$1ðyÞ for all y40 in the overlap of the domains of
definition of cm0$1 and cm0$1, and using the recursive definition
of cm$1 (14), we obtain cmðyÞ4cmðyÞ for all mom0. Therefore,

S
m
tot$lmy$mmcmðyÞoSm

tot$lmy$mmcmðyÞ for mrm0, ðA:1Þ

where the case m¼m0 follows from the assumption that either
S

m0

tot oSm0
tot , mm0

4mm0
, or lm0 4lm0 .

Since, by definition, xm$1 (resp. xm$1) is the smallest, positive

zero of the right-hand side (resp. left-hand side) of (A.1), we see

that xm oxm for all mom0. In particular, rM ¼ x0 ox0 ¼ rM , and

since the cm are unchanged for mZm0, we get

rm ¼cmðrMÞ ¼cmðrMÞocmðrMÞ ¼ rm for mZm0.

It remains to show that the response decreases in layers

upstream from m0, and we first consider the case m¼1. By the

definitions of rM and rM , we have S1
tot$l1rM$m1c1ðrMÞ ¼ 0 and

S1
tot$l1rM$m1c1ðrMÞ ¼ 0, so

r1 ¼c1ðrMÞ ¼
S1

tot$l1rM

m1
4

S1
tot$l1rM

m1
¼c1ðrMÞ ¼ r1:

Using (14) recursively, we see that

cmþ1ðrMÞ ¼
Smþ1

tot $lmþ1rM

mmþ1
$

d
vm

wn
þ1

! "
rM

ummmþ1cmðrMÞ
,

which for mom0$1 does not involve the modified para-

meters, and since c1ðrMÞ4c1ðrMÞ, induction shows that
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rm ¼cmðrMÞ4cmðrMÞ ¼ rm for all mom0, which concludes the

proof. &

Proposition A.2. If lm0 or mm0
is increased, or if the total amount of

substrate Sm0
tot is decreased, then the response Sm

Nm
decreases in layers

mZm0 and increases in layers mom0.

Proof. As already argued in the proof of Proposition A.2, we have
cm ¼cm (resp. cm ocm) for mZm0 (resp. mom0) in the over-
laps of the domains of definition of the respective functions.

Let Sm
Nm

and S
m
Nm

be the steady-state values of the response in the

mth layer in each of the systems. We have c0ðS
M
NM
Þ ¼ c¼

c0ðS
M
NM
Þ4c0ðS

M
NM
Þ, and since c0 is increasing it follows that

SM
NM

oS
M
NM

. Then using that cm is increasing, we get

S
m
Nm
¼cmðS

M
NM
Þ ¼cmðS

M
NM
Þ4cmðS

M
NM
Þ ¼ Sm

Nm
for all mZm0. By iso-

lating c1ðyÞ in (15) and using c0ðS
M
NM
Þ ¼c0ðS

M
NM
Þ and SM

NM
oS

M
NM

, we

get

c1ðS
M
NM
Þ ¼

1
m1

S1
tot$l1SM

NM
$

dSM
NM

c0ðS
M
NM
Þ

 !

o 1
m1

S1
tot$l1S

M
NM
$

dS
M
NM

c0ðS
M
NM
Þ

0

@

1

A¼c1ðS
M
NM
Þ,

and from here it follows inductively using (14) as in the proof of

A.1 that S
m
Nm
¼cmðS

M
NM
ÞocmðS

M
NM
Þ ¼ Sm

Nm
for all mom0. &

Proposition A.3. cM,eocm,e for all moM and 0oeo1.

Proof. Using the definitions of cM,e and cm,e, we obtain
cM,e ¼c0ðerMÞ and cm,e ¼c0ðc

$1
m ðecmðrMÞÞÞ, and since both cm

and c$1
0 are increasing functions, cM,eocm,e if and only if

cmðerMÞoecmðrMÞ.
In the case m¼M, we have cMðerMÞ ¼ erM ¼ ecMðrMÞ. Hence it

suffices to prove that cmðerMÞrecmðrMÞ implies cm$1ðerMÞo
ecm$1ðrMÞ, and this follows using erM orM , since

cm$1ðerMÞ ¼
d

vm$1

wm$1
þ1

! "
erM

um$1ðS
m
tot$lmerM$mmcmðerMÞÞ

oe
d

vm$1

wm$1
þ1

! "
rM

um$1ðS
m
tot$lmrM$mmcmðrMÞÞ

¼ ecm$1ðrMÞ,

which finishes the proof. &

Lemma A.4. Let all reaction rates and all total amounts except S1
tot

be fixed. Then rM-x1 for S1
tot-1 and rM-0 for S1

tot-0.

