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Abstract

We introduce a new model of proteins that extends and enhances the traditional

graphical representation by associating a combinatorial object called a fatgraph

to any protein based upon its intrinsic geometry. Fatgraphs can easily be stored

and manipulated as triples of permutations, and these methods are therefore

amenable to fast computer implementation. Applications include the refinement

of structural protein classifications and the prediction of geometric and other

properties of proteins from their chemical structures.

© 2010 Wiley Periodicals, Inc.

Introduction

A fatgraph G is a graph in the usual sense of the term together with cyclic order-

ings on the half-edges about each vertex (see Section 2.2 for the precise definition).

They arose in mathematics [26] as the combinatorial objects indexing orbicells in

a certain decomposition of Riemann’s moduli space [26, 29] and in physics [4, 30]

as index sets for the large-N limit of certain matrix models. A basic geometric

point is that a fatgraph G uniquely determines a corresponding surface F.G/ with

a boundary that containsG as a deformation retract. Fatgraphs have already proved

useful in geometry [14, 16, 22, 26], theoretical physics [8, 18], and modeling RNA

secondary structures [27], for example.
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A protein P is a linear polymer of amino acids (see Section 1 for more preci-

sion), and their study is a central theme in contemporary biophysics [1, 10]. Our

main achievement in this paper is to introduce a model of proteins that naturally

associates a fatgraph G.P / to a protein P based upon the spatial locations of its

constituent atoms. The idea is that the protein is roughly described geometrically

as the concatenation of a sequence of planar polygons called peptide units meet-

ing at tetrahedral angles at pairs of vertices and twisted by pairs of dihedral angles

between the polygons. To each peptide unit, we associate a positively oriented or-

thonormal 3-frame and a fatgraph building block, and we concatenate these build-

ing blocks using these 3-frames in a manner naturally determined by the geometry

of the Lie group SO.3/. There are furthermore hydrogen bonds between atoms

contained in the peptide units, and these are modeled by including further edges

connecting the building blocks so as to determine a well-defined fatgraph G.P /

from P . Thus, the fatgraph G.P / derived from the protein P captures the geome-

try of the protein “backbone” and the geometry and combinatorics of the hydrogen

bonding along the backbone; elaborations of this basic model are also described

that capture further aspects of protein structure.

The key point is that topological or geometric properties of the fatgraph G.P /

can be taken as properties or “descriptors” of the protein P itself. A fundamental

aspect not usually relevant in applying fatgraphs is that this construction of G.P /

is based on actual experimental data about P in which there are uncertainties and

sometimes errors as well. Furthermore, the notion that the protein P is comprised

of atoms at fixed relative spatial locations, which is the basic input to our model, is

itself a biological idealization of the reality that a given protein at equilibrium may

have several closely related coexisting geometric incarnations. In order that the

protein descriptors arising from fatgraphs be meaningful characteristics of proteins

in light of these remarks, we shall be forced to go beyond the usual situation and

consider fatgraphs G whose corresponding surfaces F.G/ are nonorientable. This

is easily achieved combinatorially by including in the definition of a fatgraph a

coloring of its edges by a set with two elements.

The desired result of robust protein descriptors, i.e., properties of G.P / that do

not change much under small changes in the relative spatial locations of the atoms

constituting P , is a key attribute of our construction; for example, the number of

boundary components and the Euler characteristic of F.G.P // are such robust in-

variants, and we give a plethora of further numerical and nonnumerical examples.

Another key point of our construction rests on the fact that biophysicists already of-

ten associate a graph to a protein P based upon its hydrogen and chemical bonding,

and our model succeeds in reproducing this usual graphical depiction of a protein

but now with its enhanced structure as a fatgraph G.P /; i.e., the graph underlying

G.P / is the one usually associated to P in biophysics. Furthermore, an important

practical point is that fatgraphs can be conveniently stored and manipulated on the

computer as triples of permutations.
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Since this is a math paper whose central purpose is to introduce fatgraph mod-

els of proteins, we shall not dwell on biophysical applications; nevertheless, we

feel compelled to include here several such applications as follows. Certain pro-

teins decompose naturally into “domains” or “globules,” roughly 115,000 of which

have so far been determined experimentally and categorized into several thousand

classes (cf. [12, 15, 23, 25]), and we concentrate here for definiteness on the CATH

classification [25] of domains. Our most basic robust descriptors of a domain P

are given by the topological types of the surface F.G.P // computed with various

thresholds of potential energy imposed on the hydrogen bonds (see Section 3.4 for

details). We show here that the topological types of F.G.P // for several such po-

tential energy thresholds uniquely determine P among all known protein globules.

Other such “injectivity results” for globules based on various robust protein de-

scriptors are also presented. Further classification prediction results are analyzed;

specifically, the prediction of domain from the topological type and other robust

fatgraph invariants using a random forest method [7] is described in the two exam-

ples of glycosyltransferase and pectate lyase C-like with satisfactory accuracy, and

a further study of the topology of F.G.P // in the latter case is presented through

the entire hierarchy of domains.

This paper is organized as follows: Section 1 introduces an abstract definition

of polypeptides, which gives a precise mathematical formulation of the biophysics

of a protein required for our model; a more detailed discussion of proteins from

first principles is given in the beautiful book [10], which we heartily recommend.

Section 2 introduces the notion of fatgraphs required here, whose corresponding

surfaces may be nonorientable and contains basic results about them. In particular,

a number of results, algorithms, and constructions are presented showing that our

methods are amenable to fast computer implementation.

Section 3 is the heart of the paper and describes the fatgraph associated to a

polypeptide structure in detail. Background on SO.3/ graph connections is given

in Section 3.1 and applied in Section 3.2, where we explain how the fatgraph build-

ing blocks associated with peptide units are concatenated. Section 3.3 discusses the

addition of edges corresponding to hydrogen bonds, thus completing the basic con-

struction of the fatgraph model of a polypeptide structure. Section 3.4 discusses

this basic model and its natural generalizations and extensions for proteins and

beyond. An alternative description of this model, which is more physically trans-

parent but less mathematically tractable, is given in Appendix A, and the standard

structural motifs of “alpha helices” and “beta strands” are discussed in this alter-

native model.

Robust invariants of fatgraphs are defined and studied in Section 4 providing

countless meaningful new protein descriptors. Section 5 gives the empirical results

mentioned above after first discussing certain practical aspects of implementing

our methods. Finally, Section 6 contains closing remarks including several further

biophysical applications of our methods that will appear in companions and sequels

to this paper.
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FIGURE 1.1. Chemical structure of amino acids.

1 Polypeptides

There are 20 amino acids,1 19 of which have the basic chemical structure il-

lustrated in Figure 1.1a), where H, C, N, and O, respectively, denote hydrogen,

carbon, nitrogen, and oxygen atoms, and the residue R is one of 19 specific possi-

ble submolecules; the one further amino acid called proline has the related chem-

ical structure containing a ring CCCCN of atoms illustrated in Figure 1.1b). The

residue ranges from a single hydrogen atom for the amino acid called glycine to

a submolecule comprised of 19 atoms for the amino acid called tryptophan. All

20 amino acids are composed exclusively of H, C, N, and O atoms except for the

amino acids called cysteine and methionine, each of which also contains a single

sulfur atom.

In either case of Figure 1.1, the submolecule COOH depicted on the right-hand

side is called the carboxyl group, and the NH2 depicted on the left-hand side in

Figure 1.1a) or the NHC on the left-hand side in Figure 1.1b) is called the amine

group. The carbon atom bonded to the carboxyl and amine groups is called the

alpha carbon atom of the amino acid, and it is typically denoted C˛ . The alpha

carbon atom is bonded to exactly one further atom in the residue, either a hydrogen

atom in glycine or a carbon atom, called the beta carbon atom, in all other cases.

As illustrated in Figure 1.2, a sequence of L amino acids can combine to form a

polypeptide, where the carbon atom from the carboxyl group of the i th amino acid

forms a peptide bond with the nitrogen atom from the amine group of the .i C 1/st

amino acid together with the resulting condensation of a water molecule comprised

of an OH from the carboxyl group of the former and an H from the amine group of

the latter for i D 1; 2; : : : ; L� 1. The nature of this peptide bond and the accuracy

of the implied geometry of Figure 1.2 will be discussed presently, and the further

notation in the figure will be explained later.

The primary structure of a polypeptide is the ordered sequence R1;R2; : : : ;RL
of residues or of amino acids occurring in this chain, i.e., a word in the 20-letter

1 Strictly speaking, these 20 molecules are the “standard gene-encoded” amino acids, i.e., those

amino acids determined from RNA via the genetic code; in fact, there are a few other nonstandard

gene-encoded amino acids that are relatively rare in nature and which we shall ignore here.
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FIGURE 1.2. A polypeptide.

alphabet of amino acids of length L, which ranges in practice from L D 3 to

L � 30;000. The carbon and nitrogen atoms that participate in the peptide bonds

together with the alpha carbon atoms form the backbone of the polypeptide, which

is described by

N1 � C˛1 � C1 � N2 � C˛2 � C2 � � � � � Ni � C˛i � Ci � � � � � NL � C˛L � CL;

indicating the standard enumeration of atoms along the backbone. The first amine

nitrogen atom and the last carboxyl carbon atom, respectively, are called the N and

C termini of the polypeptide.

The i th peptide unit for i D 1; 2; : : : ; L � 1 Is comprised of the consecutively

bonded atoms C˛i � Ci � NiC1 � C˛iC1 in the backbone together with the oxygen

atom Oi from the carboxyl group bonded to Ci and one further atom, namely, the

remaining hydrogen atom HiC1 of the amine group except for proline, for which

the further atom is the carbon preceding the nitrogen of the amine group in the

proline ring.

This describes the basic chemical structure of a polypeptide, where the further

physicochemical details about residues, for example, can be found in any standard

text and will not concern us here.

There are several key geometrical facts about polypeptides as follows, where we

refer to the center of mass of the Bohr model of a nucleus as the center of the atom

and to the line segment connecting the centers of two chemically bonded atoms as

the bond axis.

FACT 1.1 For any polypeptide, there are the following geometric constraints:

Fact A: Each peptide unit is planar; i.e., the centers of the six constituent

atoms of the peptide unit lie in a plane, and furthermore, the angles be-

tween the bond axes in a peptide unit are always fixed at 120ı.
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Fact B: At each alpha carbon atom C˛i , the four bond axes (to hydrogen, Ci ,

Ni , and the residue, i.e., to the hydrogen atom of glycine or to the beta

carbon atom in all other cases) are tetrahedral.2

Fact C: In the plane of each peptide unit, the centers of the two alpha car-

bons occur on opposite sides of the line determined by the bond axis of the

peptide bond, except occasionally for the peptide unit preceding proline.

We must remark immediately that these geometric facts are only effectively true;

that is, the peptide unit is almost planar and the angles between bond axes in a pep-

tide unit are nearly 120ı, for example, in Fact A; thus, the depiction in Figure 1.2 of

the peptide unit is nearly geometrically accurate. In nature, thermal and other fluc-

tuations do slightly affect the geometric absolutes stated in Fact 1.1, but we shall

nevertheless take these facts as geometric absolutes in constructing our model.

Fact A is fundamental to our constructions, and it arises from purely quantum

effects: the planar character is provided by the “sp2 hybridization” of electrons in

the Ci and NiC1 atoms in the i th peptide unit, and the peptide unit is rigid because

of additional bonding with Oi of the two p-electrons from Ci ; NiC1 not involved

in the sp2 hybridization. This complexity of shared electrons is why the peptide

bond and the bond between Ci and Oi are often drawn as “partial double bonds”

as in Figure 1.2. In contrast, Fact B is a standard consequence of the valence of

carbon atoms in the Bohr model absent any quantum mechanical hybridization of

electrons.

As a point of terminology, Fact C expresses that except for proline, the pep-

tide unit occurs in what is called the “transconformation,” and the complementary

possibility (with the centers of the alpha carbon atoms in a peptide unit on the

same side of the line determined by the axis of the peptide bond) is called the “cis-

conformation.” This geometric constraint follows from the simple fact that in the

cis-conformation, the two “large” alpha carbon atoms in the peptide unit would be

so close together as to be energetically unfavorable. In contrast, for cis-proline,

the two conformations are comparable since in either case, two carbons (either the

two alpha carbons or one alpha and the delta carbon in the proline ring) must be

close together; nevertheless, cis-proline, as opposed to trans-proline, occurs only

about 10 percent of the time in nature since the latter is still somewhat energeti-

cally favorable. Peptide units preceding residues other than proline also occur in

the cis-conformation but only extremely rarely. This exemplifies a general trend:

somewhat energetically unfavorable conformations do occur but more rarely than

favorable ones, and extremely energetically unfavorable conformations occur ex-

tremely rarely if at all.

The mechanism underlying Fact C is that atoms cannot “bump into each other,”

or more precisely, their centers cannot be closer than their van der Waals radii

2 Another geometric constraint on any gene-encoded protein is that when viewed along the bond

axis from hydrogen to C˛
i

, the bond axes occur in the cycle ordering corresponding to Ci , residue,

Ni . This imposes various chiral constraints on proteins but plays no role in our basic fatgraph model.
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allow, and this is called a steric constraint, which will be pertinent to subsequent

discussions.

Facts A and B together indicate the basic geometric structure of a polypeptide:

a sequence of planar peptide units meeting at tetrahedral angles at the alpha carbon

atoms; these planes can rotate rather freely about the axes of these tetrahedral bond

axes, and this accounts for the relative flexibility of polypeptides. For a polypeptide

at equilibrium in some environment, the dihedral angle along the bond axis of

Ni � C˛i (and C˛i � Ci ) between the bond axis of Ci�1 D Ni (and Ni � C˛i ) and

the bond axis of C˛i � Ci (and Ci D NiC1) is called the conformational angle

'i (and  i , respectively); see Figure 1.2. Illustrating the physically possible pairs

.'i ;  i / 2 S
1 � S

1, steric constraints for each amino acid can be plotted in what

is called a Ramachandran plot; cf. Figure 3.3; in particular, for any polypeptide

at equilibrium in any environment, 'i is bounded away from 0 because of steric

constraints involving Ci�1 and Ci .

This completes our discussion of the intrinsic physicochemical and geomet-

ric aspects of polypeptides underlying our model. The remaining such aspect of

importance to us depends critically upon the ambient environment in which the

polypeptide occurs.

An electronegative atom is one that tends to attract electrons, and examples of

such atoms include C, N, and O in this order of increasing such tendency. When an

electronegative atom approaches another electronegative atom that is chemically

bonded to a hydrogen atom, the two electronegative atoms can share the electron

envelope of the hydrogen atom and attract one another through a hydrogen bond.

A hydrogen bond has a well-defined potential energy determined on the basis of

electrostatics that can be computed from the spatial locations of its constituent

atoms and the physical properties of its environment.3

For example, the Oi or NiC1 � HiC1 in one peptide unit can form a hydrogen

bond with the NjC1 � HjC1 or Oj in another peptide unit, respectively, where

i ¤ j owing to rigidity and fixed lengths of 1.3–1.6 Å of bond axes. For another

example, many of the remarkable properties of water arise from the occurrence

of hydrogen bonds among HOH and OH2 molecules. The absolute potential en-

ergy of hydrogen bonds is rather large, so a polypeptide in a given environment

seeks to saturate as many hydrogen bonds as possible subject to steric and other

physicochemical and geometric constraints. For example, in an aqueous environ-

ment, the oxygen and nitrogen atoms in the peptide units of a polypeptide might

3 For instance, in the standard method called DSSP [17] where rXY denotes the distance between

the centers of atoms X; Y 2 fH;N;Og in Å and the location of H is determined from idealized

geometry and bond lengths in practice, the assignment of potential energy to the hydrogen bond

between O and NH in a water environment is given by q1q2fr�1
ON Cr�1

CH �r�1
OH �r�1

CN g�332 kcal/mole,

where q1 D 0:42 and q2 D 0:20 based on the respective assignment of partial charges �0:42e and

C0:20e to the carboxyl carbon and amine nitrogen with e representing the election charge. This is

obviously only a rough but standard approximation of the actual electrostatics that is built into the

DSSP definition.
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form hydrogen bonds with one another or with the ambient water molecules of

their environment, and there may also occur hydrogen bonding involving atoms

comprising the residues or the alpha carbons.

Suppose that a polypeptide is at equilibrium, i.e., at rest, in some environment.

Its tertiary structure in that environment is the specification of the spatial coordi-

nates of the centers of all of its constituent atoms. Furthermore, fix some energy

cutoff and regard a pair Oi and Nj of backbone atoms as being hydrogen bonded if

the potential energy discussed above is less than this energy cutoff; a standard con-

vention is to take the energy cutoff to be �0:5 kcal/mole.4 The secondary structure5

of the polypeptide at equilibrium in an environment is the specification of hydrogen

bonding as determined by an energy cutoff among its constituent backbone atoms

Oi and Nj for i; j D 1; 2; : : : ; L.

Certain polypeptides occur as the “proteins” that regulate and effectively de-

fine life as we know it. The collective knowledge of protein primary structures is

deposited in the manually curated SWISS-PROT data bank [2], which contains

about 400,000 distinct entries, and the computer-curated UNI-PROT data bank

[31], which contains about 6,000,000 entries. These data are readily accessible at

www.ebi.ac.uk/swissprot and www.uniprot.org, respectively. The col-

lective knowledge of protein tertiary structure is deposited in the Protein Data

Bank (PBD) [3], which contains roughly 55,000 proteins at this moment, where

the atomic locations of each of the constituent atoms of each of these proteins is

recorded; each entry in the PDB, i.e., each protein, thus comprises a vast amount

of data. Atomic locations in the PDB should be taken with an experimental un-

certainty of 0.2 Å, and the conformational angles ' and  computed from them

should be taken with an experimental uncertainty of 15ı–20ı; however, the unit

displacement vectors of bond axes along the backbone, upon which our model is

based, are substantially better determined [11]. It is worth emphasizing that the

quality of data in the PDB varies wildly from one entry to another, so these nomi-

nal experimental thresholds give only a lower bound to the indeterminacy.

Upon postulating definitions of the various secondary structure elements in terms

of properties of the atomic locations, protein secondary structure can be calculated

from tertiary structure. A standard such method is called the Dictionary of Sec-

ondary Structures for Proteins (DSSP) [17], and proprietary software for these cal-

culations and DSSP files for each PDB entry can be found at http://swift.

cmbi.ru.nl/gv/dssp. Hydrogen bond strengths and various conformational

angles are also output as part of the calculations of DSSP.

4 Other methods [19, 20] of determining hydrogen bonds are also employed.
5 This is a slight abuse of terminology as biologists might call this rather “supersecondary struc-

ture”; we shall explain this distinction further when it is appropriate.
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2 Fatgraphs

2.1 Surfaces

According to the classification of surfaces [21], a compact and connected surface

F is uniquely determined up to homeomorphism by the specification of whether it

is orientable together with its genus g D g.F / and number r D r.F / of boundary

components, or equivalently, by either g or r and its Euler characteristic

� D �.F / D
(
2 � 2g � r if F is orientable;

2 � g � r if F is nonorientable:

It is useful to define the modified genus of a connected surface F to be

g� D g�.F / D
(
g if F is orientable;
g
2

if F is nonorientable;

so the formula � D 2 � 2g� � r holds in either case.

Recall [21] that the orientation double cover of a surface F is the oriented sur-

face zF together with the continuous map p W zF ! F so that for every point x 2 F
there is a disk neighborhood U of x in F , where p�1.U / consists of two com-

ponents on each of which p restricts to a homeomorphism and where the further

restrictions of p to the boundary circles of these two components give both possi-

ble orientations of the boundary circle of U . Such a covering p W zF ! F always

exists, and its properties uniquely determine zF up to homeomorphism and p up

to its natural equivalence. In particular, if F is connected and orientable, then zF
has two components with opposite orientations, each of which is identified with F

by p. Furthermore, provided F is connected, F is nonorientable if and only if zF
is connected, and a closed curve in F lifts to a closed curve in zF if and only if a

neighborhood of it in F is homeomorphic to an annulus as opposed to a Möbius

band.

2.2 Fatgraphs and Their Associated Surfaces

Consider a finite graph G in the usual sense of the term comprised of vertices

V D V.G/ and edges E D E.G/ that do not contain their endpoints and where

an edge is not necessarily uniquely determined by its endpoints; in other words,

G is a finite one-dimensional CW complex. Our standard notation will be v D
v.G/ D #V and e D e.G/ D #E, where #X denotes the cardinality of a set X . To

avoid cumbersome cases in what follows, we shall assume that no component of

G consists of a single vertex or a single edge with distinct endpoints. Removing a

single point from each edge produces a subspace of G, each component of which

is called a half-edge. A half-edge that contains u 2 V in its closure is said to be

incident on u, and the number of distinct half-edges incident on u is the valence

of u.
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A fattening on G is the specification of a cyclic ordering on the half-edges inci-

dent on u for each u 2 V , and an X -coloring on G is a function E ! X for any

set X .

A fatgraph G is a graph endowed with a fattening together with a coloring by a

set with two elements, where we shall refer to the two colors on edges as “twisted”

and “untwisted.” A fatgraph G uniquely determines a surface F.G/ with boundary

as follows:

FIGURE 2.1. The polygon Pu associated with a vertex u.

CONSTRUCTION 2.1 For each vertex u 2 V in G of valence k � 2, we associate

an oriented surface diffeomorphic to a polygon Pu of 2k sides containing in its in-

terior a single vertex of valence k. Each edge incident on this vertex is also incident

on a univalent vertex contained in every other side of Pu, and these are identified

with the half-edges of G incident on u so that the induced counterclockwise cyclic

ordering on the boundary of Pu agrees with the fattening of G about u. For a ver-

tex u of valence k D 1, the corresponding surface Pu contains u in its boundary.

See Figure 2.1. The surface F.G/ is the quotient of the disjoint union
F
u2V Pu,

where the frontier edges, which are oriented with the polygons on their left, are

identified by a homeomorphism if the corresponding half-edges lie in a common

edge of G; this identification of oriented segments is orientation preserving if and

only if the edge is twisted. The graphs in the polygons Pu for u 2 V combine

to give a fatgraph embedded in F.G/ with its univalent vertices in the boundary,

which is identified with G in the natural way so that we regard G � F.G/.

Our standard notation will be to set

r.G/ D r.F.G// (number of boundary components of F.G/);

g�.G/ D g�.F.G// (modified genus of F.G/):

It is often convenient to regard a fatgraph more pictorially by considering the planar

projection of a graph embedded in 3-space, where the cyclic ordering is given near

each vertex by the counterclockwise ordering in the plane of projection and edges

can be drawn with arbitrary under/over crossings; we also depict untwisted edges

as ordinary edges and indicate twisted edges with an icon �, or more generally,

take this as defined modulo 2 so that an even number of icons � represents an
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FIGURE 2.2. The surface associated to a fatgraph.

untwisted edge and an odd number represents a twisted edge. Several examples of

fatgraphs and their corresponding surfaces are illustrated in Figure 2.2, where the

bold lines indicate the planar projection of the fatgraph, the dotted lines indicate

the gluing along edges of polygons, and the further notation in the figure will be

explained later.

The graph G is evidently a strong deformation retract of F.G/, so the Euler

characteristic is �.F.G// D �.G/ D v.G/� e.G/, and the boundary components

of F.G/ are composed of the frontier edges of
F
u2V Pu that do not correspond to

half-edges of G.

PROPOSITION 2.2 Suppose that G is a fatgraph and X;Y � E.G/ are disjoint

collections of edges. Change the color, twisted or untwisted, of the edges in X

and delete from G the edges in Y to produce another fatgraph G0, whose cyclic

orderings on half-edges are induced from those on G in the natural way. Then

jr.G/ � r.G0/j � #X C #Y .

PROOF: By the triangle inequality, it suffices to treat the case that X [ Y D
ff g, and we set r D r.G/. If f 2 E.G/ is incident on a univalent vertex, then

neither changing the color of nor deleting f alters r , so we may assume that this is

not the case. Consider an arc a properly embedded in F.G/ meeting f in a single

transverse intersection and otherwise disjoint from G. Rather than changing the

color on f to produce G0, let us instead cut F.G/ along a and then reglue along the

two resulting copies of a, reversing orientation to produce a surface homeomorphic

to F.G0/. If the endpoints of a occur in a common boundary component of F.G/,

then the change of color on f either leaves r invariant or increases it by 1, and

if they occur in different boundary components, then the change of color on f

necessarily decreases r by 1. For the remaining case, rather than removing the

edge f to produce G0, let us instead consider cutting F.G/ along a to produce a

surface homeomorphic to F.G0/. If the endpoints of a occur in the same boundary

component of F.G/, then cutting on a either leaves r invariant or increases it by 1,
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and if they occur in different boundary components, then the cut on a decreases r

by 1. �

We say that a fatgraph G is untwisted if all of its edges are untwisted, and this

is evidently a sufficient but not a necessary condition for F.G/ to be orientable.

Remark 2.3. Suppose that G is an untwisted fatgraph. Let us emphasize that the

genus of F.G/ is not the classical genus of the underlying graph, i.e., the least

genus orientable surface in which the underlying graph can be embedded. Rather,

the classical genus of the underlying graph is the least genus of an orientable sur-

face F.G/ arising from all possible fattenings on the underlying graph.

We say that two fatgraphs G1 and G2 are strongly equivalent if there is an iso-

morphism of the graphs underlying G1 and G2 that respects the cyclic orderings

and preserves the coloring and that they are equivalent if there is a homeomor-

phism from F.G1/ to F.G2/ that maps G1 � F.G1/ to G2 � F.G2/. It is clear

that strong equivalence implies equivalence and that equivalence implies that the

corresponding surfaces are homeomorphic; neither converse holds in general.

Given a vertex u of G, define the vertex flip of G at u by reversing the cyclic

ordering on the half-edges incident on u and adding another icon � to each half-

edge incident on u. In particular, a vertex flip on a univalent vertex simply adds an

icon � to the edge incident upon it.

PROPOSITION 2.4 Two untwisted fatgraphs are equivalent if and only if they are

strongly equivalent. Two arbitrary fatgraphs G1 and G2 are equivalent if and only

if there is a third fatgraph G that arises from G1 by a finite sequence of vertex flips

so that G and G2 are strongly equivalent. In particular, if G arises from G1 by a

vertex flip, then G and G1 are equivalent.

PROOF: In case G1 and G2 are untwisted, a homeomorphism from F.G1/ to

F.G2/ mapping G1 to G2 restricts to a strong equivalence of G1 and G2, and the

converse follows by construction in any case, as already observed, thus proving the

first assertion.

The third assertion follows since a flip on a vertex u ofG1 corresponds to simply

reversing the orientation of the polygon Pu in the construction of F.G/, i.e., in our

graphical depiction, removing the neighborhood of u from the plane of projection,

turning it upside down in 3-space, and then replacing it in the plane of projection

at the expense of twisting one further time each incident half-edge of G. This

evidently extends to a homeomorphism of F.G1/ to F.G/ that maps G1 to G but

does not preserve coloring.

Since strong equivalence implies equivalence by construction and equivalence

of fatgraphs is clearly a transitive relation, if there is such a fatgraph G as in the

statement of the proposition, then G1 and G2 are indeed equivalent. For the con-

verse, we may and shall assume that G1 and G2 are connected.

Consider a fatgraph G with v vertices and e edges, and choose a maximal tree

T of G. There are 1��.G/ D 1� vC e edges in G �T since we may collapse T
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to a point without changing v� e, which is therefore the Euler characteristic of the

collapsed graph comprised of a single vertex and one edge for each edge of G�T .

We claim that there is a composition of flips of vertices in G that results in a

fatgraph with any specified twisting on the edges in T . To see this, consider the

collection of all functions from the set of edges of G to Z=2, a set with cardinal-

ity 2e . Vertex flips act on this set of functions in the natural way, and there are

evidently 2v possible compositions of vertex flips. The simultaneous flip of all

vertices of G acts trivially on this set of functions and corresponds to reversing the

cyclic orderings at all vertices, so only 2v�1 such compositions may act nontriv-

ially. Insofar as 2e=2v�1 D 21�vCe and there are 1� vC e edges of G �T by the

previous paragraph, the claim follows.

Finally, suppose that G1 and G2 are equivalent and let � W F.G1/ ! F.G2/

be a homeomorphism of surfaces that restricts to a homeomorphism of G1 to G2.

Performing a vertex flip on G1 and identifying edges before and after in the natu-

ral way produces a fatgraph in which T is still a maximal tree and which is again

equivalent to G2, according to previous remarks, by a homeomorphism still de-

noted �, which maps T to the maximal tree �.T / � G2. By the previous para-

graph, we may apply a composition of vertex flips to G1 to produce a fatgraph G

so that an edge of the maximal tree T � G is twisted if and only if its image under

� is twisted.

Adding an edge ofG�T to T produces a unique cycle inG, and a neighborhood

of this cycle in F.G/ is either an annulus or a Möbius band with a similar remark

for edges ofG2��.T /. Since � restricts to a homeomorphism of the corresponding

annuli or Möbius bands inF.G/ and F.G2/, an edge ofG�T is twisted if and only

if its image under � is twisted. It follows that G and G2 are strongly equivalent as

desired. �

2.3 Fatgraphs and Permutations

We shall adopt the standard notation for a permutation on a set S writing .s1; s2;

: : : ; sk/ for the cyclic permutation s1 7! s2 7! � � � 7! sk 7! s1 on distinct elements

s1; s2; : : : ; sk 2 S , called a transposition if k D 2, and shall compose permutations

� and � on S from right to left, so that � ı �.s/ D �.�.s//. An involution is a

permutation � so that � ı � D 1S , where 1S denotes the identity map on S . Two

permutations are disjoint if they have disjoint supports, so disjoint permutations

necessarily commute.

Fix a fatgraph G. A stub of G is a half-edge that is not incident on a univalent

vertex of G. There are exactly two nonempty connected fatgraphs with no stubs,

namely, the two we have proscribed consisting of a single vertex with no incident

half-edges and a single edge with distinct endpoints.