Proof. By definition, rM is a root in the denominator of (15), and
hence S1

tot ¼ l1rMþm1c1ðrMÞ. This function is continuous and
increasing on ½0,x1Þ, equals 0 for rM ¼ 0, and tends to infinity
when rM-x$1 . The function is thus invertible, say rM ¼jðS

1
totÞ,

such that j is continuous and increasing with jð0Þ ¼ 0 and
satisfies jðS1

totÞ-x1 for S1
tot-1. &

Lemma A.5. For all moM, the functions cm and c$1
m satisfy

cm
0ð0Þ ¼ d

vm

wm
þ1

! "#
umSmþ1

tot and

ðc$1
m Þ
0ð0Þ ¼ umSmþ1

tot d
vm

wm
þ1

! "#
:

Proof. The first statement follows by differentiating the recursive
expression for cmðyÞ (14) and inserting y¼0, and then the second

statement immediately follows from ðc$1
m Þ
0ð0Þ ¼ 1=cm

0ðc$1
m ð0ÞÞ ¼

1=c0mð0Þ. &

Lemma A.6. As a function of S1
tot , the maximal response rM satisfies

drM

dS1
tot

ð0Þ ¼
u1S2

tot

l1u1S2
totþm1d

v1

w1
þ1

! " ðA:2Þ

Proof. By differentiating S1
tot ¼ l1rMþm1c1ðrMÞ with respect to S1

tot ,
we get rM

0ð0Þ ¼ ð1$m1c1
0ðrMð0ÞÞrM

0ð0ÞÞ=l1 ¼ ð1$m1c1
0ð0ÞrM

0ð0ÞÞ=
l1, and by isolating rM

0ð0Þ and inserting Lemma A.5, we obtain the
desired result. &

By plugging the expression (16) into the definition of the
response coefficient (19), it follows that we have

wm,e,d ¼
c$1

m ðecmðrMÞÞ

c$1
m ðdcmðrMÞÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

am

#
S1

tot$l1c$1
m ðdcmðrMÞÞ$m1c1ðc

$1
m ðdcmðrMÞÞÞ

S1
tot$l1c

$1
m ðecmðrMÞÞ$m1c1ðc

$1
m ðecmðrMÞÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

bm

,

and below we will consider the factors am and bm separately. &

Proposition A.7. Let all reaction rates and all total amounts except
S1

tot be fixed. Then aM ¼ e=d, and

am-
e
d

for S1
tot-0:

am-

1 if m¼ 1

c$1
m ðecmðx1ÞÞ

c$1
m ðdcmðx1ÞÞ

if 1omoM

8
>><

>>:
for S1

tot-1,

and c$1
m ðecmðx1ÞÞ=c

$1
m ðdcmðx1ÞÞ4e=d.

Proof. Since cM ¼ id, it immediately follows that aM ¼ ðerMÞ=
ðdrMÞ ¼ e=d as claimed. According to Lemma A.4, we have r-0
for S1

tot-0, so since cmð0Þ ¼ 0, it follows that am is a 0=0–
expression in the limit S1

tot-0, and we may apply L’Hôpital’s rule.
For the numerator of am (and analogously for the denominator)
we have

d

dS1
tot

ðc$1
m ðermÞÞ ¼

dc$1
m

dx
ðermÞe

drm

dS1
tot

,

and using that the results of Lemma A.5 and A.6 are non-zero, it
follows that

d

dS1
tot

ðc$1
m ðermÞÞ

d

dS1
tot

,
ðc$1

m ðdrmÞÞ-
e
d

for S1
tot-0:

For the limit S1
tot-1, we consider first the case m¼1. According

to Lemma A.4 we have r1 ¼c1ðrMÞ-1 for S1
tot-1, and hence

a1 ¼c$1
1 ðer1Þ=c

$1
1 ðdr1Þ-x1=x1 ¼ 1, The remaining cases follow

from the first part of Lemma A.4. Finally, since cm is convex and

increasing, the inverse c$1
m is concave and increasing. Using

c$1
m ð0Þ ¼ 0, it follows that c$1

m ðxÞ=x4c$1
m ðyÞ=y for all xoy. In

particular, this holds for x¼ erm and y¼ drm, and hence

c$1
m ðecmðx1ÞÞ=c

$1
m ðdcmðx1ÞÞ4e=d. &

Proposition A.8. Let all reaction rates and all total amounts except
S1

tot be fixed. Then

bm-
1$d
1$e for S1

tot-0
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bm-

1$d
1$e if m¼ 1

1 if 1omrM

8
<

: for S1
tot-1:

Proof. To simplify notation, we denote by f m,d and f m,e the
numerator and denominator, respectively, of bm. Note that bm is
a 0=0–expression in the limit S1

tot-0, and hence we may use
L’Hôpital’s rule. Let zm,d ¼c$1

m ðdrmÞ such that f m,d ¼ S1
tot$l1zm,d$

m1c1ðzm,dÞ. Then

df m,d

dS1
tot

¼ 1$l1
dzm,d

dS1
tot

$m1
dc1

dy
ðzmÞ

dzm,d

dS1
tot

¼ 1$
dzm,d

dS1
tot

l1þm1
dc1

dy
ðzm,dÞ

! "
:

Now note that

dzm,d

dS1
tot

¼ d
dc$1

m

dx
ðdcmðrMÞÞ

dcm

dy
ðrMÞ

drM

dS1
tot

,

and by plugging in the results from Lemma A.5 and A.6, it follows
that df m,d=dS1

tot-1$d for S1
tot-0. Similarly, df m,e=dS1

tot-1$e, and
hence L’Hôpital’s rule implies that bm-ð1$dÞ=ð1$eÞ for S1

tot-0.

We have f 1,d ¼ S1
tot$l1c$1

1 ðdr1Þ$m1dr1, and by combining this

with S1
tot ¼ l1rMþm1r1, it follows that f 1,d ¼ l1ðrM$c

$1
1 ðdr1ÞÞþ

m1ð1$dÞr1 and hence

b1 ¼
l1ðrM$c

$1
1 ðdr1ÞÞþm1ð1$dÞr1

l1ðrM$c
$1
1 ðer1ÞÞþm1ð1$eÞr1

-
1$d
1$e for S1

tot-1,

since rM and c$1
1 are bounded and r1-1 for S1

tot-1. For m41,

we have cmðrMÞ-cmðx1Þ for S1
tot-1, and it immediately follows

that

bm ¼
S1

tot$l1c$1
m ðdcmðrMÞÞ$m1c1ðc

$1
m ðdcmðrMÞÞÞ

S1
tot$l1c

$1
m ðecmðrMÞÞ$m1c1ðc

$1
m ðecmðrMÞÞÞ

-1 for S1
tot-1,

since the last two terms in both numerator and denominator are

bounded. &

By combining Propositions A.7 and A.8, we obtain Proposition
4.3 from the main text.

Appendix B. Example

Here we provide details about the calculations left out in the
example in Section 4. Using the definitions of c1 and c2, we may
write DðeÞ on the form:

DðeÞ ¼ r3e3þr2e2þr1e
t2e2þt1eþt0

¼
RðeÞ
TðeÞ ,

for example using computer software capable of symbolic manip-
ulation, where the coefficients ri and ti only depend on the
reaction constants, the total amounts, and the maximal response
r3. The coefficients of the polynomials may be chosen such that
t2o0 and both Tð0Þ and Tð1Þ are positive. Hence T is a second
degree polynomial with negative leading coefficient, and it
assumes positive values in the end points e¼ 0 and e¼ 1. There-
fore TðeÞ40 for all 0oeo1, and hence sign DðeÞ ¼ sign RðeÞ.

Since Dð0Þ ¼Dð1Þ ¼ 0, it follows that Rð0Þ ¼ Rð1Þ ¼ 0, and by
factoring these trivial roots we obtain the last root as stated in
the main text. For some constant to0, the polynomial RðeÞ
factors RðeÞ ¼ t # eðe$1Þðe$enÞ ¼ te3$tð1þenÞe2þtene, and hence
sign R0ð0Þ ¼$signðenÞ. Summing up, we know all three roots of
RðeÞ as well as the slope of RðeÞ at e¼ 0, which completely
determines the sign of RðeÞ at any point.

Appendix C. Convergence and stability of the steady-state

We prove the convergence to a unique BMSS of the phosphor-
elay for any set of positive initial conditions using Theorem 2 in
Angeli et al. (2010). We will restate the theorem here, but first we
introduce some concepts from Angeli et al. (2010). To simplify
notation, we use 2 to denote reversible reactions in inline text.

For a reaction A-B, A is the reactant and B is the product, and
for every reversible reaction e.g. Sm

n 2Sm
nþ1, a direction is chosen

so that the reactant and the product are well-defined. For the
reversible reactions in (1)–(3), we choose the left-hand side to be
the reactant and the right-hand side to be the product. We have a
total of nS ¼

PM
m ¼ 1 NmþM$1 species and nR ¼

PM
m ¼ 1 NmþM

reactions in the system. Define the nS * nR stoichiometric matrix
G such that the entry Gs,r corresponding to species s and reaction
r is 1 if s is in the reactant of r, $1 if s is in product, and zero
otherwise. Here orders on the sets of species and reactions are
implicitly chosen.