A fatgraph G determines a triple .�.G/; �u.G/; �t .G// of permutations on its

set S D S.G/ of stubs as follows:

CONSTRUCTION 2.5 For each vertex u of G of valence k � 2 with incident stubs

s1; s2; : : : ; sk.u/ in a linear ordering compatible with the cyclic ordering given by
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the fattening on G, consider the cyclic permutation .s1; s2; : : : ; sk.u//. By con-

struction, the cyclic permutations corresponding to distinct vertices of G are dis-

joint. The composition

�.G/ D
Y

fvertices u 2 V W
u has valence � 2g

.s1; s2; : : : ; sk.u//

is thus well-defined independently of the order in which the product is taken, and

likewise for the compositions of transpositions

�u.G/ D
Y

fpairs of distinct stubs h; h0 contained
in some untwisted edge of Gg

.h; h0/;

�t .G/ D
Y

fpairs of distinct stubs h; h0 contained
in some twisted edge ofGg

.h; h0/:

Notice that �.G/ has no fixed points because we have taken the product over

vertices of valence at least 2, and �u.G/ and �t .G/ are disjoint involutions whose

fixed points are the stubs corresponding to the univalent vertices of G.

For example, enumerating the stubs of the fatgraphs G1, G2, and G3 as illus-

trated in Figure 2.2, we have:

�.G1/ D �.G2/ D �.G3/ D .1; 2; 3/.4; 5; 6/.7; 8; 9/;

�u.G1/ D .2; 8/.3; 6/.4; 7/.5; 9/; �t .G1/ D 1S ;

�u.G2/ D .2; 8/.3; 6/.4; 9/.5; 7/; �t .G2/ D 1S ;

�u.G3/ D .2; 8/.3; 6/.5; 9/; �t .G3/ D .4; 7/:

Remark 2.6. There is another treatment of fatgraphs as triples of permutations on

the set of all half-edges instead of stubs, where the univalent vertices are expressed

as fixed points of the analogue of � . Moreover, there is a transposition in the

analogue of �u ı �t corresponding to each half-edge, but the formulation we have

given here, which treats univalent vertices as “endpoints of half-edges rather than

endpoints of edges,” does not require these additional transpositions. Since our

model will have a plethora of univalent vertices, we prefer the more “efficient”

version described above, which is just a notational convention for permutations.

Define a labeling on a fatgraph G with N stubs to be a linear ordering on its

stubs, i.e., a bijection from the set of stubs of G to the set f1; 2; : : : ; N g.

PROPOSITION 2.7 Fix some natural number N � 2. The map G 7! .�.G/;

�u.G/; �t .G// of Construction 2.5 induces a bijection between the set of strong

equivalence classes of fatgraphs with N stubs and the set of all conjugacy classes

of triples .�; �u; �t / of permutations on N letters, where � is fixed-point free and

�u and �t are disjoint involutions.
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PROOF: The assignment G 7! .�.G/; �u.G/; �t .G// induces a mapping from

the set of labeled fatgraphs with N stubs to the set of triples of permutations on

f1; 2; : : : ; N g in the natural way. This induced mapping has an obvious two-sided

inverse, where the labeled fatgraph is constructed directly from the triple of permu-

tations; we are here using our convention that no component of G is a single vertex

or a single edge with distinct univalent endpoints. A strong equivalence of labeled

fatgraphs induces a bijection of f1; 2; : : : ; N g that conjugates their corresponding

triples of permutations to one another and conversely, so the result follows. �

CONSTRUCTION 2.8 Suppose that G is a fatgraph with triple .�; �u; �t / of per-

mutations on its set S of stubs determined by Construction 2.5. Construct a new

set xS D fxs W s 2 Sg and a new permutation x� on xS where there is one k-cycle

.xsk ; : : :xs2;xs1/ in x� for each k-cycle .s1; s2; : : : ; sk/ in � . Construct from �u a new

permutation x�u on xS , where there is one transposition .xs1;xs2/ in x�u for each trans-

position .s1; s2/ in �u, and construct yet another new permutation x�t on S t xS from

�t , where there are two transpositions .xs1; s2/ and .s1;xs2/ in z�t for each transposi-

tion .s1; s2/ in �t . Finally, define permutations on S t xS by

� 0 D � ı x�;
� 0 D �u ı x�u ı x�t ;

where the order of composition on the right-hand side is immaterial because the

permutations are disjoint in each case.

PROPOSITION 2.9 Suppose that Construction 2.5 assigns the triple .�; �u; �t / of

permutations to the fatgraph G with set S of stubs, let � 0 and � 0 be determined

from them according to Construction 2.8, and consider the untwisted fatgraph G0
determined by Construction 2.5 from the triple .� 0; � 0; 1St xS /. Then F.G0/ is the

orientation double cover of F.G/, and the covering transformation is described

by s $ xs. In particular, provided F.G/ is connected, F.G0/ is connected if and

only if F.G/ is nonorientable. Furthermore, there is a one-to-one correspondence

between the boundary components of F.G0/ and the orientations on the bound-

ary components of F.G/I i.e., F.G0/ has twice as many boundary components

as F.G/.

PROOF: The surface F.G0/ has the required properties of the orientation dou-

ble cover by construction, so the first two claims follow from the general principles

articulated in Section 2.1. Since each boundary component of F.G/ evidently has

a neighborhood in F.G/ homeomorphic to an annulus, the final assertion follows

as well. �

PROPOSITION 2.10 Adopt the hypotheses and notation of Proposition 2.9 and con-

sider the composition �0 D � 0 ı � 0.
(i) The orientations on the boundary components of F.G/ are in one-to-one

correspondence with the cycles of �0. More explicitly, suppose that

s11s
2
1s
1
2s
2
2 � � � s1ns2n
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is the ordered sequence of stubs traversed by an oriented edge-path in G repre-

senting a boundary component of F.G/ with some orientation, where s1j ; s
2
j are

contained in a common edge of G and perhaps s1j D s2j if they are contained in an

edge incident on a univalent vertex for j D 1; 2; : : : ; n. Erasing the bars on ele-

ments from the corresponding cycle of �0 produces the sequence .s21 ; s
2
2 ; : : : ; s

2
n/ of

stubs of G serially traversed by the corresponding oriented boundary component

of F.G/, called a reduced cycle of �0.
(ii) There is the following algorithm to determine whether G is connected in

terms of the associated triple .�; �u; �t / of permutations. For any linear ordering

on S , let X be the subset of S in the reduced cycle of �0 containing the first stub.

(*) If X D S , then G is connected, and the algorithm terminates. If X ¤ S , then

consider the existence of a least stub s 2 X � S so that �.s/ 2 X . If there is no

such stub s, then G is not connected, and the algorithm terminates. If there is such

a stub s, then update X by adding to it the subset of S in the reduced cycle of �0
containing s. Go to (*).

PROOF: Let us first consider the case that �t D 1St xS ; i.e., G is untwisted, and

set � D �u.

For the first part, consider a stub s ofG and the effect of � ı� on s. The stub s is

contained in an edge incident on a univalent vertex if and only if s is a fixed point

of � by construction, and �.s/ D �.�.s// in this case is the stub following s in

the cyclic ordering at the nonunivalent endpoint of this edge. In the contrary case

that s is not a fixed point of � , the stubs s and �.s/ are half-edges contained in a

common edge of G, and s; �.s/; �.s/ D �.�.s// is likewise a consecutive triple of

stubs occurring in an edge-path of G corresponding to a boundary component of

F.G/ oriented with F.G/ on its left. It follows that a cycle of � ı � is comprised

of every other stub traversed by an edge-path in G that corresponds to a boundary

component of F.G/ oriented in this way, proving the first part.

For the second part, the collection of stubs in X always lies in a single com-

ponent of G in light of the previous remarks, so if at some stage of the algorithm

X D S , then G is indeed connected. If at some stage of the algorithm there is

no stub s with �.s/ 2 X , then X is comprised of all the stubs in some component

of G in light of the previous discussion, so X ¤ S in this case implies that G has

at least two components.

Turning now to the general case, F.G0/ is the orientation double cover of F.G/,

and the induced projection map on stubs just erases the bars by Proposition 2.9.

The proof in this case is therefore entirely analogous. �

To exemplify these constructions and results for the fatgraphs illustrated in Fig-

ure 2.2, we find

�.G1/ ı �u.G1/ D .5; 7/.3; 4; 8/.1; 2; 9; 6/;

�.G2/ ı �u.G2/ D .1; 2; 9; 5; 8; 3; 4; 7; 6/:
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FIGURE 2.3. Example of the orientation double cover.

Thus, r.G1/ D 3 and r.G2/ D 1, and since �.G1/ D �.G2/ D �1, the (modified)

genera are g�.G1/ D 0 and g�.G2/ D 1.

As to G3, according to Construction 2.8 and Proposition 2.9, the permutations

for the orientation double cover are given by

� 0 D .1; 2; 3/.4; 5; 6/.7; 8; 9/.x3;x2;x1/.x6;x5;x4/.x9;x8;x7/;
� 0 D .2; 8/.3; 6/.5; 9/.x2;x8/.x3;x6/.x5;x9/.4;x7/.x4; 7/:

The untwisted fatgraph G0
3 corresponding to .� 0; � 0; 1S.G3/t xS.G3/

/ is illustrated in

Figure 2.3, and it is connected reflecting the fact that F.G3/ is nonorientable. The

cycles of �0 D � 0 ı � 0 are given by

.1; 2; 9; 6/; .x1;x3;x5;x8/ and .x2;x7; 5; 7;x6/; .3; 4;x9;x4; 8/
corresponding to the oriented boundary cycles of G0

3, and the reduced cycles of �0
are therefore

.1; 2; 9; 6/; .1; 3; 5; 8/ and .2; 7; 5; 7; 6/; .3; 4; 9; 4; 8/;

each pair corresponding to the two orientations of a single boundary component of

F.G3/. It follows that r.G3/ D 2 and thus g�.G3/ D 1
2

since again �.G3/ D �1.

2.4 Fatgraphs on the Computer

Given a linear ordering on the vertices of a fatgraph, we may choose an a priori

labeling on it that is especially convenient, where the stubs about a fixed vertex

are consecutive and the stubs about each vertex precede those of each succeeding

vertex as in Figure 2.2. Owing to Proposition 2.7, the strong equivalence class

of a fatgraph G with set S of stubs can conveniently be stored on the computer

as a triple .�; �u; �t / of permutations on the labels f1; 2; : : : ; #Sg of stubs. The

number of nonunivalent vertices of G is the number of disjoint cycles in � , the

number of edges of G that are not incident on a univalent vertex is the number of

disjoint transpositions in �u ı�t , and the Euler characteristic of G or F.G/ is given

by the former minus the latter. Construction 2.8 provides an algorithm, which

is easily implemented on the computer, to produce a triple .� 0; � 0; 1St xS / from

.�; �u; �t / that determines an untwisted fatgraph G0 whose corresponding surface
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F.G0/ is the orientation double cover ofF.G/ according to Proposition 2.9. Propo-

sition 2.10(i) provides an algorithm to determine the compatibly oriented bound-

ary components of F.G0/ and hence the boundary components of F.G/ itself, and

Proposition 2.10(ii) then gives an algorithm to determine whether G0 is connected

from this data, where both of these methods are again easily implemented on the

computer.

In our applications of these techniques, the fatgraph G will typically be con-

nected as we now assume. The orientability of F.G/ can thus be ascertained from

the connectivity of F.G0/. The boundary components of F.G/, and their num-

ber r in particular, can be determined, as above, and hence the modified genus

g� D .2 � r � �/=2 is likewise easily computed. Thus, the topological type of

F.G/ can be determined algorithmically on the computer from the triple .�; �u; �t /

of permutations for a connected fatgraph G, and the particular edge-paths inG cor-

responding to boundary components of F.G/ can be ascertained from the cycles

of � 0 ı � 0.

3 The Model

We take as input to the method the specification for a polypeptide at equilibrium

in some environment the following data:

Input (i): the primary structure given as a sequence Ri of letters in the 20-

letter alphabet of amino acids for i D 1; 2; : : : ; L,

Input (ii): the specification of hydrogen bonding among the various nitrogen

and oxygen atoms fNi ;Oi W i D 1; 2; : : : ; Lg described as a collection B

of pairs .i; j / indicating that Ni � Hi is hydrogen bonded to Oj , where

i; j 2 f1; 2; : : : ; Lg,

Input (iii): the displacement vectors Exi from Ci to NiC1, Eyi from C˛i to Ci ,

and Éi from NiC1 to C˛iC1 in each peptide unit for i D 1; 2; : : : ; L � 1.

These data, which we shall term a polypeptide structure P , are either immediately

given in or readily derived from the PDB and DSSP files for a folded protein.

Practical and other details concerning the determination of these inputs will be

discussed in Section 5.1.

A fatgraph is constructed from a polypeptide structure in two basic steps: mod-

eling the backbone using the planarity of the peptide units and the conformational

geometry along the backbone based on input (iii), and then adding edges to the

model of the backbone for the hydrogen bonds based on inputs (ii) and (iii); finally,

certain edges or vertices of the constructed fatgraph may be labeled by residues or

their constituent atoms using input (i).

Roughly, inputs (i)–(iii) correspond to the primary, secondary, and tertiary struc-

ture of the polypeptide. We must emphasize that the basic fatgraph we construct

actually depends only on inputs (ii)–(iii), and input (i) is used only to label it. In

a more refined all-atom version of our construction discussed later, the primary

structure plays a more fundamental role and does affect the construction of the



FATGRAPH MODELS OF PROTEINS 1267

fatgraph. From a more philosophical point of view, one could argue that even the

refined fatgraph structure is determined by primary sequence, so a hidden empirical

dependence on primary structure is already manifest in our basic fatgraph model.

We shall assume that input (ii) is consistently based upon fixed energy thresh-

olds with each nitrogen or oxygen atom involved in at most one hydrogen bond

(so-called “simple” hydrogen bonding) and relegate the discussion of more general

models (with so-called bifurcated hydrogen bonding) to Section 3.4. The assump-

tion thereby imposed on B in input (ii) is that if .i; j /; .i 0; j 0/ 2 B, then i D i 0 if

and only if j D j 0.
To each peptide unit is associated a fatgraph building block as illustrated in

Figure 3.1. These building blocks are concatenated to produce a model of the

backbone as illustrated in Figure 3.2, where the determination of whether the edge

connecting the two building blocks is twisted is based on input (iii). Specifically,

we shall associate to each peptide unit a positively oriented orthonormal 3-frame

determined from input (iii). A pair of consecutive peptide units thus gives a pair of

such 3-frames, and there is a unique element of the Lie group SO.3/ mapping one

to the other. Using this, we may assign an element of SO.3/ to each oriented edge

of the graph underlying the fatgraph model and thereby determine an “SO.3/ graph

connection” (cf. the next section) on the underlying graph, which is a fundamental

and independently interesting aspect of our constructions. This assignment is dis-

cretized using the bi-invariant metric on SO.3/ to determine twisting and define the

fatgraph model of the backbone, where there are special considerations to handle

the case of the cis-conformation, which can be detected using input (iii).