The directed SR-graph is constructed as follows: The set of
vertices is the union of the set of species (called species nodes) and
the set of reactions (called reaction nodes). If a species s takes part
in a reversible reaction r or is part of the reactant of an
irreversible reaction r, there are edges s-r and r-s. If s is part
of the product of an irreversible reaction r, there is an edge r-s. A
siphon S is a non-empty subset of species such that if sAS is in
the product of a reaction r, then S contains at least one species in
the reactant of r. Here reversible reactions are considered as two
different irreversible reactions, so that each side of the reversible
reaction appears as product in one reaction and as reactant in the
other. A siphon is minimal if it contains no siphon other than
itself.

Theorem 2 in Angeli et al. (2010) states that all solutions of the
phosphorelay ODEs in RnS

40 converge to a unique equilibrium if
the following four conditions hold:

(i) The system of ODEs of the phosphorelay is persistent.
(ii) For all species s and reactions r1ar2, the product $Gs,r1Gs,r2

is non-negative.
(iii) There is a directed path between any two reaction nodes in

the directed SR-graph.
(iv) The kernel of G contains a positive vector.

Remark. With the notions from Angeli et al. (2010), conditions
(ii) and (iii) imply that the corresponding system in reaction
coordinates is monotone with respect to the positive orthant
cone, and strongly monotone in the interior with respect to that
order. This is a consequence of Proposition 5.3 and the proof of
Theorem 1 in Angeli et al. (2010).

We will now prove (i)–(iv). By the choice of directions of
reactions in our system, each species is on the left of exactly one
reaction and on the right of exactly one reaction. It follows that
for each species s there are exactly two reactions r1,r2 such that
Gs,r1 ,Gs,r2 a0 and further that they have opposite sign. Thus,
Gs,r1Gs,r2 o0 and zero for all other choices of reactions. This
proves (ii). Each row of G has only two non-zero entries, and
they are of opposite signs. Therefore the vector ð1, . . . ,1Þ belongs
to the kernel of G, and hence (iv) holds.

To show (iii), note that for a fixed m, there is a path in the
directed SR-graph between any two reaction nodes of the form:

rn,m: S
m
n 2Sm

nþ1, em: S
m
Nm
þSmþ1

0 2Xm, or dm:X
m-Sm

0 þSmþ1
1 :

For m¼M the statement is true with the last two reactions
replaced by d0: S

M
NM

-SM
0 . Furthermore, there is a path from wm

to r1,mþ1 and to em$1, connecting reactions in different layers.
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There is a path from the reaction node e0: S
1
0-S1

1 to r1;1 and from
d1 to e0. Therefore, a directed path between any two reactions of
the phosphorelay exists, and (iii) holds.

All that is left is to prove (i). For that, we use Theorem 2 in
Angeli et al. (2007) that states that if (a) the network has a
positive conservation law and (b) there is a conservation law with
non-negative coefficients on the species for each minimal siphon,
then the network is persistent. Since each species of the phos-
phorelay is part of a conservation law with non-negative coeffi-
cients (5), it follows that (a) holds.

If we show that the sets Sm ¼ fSm
0 ,Sm

1 , . . . ,Sm
Nm

,Xm$1,Xmg for

m¼ 1;2, . . . ,M (removing the non-defined X0,XM for m¼ 1,M)
are the minimal siphons, then the conservation law (5) ensures
that (b) holds and the proof is completed. We construct a graph
that gives an easy visual inspection of which the minimal siphons
of the phosphorelay are. If r is a reaction that contains a species s1

in the reactant and a species s2 in the product, then we draw an

edge s1-
r

s2 with label r. The graph is

where dm is as above, em: S
m
Nm
þSmþ1

0 -Xm, and e0m:X
m-Sm

Nm
þ

Smþ1
0 . The labels of the reactions rn,m: S

m
n 2Sm

nþ1 are not shown.
Let S be a siphon. Then inspection of the graph gives:

(1) If Sn
m belongs to S for some n40, then so do Sm

n0 for all n040.
(2) If Sn

m belongs to S for some nZ0, then so do Xm and Xm$1.
Further, if S1

n or SM
0 belong to S then so do S1

0 and SM
NM

,
respectively.

(3) If Xm belongs to S, then either Smþ1
0 or Sm

Nm
(and thus Sn

m for all
n40) belong to S.

It is easy to see that the middle pentagon which contains the
species in Sm is a siphon for all 1rmrM, and conditions (1)–(3)
ensure that it is minimal. If S is a siphon that does not contain Sm

for any m, then (1)–(3) imply that it must contain Xm for all m. If
Sm

0 does not belong to S for any m, then by (3) Sn
m belongs to S for

all m and n40. It follows from (2) that so does S1
0 and S1DS,

thereby reaching a contradiction. Thus, there is an m for which Sm
0

belongs to S. Since Sm
Nm

does not (SmJS), by (3) Smþ1
0 belongs to

S. We repeat the argument to conclude that SM
0 AS. It follows

from (2) that so does SM
NM

and SM DS, again reaching a contra-
diction. Therefore, any siphon contains Sm for some m as desired.
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