Edges are finally added to this model of the backbone in the natural way, one

edge for each hydrogen bond in input (ii); see Figure 3.4. These added edges for

hydrogen bonds may be twisted or untwisted, and this determination is again made

by considering the SO.3/ graph connection.

Section 3.1 discusses generalities about 3-frames and SO.3/ graph connections.

Section 3.2 details the concatenation of fatgraph building blocks to construct the

model of the backbone, and Section 3.3 explains the addition of edges correspond-

ing to hydrogen bonds, thus completing the description of the basic model. The

final Section 3.4 discusses the general model with bifurcated hydrogen bonds plus

other innovations and extensions of the method. An alternative to the basic model,

which gives an equivalent but not strongly equivalent fatgraph that is arguably more

natural than the basic model, is discussed in Appendix A, and the standard motifs

of polypeptide secondary structure are described in the alternative model.

3.1 SO.3/ Graph Connections and 3-Frames

The Lie group SO.3/ is the group of 3 � 3 matrices A whose entries are real

numbers satisfying AAT D I and det.A/ D 1, where AT denotes the transpose of

A and I denotes the identity matrix. A metric d W SO.3/�SO.3/ ! R on SO.3/ is

said to be bi-invariant provided d.CAD;CBD/ D d.A;B/ for any A;B;C;D 2
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SO.3/. The Lie group SO.3/ supports the unique (up to scale) bi-invariant metric

d.A;B/ D �1
2

trace.log.ABT//2;

where the trace of a matrix is the sum of its diagonal entries and the logarithm is

the matrix logarithm [6].

PROPOSITION 3.1 For any A1; A2 2 SO.3/, we have d.A1; I / < d.A2; I / if and

only if trace.A2/ < trace.A1/, where d is the unique bi-invariant metric on SO.3/.

PROOF: For any A 2 SO.3/, there is B 2 SO.3/ so that

BABT D
0
@ cos � sin � 0

� sin � cos � 0

0 0 1

1
A

for some angle 0 � � � � ; cf. [6]. It follows from bi-invariance that

d.A; I / D d.BABT; BIBT/ D d.BABT; I / D d.BAB�1; I /;
i.e., distance to I is a conjugacy invariant, and from the formula for d that d.A; I /

is a monotone increasing function of � . On the other hand,

trace.A/ D trace.BAB�1/ D trace.BABT/ D 1C 2 cos �

is a monotone decreasing function of � that is also a conjugacy invariant, and the

result follows. �

A (positively oriented) 3-frame is an ordered triple F D .Eu1; Eu2; Eu3/ of three

mutually perpendicular unit vectors in R
3 so that Eu3 D Eu1 � Eu2. For example, the

standard unit basis vectors .Ei ; Ej ; Ek/ give a standard 3-frame.

PROPOSITION 3.2 An ordered pair F D .Eu1; Eu2; Eu3/ and G D .Ev1; Ev2; Ev3/ of

3-frames uniquely determines an element D 2 SO.3/, where D Eui D Evi for i D
1; 2; 3. Furthermore, the trace of D is given by Eu1 � Ev1 C Eu2 � Ev2 C Eu3 � Ev3, where

“�” is the usual dot product of vectors in R
3.

PROOF: Express

Eui D a1iEi C a2i Ej C a3i Ek; Evi D b1iEi C b2i Ej C b3i Ek;
for i D 1; 2; 3, as linear combinations of Ei , Ej , and Ek. The matrices A D .aij / and

B D .bij / thus map Ei ; Ej ; Ek to Eu1; Eu2; Eu3 and Ev1; Ev2; Ev3, respectively. It follows

that the matrix D D BA�1 indeed has the desired properties. IfD0 is another such

matrix, then D�1D0 must fix each vector Eu1; Eu2; Eu3, and hence must agree with

the identity proving the first part. For the second part since trace is a conjugacy

invariant, we have

trace.BA�1/ D trace.A�1B/ D trace.ATB/ D
3X
iD1

Eui � Evi

as was claimed. �
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FIGURE 3.1. Fatgraph building block.

Suppose that � is a graph. An SO.3/ graph connection on � is the assignment of

an element Af 2 SO.3/ to each oriented edge f of � so that the matrix associated

to the reverse of f is the transpose of Af . Two such assignments Af and Bf are

regarded as equivalent if there is an assignment Cu 2 SO.3/ to each vertex u of

� so that Af D CuBf C
�1
w for each oriented edge f of � with initial point u and

terminal point w. An SO.3/ graph connection on � determines an isomorphism

class of flat principal SO.3/ bundles over �; cf. [9]. Given an oriented edge-path 	

in � described by consecutive oriented edges f0 � f1 � � � � � fkC1, where the

terminal point of fi is the initial point of fiC1 for i D 0; 1; : : : ; k, the parallel

transport operator of the SO.3/ graph connection along 	 is given by the matrix

product �.	/ D Af0
Af1

� � �Afk
2 SO.3/. In particular, if the terminal point of

fk agrees with the initial point of f0 so that 	 is a closed oriented edge-path, then

trace.�.	// is the holonomy of the graph connection along 	 and is well-defined

on the equivalence class of graph connections.

3.2 Modeling the Backbone

In this section, we shall define our model T .P / for the backbone of a polypep-

tide structure P . To this end, consider the fatgraph building block depicted in Fig-

ure 3.1, which consists of a horizontal segment and two vertical segments joined

to distinct interior points of the horizontal segment, the vertical segment on the

left lying above and on the right below the horizontal segment. Each such build-

ing block represents a peptide unit. This is also indicated in the figure, where the

left and right endpoints of the horizontal segment represent C˛i and C˛iC1 and are

labeled by the corresponding residue Ri and RiC1, respectively, the left and right

trivalent vertices represent Ci and NiC1, respectively, and the endpoints of the ver-

tical segments above and below the horizontal segment represent Oi and HiC1,

respectively. In the case that RiC1 is proline, the endpoint of the vertical segment

below the horizontal segment instead represents the non-alpha carbon atom bonded

to NiC1 in the proline ring. In the case of cis-proline as depicted in Figure 3.1—

or indeed any other peptide unit in the cis-conformation—a more geometrically

accurate building block would have the vertical segment on the right also lying

above the horizontal segment as indicated by the skinny line in the figure, but we

nevertheless use a single building block in all cases for convenience.

Fix a polypeptide structure P and start by defining a fatgraph T 0.P / as the con-

catenation of L� 1 copies of this fatgraph building block, where the two univalent
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FIGURE 3.2. Concatenating fatgraph building blocks.

vertices representing C˛iC1 are identified so that the two incident edges are com-

bined to form a single horizontal edge of T 0 called the .i C 1/st alpha carbon

linkage for i D 1; 2; : : : ; L � 2, as illustrated in Figure 3.2. Let us also refer to the

horizontal edges incident on the vertex corresponding to C˛1 and C˛
L

as the first and

Lth alpha carbon linkages, respectively, so the i th alpha carbon linkage is naturally

labeled by the amino acid Ri for i D 1; 2; : : : ; L. Thus, T 0.P / consists of a long

horizontal segment composed of 2L � 1 horizontal edges, L of which are alpha

carbon linkages and L�1 of which correspond to peptide bonds, with 2L�2 short

vertical edges attached to it alternately lying above and below the long horizontal

segment. We shall define the fatgraph T .P / by specifying twisting on the alpha

carbon linkages of T 0.P /.

CONSTRUCTION 3.3 Associate a 3-frame Fi D .Eui ; Evi ; Ewi / to each peptide unit

using input (iii) by setting

Eui D 1

jExi j Exi ;

Evi D 1

j Eyi � .Eui � Eyi/ Eui j. Eyi � .Eui � Eyi / Eui /;

Ewi D Eui � Evi ;
for i D 1; 2; : : : ; L � 1, where jEt j denotes the norm of the vector Et .

Thus, Eui is the unit displacement vector from Ci to NiC1, Evi is the projection of

Eyi onto the specified perpendicular of Eui in the plane of the peptide unit, and Ewi is

the specified normal vector to this plane.

According to Proposition 3.2, there is a unique element Ai 2 SO.3/ mapping

Fi to FiC1 for i D 1; 2; : : : ; L � 2. Define the backbone graph connection on

the graph underlying T 0.P / to take value I on all oriented edges except on the

i th alpha carbon linkage oriented from its endpoint representing Ni to its endpoint

representing Ci , where it takes value Ai�1 for i D 2; 3; : : : ; L � 1.

We shall discretize the backbone graph connection to finally define the backbone

fatgraph model T .P /. To this end, in addition to the 3-frames Fi D .Eui ; Evi ; Ewi /
of Construction 3.3, we consider also the 3-frames Gi D .Eui ;�Evi ;� Ewi /, which

correspond to simply turning Fi upside down by rotating through 180ı in 3-space

about the line containing Ci and NiC1 for i D 1; 2; : : : ; L � 1. Again, by the first
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part of Proposition 3.2, there is a unique element Bi 2 SO.3/ taking Fi to GiC1.

By construction, Ai also takes Gi to GiC1, and Bi takes Gi to FiC1.

CONSTRUCTION 3.4 For any polypeptide structure P , define the fatgraph T .P /

derived from T 0.P / by taking twisting only on certain of the alpha carbon linkages,

where the .i C 1/st alpha carbon linkage is twisted if and only if8̂̂̂
<̂
ˆ̂̂̂:

d.I;Bi / � d.I;Ai /

if the peptide unit before RiC1 is not in the cis-conformation;

d.I;Bi / � d.I;Ai /

if the peptide unit before RiC1 is in the cis-conformation;

for i D 1; 2; : : : ; L � 2, where d is the unique bi-invariant metric on SO.3/.

COROLLARY 3.5 The .iC1/st alpha carbon linkage of the backbone model T .P /

is twisted if and only if(
Evi � EviC1 C Ewi � EwiC1 � 0 if Eyi � Éi � 0;

Evi � EviC1 C Ewi � EwiC1 � 0 if Eyi � Éi < 0;
for i D 1; 2; : : : ; L � 2.

PROOF: According to Proposition 3.1, d.Ai ; I / � d.Bi ; I / if and only if

trace.Bi / � trace.Ai/. According to the second part of Proposition 3.2, we have

trace.Ai / D Eui � EuiC1 C Evi � EviC1 C Ewi � EwiC1;
trace.Bi / D Eui � EuiC1 � Evi � EviC1 � Ewi � EwiC1;

so that trace.Ai/ � trace.Bi / D 2.Evi � EviC1 C Ewi � EwiC1/.
Thus, if RiC1 is in the trans-conformation, then we twist the .i C 1/st alpha

carbon linkage if and only if Fi is closer to GiC1 than it is to FiC1 in the sense

that d.I;Ai / � d.I;Bi /, and this is our natural discretization of the backbone

graph connection in Construction 3.4 in this case. Clearly, RiC1 is in the cis-

conformation if and only if Eyi � Éi < 0 as determined by input (iii) so we twist

the .i C 1/st alpha carbon linkage only if d.I;Ai / � d.I;Bi /. To see that this

is the natural discretization of the backbone graph connection in this case, notice

that the 3-frame Fi in Construction 3.3 is determined using the displacement vec-

tors Exi from Ci to NiC1 and Eyi from C˛i to Ci , which are insensitive to whether

RiC1 is in the cis-conformation. It is therefore only upon exiting a cis-peptide

unit along the backbone that the earlier determination should be modified since the

latter displacement vector should be replaced by its antipode. �

Define the flip sequence of G.P / to be the word in the alphabet fF;Ng whose

i th letter is N if and only if the .i C 1/st alpha carbon linkage is untwisted for

i D 1; 2; : : : ; L.G/ � 2. The flip sequence thus gives a discrete invariant assigned

to each alpha carbon linkage derived from the conformational geometry along the
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backbone. The flip sequence can be determined directly from the conformational

angles along the backbone using the following result:

PROPOSITION 3.6 Under the idealized geometric assumptions of tetrahedral an-

gles among bonds at each alpha carbon atom and 120ı angles between bonds

within a peptide unit, the matrix A D Ai in Construction 3.4 can be calculated in

terms of the conformational angles ' D 'i and  D  i as follows:

A D B3.'/B2.' C  /

0
BB@

�1
2

p
3
2

0
p
3
2

1
2

0

0 0 �1

1
CCA ;

where

B3.'/ D

0
BBB@

2
3

� C2

3
C S2

6
�2�p

2C
3

C S2

4
p
3

�
2
�
CS

2
p
3

� S

3
p
2

�
2
�p

2C
3

� S2

4
p
3

�
2
3

� C2

3
� S2

6
�2�CS

6
C Sp

6

�
2
�
CS

2
p
3

C S

3
p
2

�
2
�
Sp
6

� CS
6

�
2
3

C C2

3
� S2

3

1
CCCA

for C D cos ', S D sin ', and

B2.' C  / D

0
B@1� 3

2
S2

p
3
2
S2

p
3CSp

3
2
S2 1 � 1

2
S2 �CS

�p
3CS CS 1 � 2S2

1
CA

for C D cos 'C 
2

, S D sin 'C 
2

.

Explicitly, this is the representative A D Ai in its conjugacy class for which the

3-frame vectors Eui D Ei , Evi D Ej , and Ewi D Ek in Construction 3.3 are given by the

standard unit basis vectors; i.e., this is the choice of so-called gauge fixing.

PROOF: Let 
 be an angle and Ev be a nonzero vector in R
3. We denote by .
; Ev/

the linear transformation R
3 ! R

3 that rotates R
3 through the angle 
 around the

line spanned by Ev in the right-handed sense in the direction of Ev. By following the

standard 3-frame along the backbone in the natural way one bond at a time, we find

A D B6.'; /B5.'; /B4.'; /B3.'/B2.'/B1.
�
3
/

where

B1.
/ D .
; Ek/; B2.'/ D .';B1.
�
3
/Ei/; B3.�/ D .� � �;B2.�/Ek/;

B4.'; / D . ;B3.'/B1.
�
3
/Ei/; B5.'; / D .2�

3
;�B4.'; /B3.'/B2.'/Ek/;

B6.'; / D .�;B5.'; /B4.'; /B3.'/B2.'/B1.
�
3
/ Ej /;

and where � D 2 arctan.
p
2/ is the tetrahedral angle � 109:5ı for which cos � D

�1
3

.

We observe that

B4.'; /B3.'/ D B3.'/B2. /
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FIGURE 3.3. Level sets of trace.A/ � trace.B/ on a Ramachandran plot.

whence

B4.'; /B3.'/B2.'/ D B3.'/B2.' C  /;

and therefore

A D B6.'; /B3.�/B2.' C  /B1.��
3
/:

Setting B0 D .�; Ej /, we conclude

A D B3.'/B2.' C  /B1.��
3
/B0;

which devolves after some computation to the given expression. �

Remark 3.7. It is interesting to graph the level sets of trace.A/ � trace.B/ on the

Ramachandran plot; i.e., the plot of pairs of conformational angles .'i ;  i / for

the entire CATH database [25] using Proposition 3.6 as depicted in Figure 3.3,

where the matrix B D Bi of Construction 3.3 is obtained from A D Ai in Propo-

sition 3.6 by precomposing it with rotation by � about Ei . In particular, the zero

level set fairly well avoids highly populated regions, so the case of near equality in

Construction 3.4 is a relatively rare phenomenon for proteins.6

3.3 Modeling Hydrogen Bonds

The fatgraph model T .P / of the backbone of a polypeptide structure P defined

in the previous section is here completed to our fatgraph model G.P /. Just as

in the previous section, we shall first define another fatgraph G0.P / from which

6 Indeed, further scrutiny of details not depicted in Figure 3.3 shows that the zero level set does

penetrate into conformations of “beta turns of types II and VI”; cf. the discussion of Figure A.3. This

could be further documented empirically, but we have not done so.
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FIGURE 3.4. Adding edges to T .P / for hydrogen bonds.

G.P / is derived by further twisting certain of its edges. As described in the pre-

vious section, T .P / consists of a long horizontal segment, certain of whose alpha

carbon linkages are twisted, together with small vertical segments alternately lying

above and below the long horizontal segment, where the .i C 1/st alpha carbon

linkage is labeled by its corresponding amino acid RiC1 for i D 1; 2; : : : ; L. The

endpoints of the vertical segments above and below the horizontal segment, respec-

tively, represent the atoms Oi and HiC1 except for the vertical segments below the

horizontal segment preceding an alpha carbon linkage labeled by proline, whose

endpoint represents the non-alpha carbon atom bonded to NiC1 in the correspond-

ing proline ring for i D 1; 2; : : : ; L � 1.

CONSTRUCTION 3.8 For each .i; j / 2 B in input (ii), adjoin an edge to T .P /

without introducing new vertices connecting the endpoints of short vertical seg-

ments corresponding to Hi and Oj to produce a fatgraph denoted G0.P /.

See Figure 3.4. It is important to emphasize that the relative positions of these

added edges corresponding to hydrogen bonds other than their endpoints are com-

pletely immaterial to the strong equivalence class of G0.P /. The edges of T .P /

corresponding to the non-alpha carbon atoms in a proline rings are never hydro-

gen bonded in our model. In the remaining extremely rare cases of nonproline

cis-conformations, the model is slightly inaccurate.

To complete the construction ofG.P /, it remains only to determine which edges

of the fatgraph G0.P / are twisted. To this end, suppose that .i; j / 2 B in input (ii).

According to our enumeration of peptide units, Hi occurs in peptide unit i � 1 and

Oj occurs in peptide unit j , and there are corresponding 3-frames

Fi�1 D .Eui�1; Evi�1; Ewi�1/;
Fj D .Euj ; Evj ; Ewj /;
Gj D .Euj ;�Evj ;� Ewj /;

from Construction 3.3.
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CONSTRUCTION 3.9 As before by the first part of Proposition 3.2, there are unique

Di;j ; Ei;j 2 SO.3/ taking Fi�1 to Fj ;Gj , respectively. An edge of G0.P / corre-

sponding to the hydrogen bond .i; j / 2 B is twisted in G.P / if and only if

d.I;Ei;j / � d.I;Di;j /;

where d is the unique bi-invariant metric on SO.3/.

As before, a short computation gives the following:

COROLLARY 3.10 The edge ofG.P / corresponding to the hydrogen bond .i; j / 2
B is twisted if and only if Evi�1 � Evi C Ewi�1 � Ewj � 0.

Remark 3.11. The backbone graph connection on the graph that underlies T .P /

clearly has trivial holonomy since T .P / is contractible. It extends naturally to

an SO.3/ graph connection on the graph underlying G.P /, where to the oriented

edge corresponding to the hydrogen bond connecting Ni � Hi and Oj , we assign

the unique element of SO.3/, whose existence is guaranteed by Proposition 3.2,

which maps Fi�1 to Fj for i D 2; 3; : : : ; L � 2. This graph connection on G.P /

also has trivial holonomy by construction. Our fatgraph model G.P / arises from

a discretization of this SO.3/ graph connection giving a Z=2 graph connection,

rotated so that the oriented edges with nontrivial holonomy are the twisted ones,

and this Z=2 graph connection on the graph underlying G.P / typically does not

have trivial holonomy.

3.4 Basic Model and Its Extensions

The previous section completed the definition of our basic fatgraph model G.P /

of a polypeptide structure P . Notice that hydrogen bonds and alpha carbon link-

ages are treated in precisely the same manner in this construction.

A crucial point in practice is that the polypeptide structure itself depends upon

data that must be considered as idealized for various reasons: proteins actually

occur in several closely related conformations, varying under thermal fluctuations,

for example, whose sampling is corrupted by experimental uncertainties as well as

errors. The fatgraph G.P / must therefore not be taken as defined absolutely, but

rather as defined only in some statistical sense as a family of fatgraphs fG.P / W
P 2 Pg based on a collection P of polypeptide structures that differ from one

another by a small number of such idealizations, uncertainties, or errors. Properties

of the fatgraph G.P / that we can meaningfully assign to the polypeptide structure

P must be nearly constant on P and lead to the notion of “robustness” of invariants

of G.P / as descriptors of P , which is discussed in Section 4. Nevertheless, the

construction of our model has been given based on the inputs above regarded as

exact and error free.

In particular, there is the tacit assumption that there is never equality in the

determination of whether to twist in Constructions 3.4. In practice, Evi � EviC1C Ewi �
EwiC1 D 0 never occurs exactly, but there is the real possibility that this condition

nearly holds; that is, we cannot reliably determine whether to twist if jEvi � EviC1 C
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Ewi � EwiC1j is below some small threshold because of experimental uncertainty;

cf. Remark 3.7. There are similar issues in the specification of which hydrogen

bonds exist in input (ii) based upon the possibly problematic exact atomic locations

from which the electrostatic potentials are inferred as well as whether to twist in

Construction 3.9.

However, there is the following control over the topological type of F.G.P //,

which will be the basis for several of the robust invariants of fatgraphs and resulting

meaningful descriptors of polypeptides studied in Section 4.

COROLLARY 3.12 Let P and P 0 be polypeptide structures with the same inputs (i)

but differing in inputs (ii)–(iii) in the determinations of the existence ofm hydrogen

bonds and of the twisting of n alpha carbon linkages or hydrogen bonds. Then

jr.G.P //� r.G.P 0//j � mC n.

PROOF: This is an immediate consequence of Proposition 2.2. �

There are several generalizations of the basic fatgraph modelG.P / of a polypep-

tide structure. As already mentioned, we might specify energy thresholds E� <

EC < 0 and demand that the potential energy of a hydrogen bond lie in the range

between E� and EC in order that it be regarded as a hydrogen bond to include in

input (ii) so as to produce a fatgraph denoted GE�;EC
.P /. We shall describe in

Section 5 certain experiments with proteins using various such energy thresholds.

One may also model bifurcated hydrogen bonds and allow hydrogen or oxygen

atoms in the peptide units to participate in at most ˇ � 1 hydrogen bonds by

altering the fatgraph building block in Figure 3.1 by replacing the univalent vertices

representing hydrogen and oxygen atoms by vertices of valence ˇ C 1. Different

valencies less than ˇ C 1 for oxygen and hydrogen can be implemented with this

single building block by appropriately imposing different constraints in input (ii).

Natural fattenings on these new vertices representing hydrogen or oxygen atoms

are determined as follows: project centers of partners in bonding into the plane of

the peptide unit with origin at the center of the corresponding nitrogen or carbon

atom, respectively, where the positive x-axis contains the bond axis of the incident

peptide bond, and take these projections in order of increasing argument.

Our definition of polypeptide structure assumes that there are no atoms missing

along the backbone, and this is actually somewhat problematic in practice. A useful

aspect of the methods in Section 3.2 is that such gaps present no essential difficulty

since an edge connecting fatgraph building blocks can just as well be taken to

represent a gap between peptide units as to represent an alpha carbon linkage as

in our model articulated before. The determination of twisting on these new gap

edges is just as in Construction 3.4, but now the 3-frames in this construction do

not correspond to consecutive peptide units.

A more profound extension of the method is to use the bi-invariant metric on

SO.3/ to give finer discretizations of the SO.3/ graph connection on G.P / dis-

cussed in Remark 3.11. For example, rather than our Z=2 graph connection mod-

eled by fatgraphs, one can easily implement the analogous construction of a Z=n
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graph connection based on the natural extensions of Constructions 3.4 and 3.9

modeled by graphs with fattenings and Z=n colorings. These “rotamer fatgraphs”

capture the “protein rotamers,” which are highly studied in the biophysics litera-

ture.

A still more profound innovation rests on the observation that our techniques

are of greater utility and can be adapted to model essentially any molecule since

3-frames can analogously be associated to any bond axis. One might thus model

entire amino acids themselves as rotamer fatgraphs to give a truly realistic model

of a polypeptide. Such an all-atom fatgraph model thus explicitly includes the

primary structure of the protein in keeping with current methods. As argued earlier,

if structure is indeed fully determined by sequence, then attributes of the all-atom

model lie hidden even in our basic model in its empirical consequences.

Furthermore, the discussion thus far has concentrated on molecules at equilib-

rium, and one might instead regard the fatgraph or rotamer fatgraph as a dynamic

model by taking time- or temperature-dependent inputs (ii)–(iii).

4 Robust Polypeptide Descriptors

We have described in the previous sections the fatgraph G.P / of a polypeptide

structure P with simple hydrogen bonding determined by inputs (i)–(iii) based

upon specified energy thresholds. With the understanding that the input data can

be problematic due to errors and experimental indeterminacies, we must consider

the fatgraph as defined only in a statistical sense, where a family of fatgraphs arises

from a collection P 3 P of polypeptide structures that differ from P by a small

number of such errors or indeterminacies. As such, only certain properties of the

fatgraph G.P / can meaningfully be assigned as descriptors of P , namely, those

properties that do not vary significantly over the various polypeptide structures

in P. In this section, we shall first formalize this notion of meaningful properties of

fatgraphs and then describe and discuss a myriad of such polypeptide descriptors.

Let G denote the collection of all strong equivalence classes of fatgraphs G.P /

arising from nonempty polypeptide structures P . We may perform the following

modifications to any G 2 G, leaving all other data unchanged:

Mutation (i): change the color of one alpha carbon linkage of G,

Mutation (ii): change the color of one edge ofG corresponding to a hydrogen

bond,

Mutation (iii): add or delete an untwisted edge of G corresponding to a hy-

drogen bond,

Mutation (iv): replace a fatgraph building block of G by two building blocks

connected by an untwisted alpha carbon linkage, where any edges corre-

sponding to hydrogen bonds incident on the original building block are

connected to the replacement building block that occurs first along the

backbone from N to C termini, and the reverse of this operation.



1278 R. C. PENNER ET AL.

Suppose that X is some set with metric �. We say that a function � W G ! X is

�-robust of radius Q on H � G, where � � 0 is real and Q � 0 is an integer, if

�.�.G/; �.G0// � q� whenever G0 arises from G 2 H by a sequence

G D G0 �G1 � � � � �Gq D G0 with q � Q;

where GjC1 arises from Gj by a single mutation of type (i)–(iv) for j D 0; 1; 2;

: : : ; q � 1. If � is �-robust of infinite radius on all of G, then we say simply that �

is �-robust.

By definition if X supports operations of addition and scalar multiplication and

if � is �-robust of radius Q on H, then for any ˛ 2 R, ˛� is ˛�-robust of radius Q

on H, and furthermore, if �0 is �0-robust of radius Q0 on H0, then �˙�0 is .�C�0/-
robust of radius min.Q;Q0/ on H \ H0.

It is only the �-robust functions � of reasonably large radius Q and sufficiently

small value of � on H � G that are significant characteristics of polypeptide struc-

tures whose fatgraphs G lie in H. This is because a combination of mutations

arising from q � Q errors or indeterminacies of the input data then affects the

value of �.G/ by an amount bounded by q�, which must be small compared to the

value of �.G/.

It is clear that any two fatgraphs arising from a nonempty polypeptide structure

are related by a finite sequence of mutations (i)–(iv). By assigning a penalty of

some nonzero magnitude to each type of mutation, the mutation distance between

two such fatgraphs can be defined as the minimum sum of penalties corresponding

to sequences of mutations relating them. This gives a metric, albeit seemingly

difficult to compute, on G itself, and we may regard two polypeptide structures

as being similar if the mutation distance between their corresponding fatgraphs is

small. The assignment of fatgraph G.P / to polypeptide structure P is �-robust by

definition with this metric, where the parameter � is the largest penalty.

For several obvious numerical examples, the numbers L.G/ of residues and

B.G/ of hydrogen bonds of G are 1-robust, and the Euler characteristic �.G/

of G or F.G/ is likewise 1-robust since �.G/ D 1�B.G/. The numbers v.G/ D
2L.G/�2 of vertices and e.G/ D B.G/C2L.G/�3 of edges ofG are therefore 2-

and 3-robust, respectively. The number of twisted edges corresponding to hydrogen

bonds and the number of twisted alpha carbon linkages of G are each also clearly

1-robust.

With X the set of all words of finite length in the alphabet fF;Ng given the

edit distance with unit operation cost [13], the flip sequence of G is 1-robust by

definition. In contrast, the plus/minus sequence of the alternative model K.P / in

Appendix A as a word in the alphabet fC;�g with the same metric is not �-robust

of radius greater than 0 on G for any � since a single modification of type (i) to G

can change all the entries of the plus/minus sequence.

For another negative example with X D R, the genus g.G/ of F.G/ is not

�-robust of any radius greater than 0 for any � on G since a single modification of

type (ii) on an untwisted G can produce a fatgraph G0 with F.G0/ nonorientable,
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and jg.G/ � g.G0/j D Œ1 C B.G/ � r.G/
=2. In contrast, the modified genus is

robust of infinite radius according to the following result.

PROPOSITION 4.1 The number r.G/ of boundary components and the modified

genus g�.G/ of F.G/ are 1-robust. Moreover, the number of appearances in the

flip sequence of G of any fixed word of length k in the alphabet f0; 1g is k-robust.

PROOF: The function r satisfies the required properties by Corollary 3.12,

hence so too does g� D .1CB�r/=2. The remaining assertion follows essentially

by definition. �

Given a closed edge-path 	 on G 2 G, define the peptide length of 	 to be the

number of pairs of distinct peptide units visited by 	 and define the edge length

of 	 to be the number of edges ofG traversed by 	 , each counted with multiplicity.

For example, the dotted boundary components in Figure A.3 that are character-

istic of alpha helices and beta strands all have peptide length 4 and various edge

lengths 4, 6, and 8. Define the peptide length spectrum P .G/ and the edge length

spectrum E.G/ of G 2 G, respectively, to be the unordered set of peptide lengths

and edge lengths of boundary components of F.G/. Let xP .G/ and xE.G/ denote

their respective means. It is worth pointing out that the preponderance of alpha

helices and beta strands in practice heavily biases xP .G/ towards 4.

Let X denote the collection of all finite unordered collections of natural num-

bers. The elements of a member of X may be ordered by increasing magnitude.

The distance between two such ordered finite collections of natural numbers may

then be defined by standard methods [13], and this induces a metric onX itself. We

may thus regard P and E as functions on G with values in the metric space X . As

in the proof of Corollary 3.12, these functions are �-robust where the parameter �

depends on the choice of metric.

LEMMA 4.2 Suppose that � W G ! Z is k-robust of radius at least Q on G and

that � W G ! R is �-robust of radius Q on

H D fG 2 G W �.G/ > kQ and �.G/CQ� � Œ�.G/� kQ
2g:
Then �.G/=�.G/ W G ! R is .� C k/-robust of radius Q on H.

PROOF: Suppose that G 2 H and that G D G0 � G1 � � � � � Gq D G0 is a

sequence as before, with q � Q. First note that

�.GiC1/ � �.G0/C i� and �.GiC1/ � �.G0/ � ki
by hypothesis, and so

�.GiC1/
Œ�.GiC1/
2

� �.G0/C i�

Œ�.G0/ � ki
2 � �.G0/CQ�

Œ�.G0/ � kQ
2 � 1
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sinceG0 2 H for i D 0; 1; 2; : : : ; p. Furthermore, we have that j�.Gi /��.GiC1/j �
� and j�.Gi / � �.GiC1/j � k for each i D 0; 1; 2; : : : ; q � 1, and henceˇ̌̌

ˇ �.Gi /�.Gi /
� �.GiC1/
�.GiC1/

ˇ̌̌
ˇ D

ˇ̌̌
ˇ�.GiC1/�.Gi / � �.Gi/�.GiC1/

�.Gi /�.GiC1/

ˇ̌̌
ˇ

�

8̂̂̂
<
ˆ̂̂:

�
j�.Gi /j if �.GiC1/ D �.Gi/;

�
j�.Gi /j C k

j�.GiC1/j
Œ�.GiC1/�2

if �.GiC1/ < �.Gi /;
�

j�.Gi /j C k j�.Gi /j
Œ�.Gi /�2

if �.GiC1/ > �.Gi /;

� � C k:

The triangle inequality then givesˇ̌̌
ˇ �.G/�.G/

� �. zG/
�. zG/

ˇ̌̌
ˇ � q.� C k/

as required. �

PROPOSITION 4.3 The mean xP .G/ of the peptide length spectrum is 3-robust of

radius Q on

fG 2 G W r.G/ > Q and L.G/CQ � 1 � 1
2
Œr.G/ �Q
2g;

and the mean xE.G/ of the edge length spectrum is 7-robust of radius Q on

fG 2 G W r.G/ > Q and B.G/C 2L.G/ � 3C 6Q � Œr.G/ �Q
2g:
PROOF: Since each peptide unit occurs exactly twice in the union of all the

boundary components, the sum of all the elements in P .G/ is constant equal to

2ŒL.G/ � 1
, which is 2-robust according to earlier comments. Since xP .G/ D
2ŒL.G/ � 1
=r.G/ and r.G/ is 1-robust by Lemma 4.1, the first assertion follows

from Lemma 4.2. Similarly, each edge occurs exactly twice in the union of all

boundary components, so the sum of all the elements in E.G/ is equal to 2e.G/ D
2ŒB.G/C2L.G/�3
, which is 6-robust according to earlier comments. The second

assertion therefore likewise follows from Lemma 4.2. �

Other notions of lengths of closed edge-paths in G may also be useful. For

example, for each amino acid type, each boundary component of F.G/ visits a

certain number of alpha carbon linkages labeled by amino acids of this type, and

alternative notions of length arise by assigning weights to the various amino acids

and taking the weighted sum over amino acids visited. The robustness of these

sorts of invariants seems difficult to analyze.

It is also worth pointing out that the underlying graph of the fatgraph G.P / has

its own related characteristics for any polypeptide structure P . For example, there

is an associated notion of length spectrum, namely, one or another of the notions of

generalized length discussed before of the closed edge-paths or simple closed edge-

paths on the graph. Invariants of this type, which can be derived from the graph
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underlying the fatgraph, may also be of importance in practice, and their robustness

is based on the invariance of the underlying graph under the modifications (i)–(ii).

The fatgraph G is of a special type in that it has a “spine” arising from the back-

bone, namely, the long horizontal segment arising from the concatenation of hori-

zontal segments in the fatgraph building blocks that was discussed in Section 3.2.

This “spined fatgraph” admits a canonical “reduction” by serially removing each

edge incident on a univalent vertex and amalgamating the pair of edges incident on

the resulting bivalent vertex into a single edge. The graph underlying this reduced

spined fatgraph is a “chord diagram,” and there are countless “finite-type invariants

associated with weight systems” [24], which could provide useful protein invari-

ants whose robustness depends upon the choice of weight system. See Section 6

for a further discussion of related quantum invariants.

5 First Results

5.1 Aspects of Implementation

In this section, we shall first make several practical remarks about the imple-

mentation in this paper of our methods for a protein from its PDB and DSSP files

(cf. Section 1), where we shall consider here only the model with simple hydrogen

bonds, i.e., ˇ D 1, which depends upon energy thresholds E� < EC < 0 as fol-

lows. In effect, we employ the standard methods of DSSP described in Section 1

to estimate electrostatic potentials of possible hydrogen bonds, and we tabulate to

hundredths of kcal/mole the two strongest such potentials in which each hydrogen

or oxygen atom in a polypeptide unit participates. Any such energies beyond our

energy thresholds are then discarded. Displacements of corresponding backbone

atoms are used to discriminate between equal tabulated electrostatic potentials in

order to derive a strict linear ordering on them: a hydrogen bond with energy E be-

tween atoms at distance ı precedes a hydrogen bond with energy E 0 between atoms

at distance ı0 if E < E 0 or if E D E 0 and ı � ı0, where E D E 0 to hundredths

of kcal/mole and ı D ı0 to thousandths of angstroms never occurs in practice. We

finally greedily add to B in input (ii) the hydrogen bonds in this linear ordering

provided they do not violate the a priori simple hydrogen bond assumption ˇ D 1.

Minor technical comments are that we only implemented the flipped conforma-

tion of fatgraph building blocks for cis-conformations in the case of cis-proline and

not for other residues. In any case, other cis-conformations are so rare as to be in-

consequential for the empirical work we report here. Furthermore, unspecified or

missing residue types are assumed not to be proline for input (i), atomic locations

in the PDB with highest occupancy numbers are those used for determining input

(iii), and we take only the first model in case there are several models in a PDB file.

Whenever there is a missing datum, for example the atomic location of a back-

bone atom in a PDB file, that is required for the algorithmic construction of the

3-frame corresponding to its peptide unit, we concatenate an associated fatgraph
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building block without twisting the alpha carbon linkage, and we prohibit any hy-

drogen bonding to its constituent edges. Such “gap frames” are included for each

problematic peptide unit. A number of such gap frames may occur between two fat-

graph building blocks that can consistently be assigned 3-frames, and the last alpha

carbon linkage connecting a gap frame to a nongap frame is twisted or untwisted

based upon the usual criteria for the two adjacent well-defined nongap frames. In

particular, the fatgraph constructed is always connected. Other examples of gap

frames arise from breaks along the backbone as detected by a separation of more

than 2.0 Å between atoms Ci and NiC1 for any i .

5.2 Injectivity Results

The database CATH version 3.2.0 [25] is a collection PCATH of 114,215 protein

domains, which are uniquely catalogued by a nine-tuple of natural numbers; this is

a hierarchical classification with a “standard” representative domain chosen in each

class. Our methods have been applied to the associated PDB and DSSP files so as to

produce corresponding connected fatgraphs G�1;E .P / for each P 2 PCATH and

various energy thresholds E < 0. We have concentrated here just on the question

of finding tuples of robust invariants that uniquely determine the domain P among

all the domains in PCATH, or the standard representatives of all the classes at some

level; this section simply presents these empirical “injectivity” results.

Our first results rely only on the most basic of robust invariants, which depend

only on the topological type of the surface, namely, the modified genus g�
E
.P / and

the number rE .P / of boundary components of F.G�1;E .P //.

RESULT 5.1 The 14 numbers .g�
E
.P /; rE .P //, with E D �0:5.1C t/ for integral

0 � t � 6, uniquely determine the primary structure of each P 2 PCATH except

for the special cases given in Table B.1. In particular, these 14 numbers uniquely

determine the depth 7 classes (CATHSOL) except for the four following special

cases:

	 3:40:50:720:63:1:1:1:1 and 3:40:50:720:63:1:2:1:1,

	 3:30:70:270:7:1:2:1:1 and 3:30:70:270:2:1:5:5:2,

	 2:10:210:10:1:1:1:1:1 and 1:10:8:10:13:1:1:1:2,

	 2:10:69:10:3:2:2:1:1 and 2:10:69:10:3:2:5:1:1.

The next injectivity result relies upon several robust invariants of the fatgraph.

RESULT 5.2 For any polypeptide structure P and energy threshold E < 0, con-

sider the 10 numbers given by

	 the number of residues of P ,

	 the number of hydrogen bonds of P with energy at most E, rE .P /, and

g�
E
.P /,

	 the mean of the peptide length spectrum to one significant digit,

	 the number of twisted alpha carbon linkages of G�1;E .P /,

	 the number of twisted edges of G�1;E .P / corresponding to hydrogen

bonds,
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	 the respective number of pairs FF, FN, and NN occurring in the flip se-

quence.

These numbers for the single energy level E D �0:5 uniquely determine the stan-

dard representatives of PCATH classes at depth 4 (CATH) except for the 19 excep-

tions enumerated in Table B.2.

Our final injectivity result relies only on the model of the backbone, namely, on

the flip sequence.

RESULT 5.3 The flip sequence nearly uniquely determines elements of PCATH with

the 45 exceptions enumerated in Table B.3.

We regard Results 5.1 to 5.3 as topological classifications of protein domains in

the spirit of topology determining geometry as is familiar from rigidity results for

three-dimensional manifolds, for example. We have intentionally taken so com-

plete a collection of robust invariants as to obtain complete invariants of globules,

yet subsets of these complete collections provide new tools for classification.

5.3 Classification and Prediction Results

To illustrate the use of fatgraph invariants for classification, we focus on two

specific CATH domain topologies in version 3.2.0, pectate lyase C-like (2.160.20)

and glycosyltransferase (1.50.10), both comprising five homologous superfamilies

(H-level). Pairwise scatterplots (Figures B.1 and B.2) of the three robust invari-

ants, the modified genus, the number of boundary components, and the number of

twisted alpha carbon linkages clearly indicate separation of the homologous super-

families in both cases.

We have implemented a machine-learning approach for domain classification,

at the H-level as well as at the refined S-level, where domains are further grouped

according to sequence similarity. To this end, we use the machine-learning algo-

rithm “random forests” [7], which is a probabilistic approach and depends on the

specific run of the algorithm; hence we repeated the training step 100 times. Two-

thirds of each H-level (or S-level) family are used for training, and the remaining

one-third is used for testing/prediction. Each domain is represented by the three

robust invariants mentioned above in addition to the number of residues.

In 2.160.20 there are five homologous superfamilies, 2.160.20.10, 2.160.20.20,

2.160.20.50, 2.160.20.60, and 2.160.20.70 with 102, 14, 3, 9, and 14 members, re-

spectively. The overall performance (percentage of correctly predicted domains

in the testing set) was almost identical for all runs with an avarage of 99.3%.

The domains in the three homologous superfamilies 2.160.20.20, 2.160.20.50, and

2.160.20.60 are all correctly predicted in each run; the remaining two are all pre-

dicted correctly in 72 and 99 cases, respectively. At the S-level in the CATH hier-

archy, we still observe clear separation of families (Figure B.1 and B.2). There are

a total of 16 different (nonsingleton) S-families in 2.160.20 ranging in size from

2 to 21 domains. The average performance in the 100 runs is 97.1%, and 10 of
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the S-families are all correctly classified in each run. The remaining S-families are

predicted correctly between 54 and 99 times out of the 100 runs.

The topology 1.50.10 comprises five homologous superfamilies of sizes 2, 21,

41, 96, and 210, respectively, and in 100 tests the mean performance of the classi-

fier is 95.6%. The S-level comprises 27 nonsingleton classes ranging in sizes from

2 to 60, and the average performance in 100 runs is 94.4%. Ten of these are 100%

correctly classified in all of 100 independent runs with the remaining predicted cor-

rectly between 7 and 99 times. Note that the lowest scoring S-class is 1.50.10.10.2,

which contains only three domains.

To illustrate how the modified genus and the number of boundary components

vary at different levels of CATH, we have taken as an example the domain 1o88A00

with CATHSOLID classification 2.160.20.10.11.2.1.1.1 belonging to the “pectate

lyase C-like” topology; see Figure B.3. The deepest level D contains a unique iden-

tifier (hence only one domain with a given CATHSOLID classification), whereas

higher levels are potentially populated by more domains. Levels S, O, L, and I are

defined based on sequence similarity, e.g., domains having the same I-levels are

substrings of each other sharing at least 80% sequence overlap; the variables g and

r alone are unable to differentiate domains at this I-level; cf. Figure B.3.

More detailed and systematic statistical analyses across the entire CATH data-

base will be taken up elsewhere.

6 Closing Remarks

The fatgraph corresponding to a polypeptide structure defined here and its gen-

eralizations discussed in Section 3.4 are based on the intrinsic geometry of a pro-

tein at equilibrium. We believe that we have just scratched the surface of defining

meaningful protein descriptors derived from robust invariants of these fatgraphs in

this paper, whose primary intent is simply to introduce these methods. Further ap-

plications are either ongoing or anticipated, and we briefly discuss aspects of these

various projects in this closing section.

Recall from Section 3.4 that rotamer fatgraphs arise from our basic fatgraph

model of a polypeptide structure by refining the simplest discretization of the back-

bone graph connection. Such a rotamer fatgraph or invariants of it may be assigned

to the subsequence of a protein corresponding to a turn or coil in order to give a

new classification of these structural elements. Construction 3.9 associates matri-

ces to hydrogen bonds, thus providing new tools for their analysis, for example,

discretizations likewise providing new classifications of hydrogen bonds.

More generally, the fatgraph or rotamer fatgraph of a protein or protein domain

and robust invariants of it provide new descriptors that can be used to refine existing

structural classifications. A key attribute of these new descriptors, as exemplified

by the injectivity results in Section 5.2, is that they are automatically computable

from PDB files without the need for human interpretation into the usual architec-

tural motifs. In a similar vein, [28] associates protein descriptors inspired by quan-

tum invariants of links, which are different from the quantum invariants proposed



FATGRAPH MODELS OF PROTEINS 1285

FIGURE A.1. Fatgraph building blocks for the alternative model.

in Section 3.4, and proves injectivity results analogous to those in Section 5.2. In

contrast to [28], where the geometric or topological meaning of the descriptors is

unclear, the significance of our descriptors such as those considered in Section 5.2

is manifest.

The recent paper [5] studies probability densities on the space of conforma-

tional angles with applications to structure prediction, and densities on the Lie

group SO.3/ can be computed and applied to structure prediction in an analogous

manner. Furthermore, the prediction of corresponding discretizations such as the

flip sequence and its rotamer analogues from protein primary structure has already

proved interesting.

Appendix A: Alternative Description of the Model

There is another representative K.P / of the equivalence class of the fatgraph

G.P / associated to a polypeptide structure P , which we shall describe in this

appendix. In some ways, the alternative description is more natural, though Corol-

lary 3.12 is true but not obvious in this formulation.

The backbone is modeled as the concatenation of fatgraph building blocks, one

such building block for each peptide unit. The two possible building blocks for

the i th peptide unit are illustrated in Figure A.1 and are called the positive and

negative configurations corresponding to whether the oxygen atom Oi lies to the

left or right of the backbone, respectively, when traversed from N to C termini. The

model of the backbone is determined by the sequence of configurations, positive or

negative, assigned to the consecutive peptide units and is thus described by a word

of length L � 1 in the alphabet fC;�g, which is called the plus/minus sequence

of the polypeptide structure. The untwisted fatgraph Y.P /, which is an alternative

model of the backbone, is constructed from this data by identifying endpoints of

the consecutive horizontal segments of the fatgraph building blocks in the natural
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FIGURE A.2. Elementary equivalences of fatgraphs.

way as before. There is an arbitrary choice of configuration c1 D C for the first

building block as positive.

Suppose recursively that configurations c` 2 fC;�g have been determined for

` < i < L. The configuration ci is calculated from the configuration ci�1 as

follows:

ci D

8̂̂̂
<
ˆ̂̂:

Cci�1 if Evi�1 � Evi C Ewi�1 � Ewi > 0 and Ri is not in the cis-conformation;

�ci�1 if Evi�1 � Evi C Ewi�1 � Ewi � 0 and Ri is not in the cis-conformation;

�ci�1 if Evi�1 � Evi C Ewi�1 � Ewi � 0 and Ri is in the cis-conformation;

Cci�1 if Evi�1 � Evi C Ewi�1 � Ewi < 0 and Ri is in the cis-conformation;

completing the construction of the alternative backbone model Y.P /. Notice that

the flip sequence uniquely determines the plus/minus sequence and conversely.

As in Construction 3.8, if .i; j / 2 B in input (ii), then we add an edge to Y.P /

connecting the short vertical segments corresponding to the atoms Hi and Oj . To

complete the construction of K.P /, it remains only to specify which edges of the

resulting fatgraph are twisted. To this end, suppose that .i; j / 2 B in input (ii).

There are corresponding 3-frames

Fi�1 D .Eui�1; Evi�1; Ewi�1/;
Fj D .Euj ; Evj ; Ewj /;

from Construction 3.2 and corresponding configurations ci�1 and cj defined above.

An edge corresponding to the hydrogen bond .i; j / 2 B is taken to be twisted in

K.P / if and only if ci�1cj sign.Evi�1 � Evj C Ewi�1 � Ewj / is negative.

The proof that K.P / and G.P / are equivalent depends upon the following sim-

ple diagrammatic result.

LEMMA A.1 The fatgraphs that are depicted in Figures A.2a) and A.2b) are

strongly equivalent, and the fatgraphs depicted in Figures A.2c), A.2d), and A.2e)

are pairwise equivalent.

PROOF: The strong equivalence of A.2a) and A.2b) is proved directly. Perform

vertex flips on the vertices labeled u;w in A.2c) and erase pairs of icons � on
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FIGURE A.3. Alpha helices and beta strands.

common edges to produce A.2d), which is strongly equivalent to A.2e) according

to the first assertion. �

PROPOSITION A.2 The fatgraphs G.P / and K.P / are equivalent.

PROOF: The underlying graphs of G.P / and K.P / are isomorphic by con-

struction. Furthermore, recursive application of Lemma A.1 shows that there is a

sequence of vertex flips starting at T .P / and ending at Y.P /, so the two back-

bone models are equivalent by Proposition 2.4. We claim that an edge of G.P /

representing a hydrogen bond is twisted if and only if the corresponding edge of

K.P / is twisted, and there are two cases depending upon the parity of the number

of twisted alpha carbon linkages of G.P / between the endpoints of such an edge.

This number is even, and hence so too is the number of icons � on the edge, if and

only if the configurations of fatgraph building blocks in K.P / at these endpoints

agree, and the claim therefore follows by the definition of twisting in K.P /. �

We finally consider how the standard motifs of protein secondary structure are

manifest in our alternative model K.P /. The illustration on the top of Figure A.3

depicts our fatgraph model of an alpha helix, which is defined by the indicated

pattern of hydrogen bonding. It is well-known for proteins [10] that the plus/minus

sequence of an alpha helix is given by a constant7 plus/minus sequence C C C C C
or � � � � �. Indeed, this is the standard graphical depiction of an alpha helix

7 This can be seen, for example, from the Ramachandran plot Figure 3.3 or from the direct con-

sideration of 3-frames according to Construction 3.4.
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in the protein literature, but for us, there is the deeper meaning of the figure as a

fatgraph rather than simply as a graph in its usual interpretation. The dotted line

indicates a typical boundary component of the corresponding surface.

The second and fourth illustrations from the top in Figure A.3 depict our fat-

graph models of an antiparallel beta strand and a parallel beta strand, respectively,

which are again defined by the indicated pattern of hydrogen bonding and the ori-

entations along the backbone from the N to C termini indicated by the arrows in the

figure. Again, it is well-known for proteins [10] that a beta strand, whether parallel

or antiparallel, has an alternating (see footnote 7) plus/minus sequence C � C � C
or � C � C �. Again, these are the standard graphical depictions of beta strands

but now with our enhanced fatgraph interpretation, and the dotted lines indicate

typical boundary components of the corresponding surface.

Consider the effect of a change of single configuration type in the plus/minus

sequence, from C to � or � to C, on the backbone between these two backbone

snippets as depicted in the third and fifth illustrations from the top in Figure A.3.

It follows from the definition of twisting in K.P / that the vertical edges corre-

sponding to hydrogen bonds will now be twisted. The boundary components in the

second and fourth illustrations from the top persist in the third and fifth illustra-

tions, respectively, in accordance with Corollary 3.12. Indeed, an odd number of

changes of configuration types in the backbone between the two backbone snippets

will produce an analogous result, and an even number leaves the figure unchanged.

Let us also clarify a point about antiparallel beta strands. It is not necessarily the

case that the second and third illustrations from the top in Figure A.3 accurately de-

pict our fatgraph model of an antiparallel beta strand: it may happen that our model

produces the second figure but with twisted edges representing the hydrogen bonds

in the strand or the third figure without such twisting. This is because the determi-

nation of twisting in K.P / depends upon the sign of cc0.Ev � Ev0 C Ew � Ew0/, where

.Eu; Ev; Ew/ and .Eu0; Ev0; Ew0/ are the 3-frames of the peptide units with configurations c

and c0 corresponding to the endpoints of the edge. Though the oxygen and hydro-

gen atoms involved in the hydrogen bond are within a few angstroms, the configu-

rations c and c0 may not reflect this, and furthermore, the sign of cc0.Ev � Ev0 C Ew � Ew0/
depends not only on c and c0, but also on both of Ev � Ev0 and Ew � Ew0. This leads natu-

rally to the notion of “untwisted antiparallel beta strands,” namely, those for which

Figure A.3 is accurate, and “twisted antiparallel beta strands,” those for which it is

not. In contrast, alpha helices and parallel beta strands are always represented as

in Figure A.3.

In short, the passage from graph to fatgraph enhances the usual graphical depic-

tion of alpha helices and beta strands. Changes of configuration type away from the

alpha helices and beta strands leaves undisturbed the boundary components of the

surface associated to the fatgraphs that model them. Furthermore, the distinction

between twisted and untwisted antiparallel beta strands is new and depends upon

modeling the backbone as a fatgraph rather than merely as a graph.
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Appendix B: Tables and Figures

TABLE B.1: Exceptions to injectivity in Result 5.1.

Invariants CATH domains

(26.5,80,23.5,66,21.5,58,16.5,44,11.5,18,5.0,4,3.0,2) 2.60.120.20.4.3.1.2.2 and 2.60.120.20.4.3.1.1.n
for 2 � n � 24 and n ¤ 3; 4; 10; 11; 12; 14

(36.5,81,32.5,72,31.5,66,29.0,56,23.5,34,14.0,12,2.0,2) 2.70.98.10.2.1.1.n.1 for 3 � n � 17 and n ¤ 9
(34.5,84,32.5,71,31.5,69,29.5,56,22.5,41,14.0,20,5.0,9) 2.70.98.10.2.1.1.n.1 for 19 � n � 33 and n ¤ 26; 30
(20.5,89,17.5,82,14.0,66,8.5,48,6.5,25,3.0,12,1.0,3) 3.20.20.70.69.3.1.n.1 for 4 � n � 10 or n D 12; 15; 17
(41.0,99,30.5,76,25.5,51,14.0,31,8.0,19,5.5,9,0.5,3) 3.75.10.10.1.2.2.n.1 for 1 � n � 6 or n D 8; 11
(20.5,89,17.5,82,14.0,67,8.5,48,6.5,25,3.0,12,1.0,3) 3.20.20.70.69.3.1.n.1 for n D 1; 2; 3; 13; 14; 16
(8.0,71,6.0,63,5.5,55,5.0,43,3.0,17,0.0,4,0.0,1) 3.40.50.510.1.1.1.1.m:n for m:n D 1:1; 1:3; 2:3; 3:1
(19.5,68,16.5,54,12.5,48,12.5,28,7.5,18,1.0,11,1.0,4) 3.90.70.10.3.2.1.m:n form:n D 2:15; 4:1; 5:1; 8:1; 9:1
(4.0,96,4.0,91,2.5,86,1.0,64,0.0,18,0.0,1,0.0,1) 1.10.490.10.5.1.1.m:n form:n D 1:52; 1:53; 28:1; 28:2
(4.0,102,3.0,93,2.5,84,1.0,58,0.0,22,0.0,2,0.0,1) 1.10.490.10.4.1.1.m:n form:n D 1:54; 1:55; 2:17; 2:18
(7.5,38,7.0,33,5.0,32,2.5,20,1.5,10,1.0,5,0.5,4) 2.60.40.10.2.1.1.m:n form:n D 1:258; 1:259; 7:23; 7:24
(1.0,29,0.5,29,0.5,27,0.0,20,0.0,11,0.0,5,0.0,2) 4.10.220.20.1.1.2.n.1 for n D 1; 2; 3
(4.5,169,4.0,157,2.5,145,2.0,113,1.0,59,0.5,10,0.5,1) 1.20.1070.10.1.1.1.m:n form:n D 1:12; 1:21; 9:1
(34.0,83,32.0,76,31.5,71,29.0,55,20.0,41,16.0,26,5.0,7) 2.70.98.10.2.1.1.n.1 for n D 42; 44; 46
(36.0,136,34.0,123,32.0,114,23.5,85,8.0,40,2.0,15,0.0,5) 3.20.20.140.22.1.1.n.1 for n D 2; 3; 4
(0.0,11,0.0,6,0.0,4,0.0,2,0.0,2,0.0,1,0.0,1) 2.10.210.10.1.1.1.1.1 and 1.10.8.10.13.1.1.1.2
(0.5,32,0.0,30,0.0,29,0.0,20,0.0,8,0.0,2,0.0,1) 4.10.220.20.1.1.1.n.1 for n D 13; 15
(0.5,97,0.5,94,0.5,85,0.5,65,0.5,25,0.5,5,0.0,1) 1.20.1500.10.3.1.1.n.1 for n D 1; 2
(1.0,21,1.0,17,0.5,15,0.5,14,0.5,9,0.0,3,0.0,2) 2.10.69.10.3.2.2.1.1 and 2.10.69.10.3.2.5.1.1
(1.5,42,1.5,42,1.5,39,0.5,32,0.0,16,0.0,5,0.0,1) 1.20.1280.10.1.1.1.m:n form:n D 1:1; 2:47
(1.5,43,1.5,42,1.5,38,0.5,32,0.0,17,0.0,5,0.0,1) 1.20.1280.10.1.1.1.m:n form:n D 1:2; 2:48
(3.0,21,3.0,18,3.0,15,3.0,13,1.5,9,0.5,3,0.5,1) 4.10.410.10.1.1.3.n.2 for n D 4; 7
(3.0,21,3.0,18,3.0,16,3.0,13,2.0,8,0.5,3,0.0,1) 4.10.410.10.1.1.3.n.1 for n D 5; 8
(4.5,8,4.5,8,3.5,7,2.5,5,1.0,4,0.0,2,0.0,1) 2.10.25.10.20.2.1.n.1 for n D 1; 2
(4.5,35,3.5,34,3.0,29,1.5,23,1.0,14,0.0,6,0.0,1) 1.10.1200.30.1.1.2.m:n form:n D 1:3; 4:1
(4.5,51,4.5,42,4.5,32,4.0,20,3.5,15,2.5,5,1.0,4) 3.30.70.270.4.1.1.m:n form:n D 1:185; 2:1
(5.5,48,4.5,40,4.0,32,3.0,18,1.0,12,0.0,10,0.0,4) 1.10.238.10.3.1.2.n.1 for n D 5; 6
(6.0,42,5.5,36,5.5,31,5.0,29,4.5,15,2.0,1,0.0,1) 2.40.70.10.3.1.1.m:n form:n D 5:6; 6:10
(6.0,44,5.5,39,4.5,30,4.5,23,3.5,14,1.0,6,1.0,2) 1.10.760.10.6.1.1.n.1 for n D 1; 25
(6.5, 32,6.0,30,5.5,27,3.5,28,2.5,16,1.5,4,0.0,1) 2.30.30.140.3.1.1.m:n form:n D 1:3; 2:1
(6.5,44,4.5,41,4.5,35,4.0,25,3.5,13,2.5,7,0.5,4) 3.30.70.270.7.1.2.1.1 and 3.30.70.270.2.1.5.5.2
(6.5,57,6.0,52,6.0,52,5.5,42,3.5,25,2.5,7,0.5,1) 3.30.365.10.4.1.1.m:n form:n D 1:1; 2:2
(7.0,65,7.0,64,6.5,60,3.0,54,2.0,28,0.5,5,0.0,1) 1.10.1040.10.4.1.1.n.1 for n D 1; 2
(7.5,71,6.5,63,4.5,57,4.5,41,2.0,19,2.0,6,0.0,3) 3.30.1330.10.1.1.1.n.1 for n D 2; 4
(7.5,72,5.5,64,5.0,56,5.0,43,3.0,17,0.0,4,0.0,1) 3.40.50.510.1.1.1.m:n form:n D 2:4; 3:2
(8.0,65,8.0,57,7.5,50,6.0,35,3.5,24,1.0,8,0.0,1) 3.30.1330.10.1.1.1.n.1 for n D 3; 5
(8.5,35,8.0,33,7.5,31,6.0,26,4.0,17,3.5,4,0.5,2) 2.30.30.140.3.1.1.m:n form:n D 1:4; 2:2
(8.5,69,7.5,62,6.5,56,5.5,45,5.5,24,3.5,3,0.0,1) 3.40.47.10.8.1.1.n.4 for n D 2; 6
(8.5,70,7.5,62,7.0,56,6.0,40,4.5,20,2.5,2,0.0,1) 3.40.47.10.8.1.1.n.1 for n D 2; 6
(9.0,68,8.0,60,6.5,53,6.0,40,5.0,12,1.5,1,0.5,1) 3.40.47.10.8.1.1.n.8 for n D 2; 6
(9.0,69,7.5,63,6.5,54,5.5,43,4.5,14,1.0,2,0.0,1) 3.40.47.10.8.1.1.n.6 for n D 2; 6
(9.0,70,7.5,63,6.5,55,6.0,43,5.0,19,2.0,1,0.0,1) 3.40.47.10.8.1.1.n.2 for n D 2; 6
(9.5,67,7.5,60,5.5,52,5.0,41,4.0,12,2.0,3,0.0,1) 3.40.47.10.8.1.1.n.7 for n D 2; 6
(9.5,67,8.0,61,6.0,54,5.0,43,5.0,19,2.0,3,0.0,1) 3.40.47.10.8.1.1.n.3 for n D 2; 6
(9.5,68,8.0,62,7.5,52,6.0,37,4.0,16,1.5,2,0.0,1) 3.40.47.10.8.1.1.n.5 for n D 2; 6
(9.5,71,6.5,62,6.0,52,3.5,43,2.5,27,2.0,8,1.5,5) 3.40.420.10.2.2.4.n.1 for n D 1; 2
(10.5,36,10.5,32,9.0,28,7.5,24,4.5,14,0.0,7,0.0,3) 3.10.20.30.6.1.1.n.1 for n D 2; 4
(10.5,58,10.0,49,10.0,47,8.5,33,7.0,15,3.5,4,0.5,2) 3.10.310.10.6.1.2.n.1 for n D 1; 2
(13.5,73,13.5,65,11.5,60,10.5,45,7.5,22,2.5,7,0.0,2) 3.40.50.720.82.1.1.n.1 for n D 4; 9
(13.5,74,13.5,67,11.5,64,10.5,37,6.5,14,1.5,7,0.0,2) 3.40.50.720.82.1.1.n.1 for n D 2; 6
(14.0,49,14.0,44,13.0,43,13.0,39,9.5,17,3.0,5,0.0,1) 3.30.1330.40.2.1.1.n.1 for n D 1; 3
(14.0,58,12.0,52,11.5,47,10.5,33,7.5,14,3.0,8,0.0,5) 3.10.310.10.8.1.1.n.1 for n D 6; 7
(17.5,79,15.0,64,12.5,54,9.5,38,6.5,21,4.0,6,1.5,2) 2.60.120.20.9.3.1.m:n form:n D 1:15; 6:1
(18.5,81,14.5,65,13.5,55,10.0,40,7.0,24,3.5,8,1.5,2) 2.60.120.20.9.3.1.m:n form:n D 1:18; 6:2
(19.0,20,18.0,21,16.0,17,9.5,18,7.0,10,2.0,4,0.5,2) 2.60.30.10.2.1.1.n.1 for n D 7; 9
(19.0,55,18.0,50,17.0,45,14.0,34,8.0,18,2.0,5,0.0,1) 3.40.50.720.63.1.n.1.1 for n D 1; 2
(19.5,149,19.5,137,18.0,124,12.5,97,7.5,50,1.5,7,0.0,1) 3.20.20.110.1.1.3.n.1 for n D 11; 13
(19.5,180,18.5,161,16.0,135,14.0,77,10.0,28,1.0,8,0.0,2) 3.20.20.70.55.2.1.m:n form:n D 5:8; 7:4
(19.5,185,15.5,163,11.5,130,11.5,82,6.0,42,3.5,10,0.0,1) 3.20.20.70.55.2.1.m:n form:n D 5:5; 7:1
(20.0,43,18.5,38,15.5,31,13.5,22,9.5,14,7.0,6,2.0,4) 3.90.650.10.1.1.1.n.1 for n D 3; 5

Data continue on the next page
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TABLE B.1: Continued

Invariants CATH domains

(20.5,61,18.5,51,16.5,47,15.5,31,10.5,20,5.5,5,0.0,4) 2.60.90.10.1.3.1.n.1 for n D 1; 3
(21.5,46,17.0,38,15.0,33,13.5,23,9.5,14,4.5,5,2.0,2) 3.90.650.10.1.1.1.n.1 for n D 2; 4
(22.0,178,19.0,157,18.0,129,15.0,86,9.5,30,2.0,6,0.0,1) 3.20.20.70.55.2.1.m:n form:n D 5:6; 7:2
(23.0,178,20.0,160,18.0,134,14.5,82,11.0,34,2.0,9,0.0,2) 3.20.20.70.55.2.1.m:n form:n D 5:7; 7:3
(24.0,274,19.5,257,16.0,228,13.0,176,10.0,90,1.0,22,0.0,2) 1.10.620.20.6.1.1.m:n form:n D 1:2; 2:48
(26.5,171,24.0,151,20.5,134,16.5,105,12.5,52,3.0,16,1.0,1) 3.40.718.10.4.6.1.m:n form:n D 1:4; 3:2
(27.5,180,22.0,160,19.5,141,16.5,105,10.5,51,6.0,12,0.5,3) 3.40.718.10.4.6.1.m:n form:n D 1:3; 3:1
(36.0,102,28.5,94,26.0,81,20.0,58,12.5,27,6.5,9,2.0,2) 3.50.50.60.55.1.1.n.1 for n D 7; 9
(36.5,81,32.5,72,31.5,66,29.0,56,24.5,33,14.0,12,2.0,2) 2.70.98.10.2.1.1.n.1 for n D 9; 18
(36.5,145,34.0,130,27.5,124,25.0,92,15.5,37,3.5,6,0.5,1) 3.20.20.70.72.1.1.m:n form:n D 3:8; 5:4
(36.5,145,34.0,131,28.5,123,25.5,96,17.0,41,5.0,6,0.5,1) 3.20.20.70.72.1.1.m:n form:n D 3:6; 5:2
(38.5,141,36.0,126,30.5,117,27.0,90,19.0,39,4.5,6,0.5,1) 3.20.20.70.72.1.1.m:n form:n D 3:7; 5:3
(39.0,142,35.5,127,30.0,119,26.5,92,16.5,37,5.5,5,1.0,1) 3.20.20.70.72.1.1.m:n form:n D 3:5; 5:1
(41.0,99,30.5,76,25.5,51,14.0,30,8.0,19,5.5,9,0.5,3) 3.75.10.10.1.2.2.n.1 for n D 7; 10

TABLE B.2. Exceptions to injectivity in Result 5.2.

Invariants CATH domains

(49,45,46,0.0,4.0,0,0,0,0,46) 1.20.5.190.1.1.2.1.4, 1.20.5.530.1.1.1.1.2, 1.20.5.170.1.1.2.1.1
(56,51,52,0.0,4.0,0,0,0,0,53) 1.20.5.190.1.1.3.1.1, 1.20.5.500.1.1.1.1.3, 1.20.5.170.9.1.1.1.1
(42,38,39,0.0,4.0,0,0,0,0,39) 1.20.5.190.1.1.3.2.1, 1.20.5.170.3.1.1.1.12
(46,31,30,1.0,5.0,2,3,0,2,39) 1.10.60.10.3.1.1.1.2, 1.10.287.680.1.1.1.1.16
(49,43,44,0.0,4.1,0,0,0,0,46) 1.20.5.300.2.1.1.1.7, 1.20.5.170.2.2.1.1.6
(49,25,24,1.0,6.0,6,3,1,5,35) 1.10.10.60.32.1.1.1.42, 4.10.51.10.1.1.1.1.25
(50,45,46,0.0,4.0,0,0,0,0,47) 1.20.5.80.2.1.1.2.2, 1.20.5.170.2.2.1.1.2
(52,48,49,0.0,4.0,0,0,0,0,49) 1.20.5.530.1.1.1.1.1, 1.20.5.170.2.1.1.1.2
(52,32,33,0.0,5.0,6,1,2,3,40) 4.10.220.20.1.1.1.1.1, 1.20.5.810.3.1.1.7.1
(53,30,27,2.0,6.0,5,6,1,4,41) 1.10.1220.10.3.1.3.1.3, 1.10.890.20.1.1.1.1.3
(59,55,56,0.0,4.0,0,0,0,0,56) 1.20.5.500.1.1.1.1.2, 1.20.5.170.10.1.1.3.1
(60,56,57,0.0,4.0,0,0,0,0,57) 1.20.5.500.1.1.1.1.1, 1.20.5.170.10.1.1.3.2
(62,58,59,0.0,4.0,0,0,0,0,59) 1.20.5.170.6.1.1.2.1, 1.20.5.110.6.1.1.2.3
(64,58,59,0.0,4.1,0,0,0,0,61) 1.20.5.300.1.1.1.1.2, 1.20.5.170.6.1.1.1.8
(65,37,35,1.5,5.7,9,5,2,7,46) 1.10.8.200.1.1.1.2.1, 1.10.2030.10.1.1.1.1.8
(72,48,46,1.5,5.1,7,3,2,5,57) 1.10.40.30.1.1.2.1.6, 1.10.220.10.8.1.1.1.2
(79,75,76,0.0,4.0,0,0,0,0,76) 1.20.5.170.16.1.1.1.5, 1.20.5.110.7.1.1.2.1
(88,60,53,4.0,5.5,10,11,4,6,69) 1.10.238.10.9.2.1.1.10, 1.10.288.10.2.1.1.1.1
(95,54,42,6.5,7.0,38,23,26,11,43) 3.30.1050.10.5.1.1.1.6, 3.30.1490.70.4.1.1.1.2
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TABLE B.3. Exceptions to injectivity in Result 5.3, where Nk denotes

k � 1 consecutive N.

Flip Sequence CATH domains

N19 1.20.5.460.1.1.1.6.1, 1.20.5.110.15.1.1.1.1

N27 1.20.5.800.1.1.2.1.1, 1.10.10.380.1.1.1.1.1

N29 1.20.5.140.3.1.1.1.1, 1.20.5.420.5.1.1.1.1, 1.20.5.170.18.1.1.1.1

N30 1.20.5.700.1.1.1.1.1, 1.20.5.100.2.1.1.1.1

N32 1.20.5.770.1.1.1.1.1, 1.20.5.700.1.1.1.1.3

N37 1.20.5.40.1.1.2.1.6, 1.20.5.80.2.1.1.2.5

N38 1.20.5.440.1.1.1.1.1, 4.10.810.10.1.1.1.1.1, 1.20.5.170.8.1.1.1.5

N40 1.20.5.190.1.1.3.2.1, 1.20.5.170.3.1.1.1.12

N42 1.20.5.430.1.1.2.1.3, 1.20.5.80.2.1.1.1.3, 1.20.5.490.1.1.1.1.1

N43 1.20.5.240.1.2.1.1.1, 1.10.930.10.1.1.2.1.2, 1.20.5.170.3.1.1.1.1

N44 1.20.5.230.1.1.1.1.1, 1.20.5.80.1.1.1.1.2

N45 1.20.5.190.1.1.2.1.5, 1.20.5.300.2.1.1.1.12, 1.20.5.170.14.1.1.1.1

N46 1.20.5.300.2.1.1.1.9, 1.10.287.300.1.1.1.1.1

N47 1.20.5.190.1.1.2.1.4, 1.20.5.530.1.1.1.1.2, 1.20.5.300.2.1.1.1.7, 1.20.5.170.1.1.2.1.1

N48 1.20.5.190.1.1.1.1.2, 1.20.5.80.2.1.1.2.1, 1.20.5.300.2.1.1.1.1, 1.20.5.170.2.2.1.1.1

N49 1.20.5.190.1.1.2.1.1, 1.20.5.170.2.2.1.1.11, 1.20.5.110.2.1.1.1.3

N50 1.20.5.290.1.1.1.1.1, 1.20.5.530.1.1.1.1.1, 1.20.5.170.2.1.1.1.2, 1.20.5.110.14.1.1.1.1

N51 1.20.5.190.1.1.5.1.1, 1.20.5.370.2.1.2.1.1, 1.20.5.170.10.1.1.1.1

N52 1.10.287.750.1.1.8.1.1, 1.20.5.170.2.2.1.2.2, 1.20.5.110.11.1.1.1.1

N53 1.20.5.170.2.2.1.2.1, 1.20.5.110.10.1.1.1.1

N54 1.20.5.190.1.1.3.1.1, 1.20.5.500.1.1.1.1.3, 1.20.5.170.4.1.1.1.1

N56 1.20.5.300.1.2.1.1.2, 1.20.5.110.5.1.1.1.2

N57 1.20.5.500.1.1.1.1.2, 1.20.5.170.10.1.1.3.1, 1.10.287.130.2.1.1.1.6

N58 1.20.5.390.1.1.1.1.1, 1.20.5.500.1.1.1.1.1, 1.20.5.170.10.1.1.3.2, 1.20.5.110.8.1.1.1.1

N59 1.20.5.620.1.1.1.1.1, 1.10.287.230.1.1.1.1.2, 1.20.5.170.4.2.1.1.1, 1.20.5.110.5.1.1.1.1

N60 1.20.5.300.1.1.1.1.1, 1.20.5.170.4.1.1.2.2, 1.20.5.110.6.1.1.2.3

N61 1.10.287.210.2.2.1.8.1, 1.20.5.170.6.1.1.1.11, 1.20.5.110.3.1.1.1.1

N62 1.20.5.300.1.1.1.1.2, 1.20.5.170.6.1.1.1.8, 1.20.5.110.4.1.1.1.1

N63 1.20.5.500.1.1.1.1.4, 1.20.5.170.5.1.1.1.1

N65 1.10.1440.10.1.1.1.1.1, 1.20.5.170.5.1.1.1.2, 1.2.5.110.6.1.1.1.1

N66 1.20.5.730.1.1.1.1.1, 1.20.5.170.6.1.1.1.3, 1.20.5.110.2.1.1.1.1

N71 1.20.5.400.1.1.1.1.1, 1.10.287.210.2.2.1.4.4, 1.20.5.110.6.1.2.2.2

N72 1.10.287.210.2.2.1.4.3, 1.20.5.170.16.1.1.1.3, 1.20.5.110.6.1.2.2.3

N75 1.20.5.340.1.1.1.1.4, 1.20.5.110.7.1.1.4.3

N76 1.10.287.210.7.1.1.1.1, 1.20.5.170.16.1.1.1.4

N77 1.20.20.10.1.1.1.1.3, 1.20.5.340.1.1.1.1.3, 1.20.5.170.16.1.1.1.5, 1.20.5.110.7.1.1.2.1

N28FN25 1.10.287.660.1.1.1.2.1, 1.10.287.230.1.1.2.1.5, 1.10.287.750.1.1.6.1.1

N2FN61 1.20.5.170.5.1.1.2.1, 1.20.5.110.6.1.1.2.1

N27FN26 1.10.287.230.1.1.1.4.1, 1.10.287.210.2.1.2.1.3

N29FN24 1.10.287.230.1.1.2.1.4, 1.10.287.750.1.1.5.1.1

N31FN26 1.10.287.750.1.1.3.1.1, 1.10.287.210.2.2.1.7.1

N34FNF2N 4.10.81.10.2.1.1.1.1, 1.20.5.50.9.1.1.1.8

N41F 1.20.5.490.1.1.1.1.3, 1.20.1070.10.7.1.1.1.2

N43F 1.10.10.200.2.2.1.1.1, 1.20.5.170.15.1.1.1.1

N50F 1.20.5.170.10.1.1.2.1, 1.10.287.190.1.1.1.1.2
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